

Lamps

OLEDs

LED Components

Ballasts

Transformers

Control Gear Units

Ignitors

Power Switches

Capacitors

Lampholders

Starter Holders

Terminal Blocks

Accessories

LIGHT TECHNOLOGY PRODUCTS

Vossloh-Schwabe is not merely a manufacturer of top-quality components for the lighting industry, but above all makes a competent and innovative contribution to setting market trends.

Featuring a future-proof component structure that already now satisfies both the requirements of energy-efficient lighting and European standards, VS' unique product range includes magnetic and electronic ballasts, state-of-the-art control systems (Lixos or DALI), LED lighting systems and matching operating devices.

Employing in excess of 1,000 people in more than 20 countries, Vossloh-Schwabe is represented all over the world. As a subsidiary of the Japanese Panasonic Group, VS can draw on extensive resources for R&D as well as for international expansion activities. A highly motivated workforce, comprehensive market knowledge, profound industry expertise as well as eco-awareness and environmental responsibility show Vossloh-Schwabe to be a reliable partner for the provision of optimum and cost-effective lighting solutions.

Vossloh-Schwabe's dedication to delivering superior quality is reflected in its ISO 9001 certification.

Vossloh-Schwabe is ready to embark on a collaborative journey into an economically illuminated future.

Sagrada Família

Warehouse

Sagrada Família, Barcelona

As different as each of the façades of the Sagrada Família are, they do have something in common: each is supremely symbolic. Rather than merely enclose space with walls, Gaudi intended his buildings to tell stories and be an experience in themselves. Gaudi's vision is now slowly being put into practice along with a number of additional modern elements, for instance the decision to use innovative lighting technology in the form of LED spots to perfectly set off the basilica's sacral symbolism.

The interior of the basilica, which has already been completed, soars up to an enormous vault supported by stone columns that branch off at the ceiling to form a lace-like canopy. At present these columns are fitted with a total of 40 luminaires, which in turn are equipped with daylight-white LED modules and matching control gear made by Vossloh-Schwabe.

Interior photos: José Tió Consulting and luminaire design: Anoche Iluminación Arquitectónica Glass artist: D. Fita

LiCS - The DALI Light Management System

More than ever before, present-day light management is expected to be flexible, save energy and be convenient to operate. The new all-round system made by Vossloh-Schwabe, consisting of a light controller, sensor, extender and push buttons, can be programmed without needing a PC or overriding bus system. Instead, the entire lighting system is configured using the controller's integrated display screen and rotary push key.

The DALl-based system can be used to control a max. of 64 luminaires, or luminaire groups, 6 independently configurable standard buttons and up to 16 MultiSensors using a single controller. By connecting an extender, the lighting system can then be extended by up to 64 luminaires per extender. The controller can be mounted on a 35-mm mounting rail. The wireless version of the controller (LW) substantially reduces the installation work required during refurbishment and with that also reduces installation costs. Up to 16 wireless modules can be connected, each with 4 independently configurable radio buttons.

Thanks to the VS LiCS system, the energy consumed by a warehouse (1,320 m², ceiling height of 7 m) can be almost halved from approx. 20,500 kWh p.a. down to 11,500 kWh p.a. by installing 169 luminaires 1x 49 W, a DALl-compliant electronic ballast and MultiSensors. Creating luminaire groups as well as positioning light- and motion-activated MultiSensors additionally provide the comfort and convenience of optimum light – any time you need it. If the sensor fails to register any movement, LiCS will switch the lighting system off, either in its entirety or only in certain sections, or dim it down to the specified minimum value. This removes the need to switch the lighting system on and off manually.

1	Lamps	6–7	Electronic Ballasts for TC and T Lamps	226-256
	Premier S Metal Halide Lamps	7	For compact fluorescent lamps	228-244
			ELXs – Warm start	228
2			ELXc - Warm start - Linear	229
_	OLED and LED Components	8-99	ELXd - Dimmable - Linear	230-231
	OLEDs	9	ELXc - Warm start - Compact	232-239
	Technical details on OLED	10-13	ELXd - Dimmable - Compact	240-244
	Constant current system	18-53	For tubular fluorescent lamps	245-255
	LEDSpots	54-60	ELXs - Warm start	245
	24 V CA system	61 - 70	ELXc - Warm start - Linear	246-249
	24 V standard system	71 - 89	ELXc EffectLine – Warm start	250-251
	Electronic converter for LED modules 12 V	90-91	ELXd - Dimmable - Linear	252-254
	Technical details on LED technology	92-99	ELXe - Instant start - Linear Accessories for	255
3	Ballasts for Discharge Lamps	100-141	dimmable electronic built-in ballasts	256
	Electronic ballasts, accessories	102-111	Electromagnetic Ballasts	
	Dimmable electronic ballasts	110-111	for TC and T Lamps	258-280
	Control gear units for HS and HI lamps	112-118	For compact fluorescent lamps	260-272
	Electromagnetic ballasts	119-141	Standard ballasts	260-264
	for HS and HI lamps	119-130	Super-thin ballasts	265-268
	for HM and HI lamps	131 - 134	Slim ballasts	269-270
	for SDW-T/-TF lamps	135	Ballasts 120 V, 60 Hz	271
	for power reduction	136-141	Operating units 120 V, 60 Hz	272
	for power reduction	100 141	For tubular fluorescent lamps	273-280
	Ignitors and Accessories		Standard ballasts	273 - 275
3	for Discharge Lamps	142-162	Super-thin ballasts	276-277
	Electronic superimposed ignitors	144-152	Slim ballasts	277-278
	Pulse ignitors	153-154	Ballasts 120 V, 60 Hz	277 - 279
	Instant restrike ignitors	155-156	Operating units 120 V, 60 Hz	280
	Electronic power switches	155-150	Operating tills 120 v, 00 Hz	200
		137	Laurahaldana and Assassasia	
	Electronic superimposed ignitors	150	4 Lampholders and Accessories	000 004
	with power switch	158	for ic lamps	282-304
	Switch units for electronic operating devices	150	G24, GX24 lampholders	284-291
	with 1-10 V interface	159	2G7 lampholders	292
	Start-up switches	160-161	2G8 lampholders	293
	Electronic discharge units	162	G23 lampholders	293-296
3			GR8, GR10q, GRY10q-3, GRZ10d,	
	Lampholders for Discharge Lamps	164-183	GRZ 10t lampholders	296-297
	E27 lampholders	166-168	2G 10 lampholders	297
	E40 lampholders	169-171	2G11/2GX11 lampholders	298-299
	G8.5 lampholders	171	Accessories	300-302
	GX8.5 lampholders, accessories	172	GX53-1 lampholders, accessories	303-304
	GU8.5 lampholders	172		
	GU6.5 lampholders	173	4 Lampholders and Accessories	
	PGJ5 lampholders	17.4	ior i Lamps	306-337
	GX10 lampholders	175	G5 lampholders, accessories	308-312
	GY9.5 lampholders	175	G5 twin lampholder	313
	G12, GX12-1, PG12-1, PG12-2 lampholders	176-177	G5 lampholders,	
	RX7s lampholders	177-180	degree of protection IP54/IP65/IP67	313-314
	Fc2 lampholders	181 - 182	2GX13 lampholders, accessories	315
	K12×30s lampholders	182	G13 push-through lampholders	316-318
	K12s-7 support	183	G13 push-fit lampholders	319-321
	• •		G13 push-fit twin lampholders, accessories	322-323
	Technical Details		G13 built-in lampholders	323-327
3	for Discharge Lamps	184-225	G13 surface-mounted lampholders	327-328
	U i ri		Accessories for T8 and T12 lamps	328-330

Л	Lampholders and Accessories		5	Lampholders for General-service	
4	for T Lamps	306-337	3	Incandescent and Retrofit Lamps	418-456
	G13 lampholders, degree of protection			E14 metal lampholders, three-piece	428-429
	IP54/IP65/IP67, accessories	331 - 335		E14 thermoplastic rocker switch lampholders	429-430
	G 10q lampholders, accessories	336		E14 lampholder for emergency lighting	430
	W4.3 x 8.5d surface-mounted lampholder	337		E27 thermoplastic lampholders, one-piece	
				and cover caps	431-435
А	Starter Holders and Terminal Blocks,			E27 table lamp set	436
4	Accessories	338-349		E27 renovation kit lampholders	436
	Starter holders, accessories	340-343		E27 thermoplastic lampholders, three-piece	437-439
	Terminal blocks, accessories	344-348		E27 porcelain lampholders	440-442
	Built-in rocker switches	349		E27 metal lampholders, three-piece	442-443
				E27 thermoplastic pull-switch lampholders	443-444
-	Technical Details			E27 metal pull-switch lampholders	445
4	for Fluorescent Lamps	350-379		E27 thermoplastic rocker switch lampholders	446
	•			E27 thermoplastic rotary switch lampholders	447
_	Transformers for Low-voltage			E27 festoon lampholders	447-448
5	Halogen Incandescent Lamps	380-395		B22d lampholders, accessories	448-449
	Independent electronic converters	382-386		Accessories for E14, E27 and B22d lampholders	450-455
	With DALI interface	386		E40 porcelain lampholders	456
	Electronic built-in converters	387-389			
	Potentiometer and dimmers	390	_	Technical Details	
	Electromagnetic safety transformers	391-395	5	for Incandescent Lamps	457-471
_	Lampholders for Low-voltage		_	Lighting Control Systems for	
5	Halogen Incandescent Lamps	396-407	6	Indoor Applications	472-480
	G4, GZ4, G5.3, GX5.3, G6.35,	070 107		Light Controller L/LW and S	476-477
	GY6.35 lampholders, accessories	398-399		Extender	478
	G4 lampholders, GZ4 lamp connectors	400-402		Sensors	479
	Lampholders with separate mounting	400 402		Accessories	480
	spring for GU4 lamps	402-403		Technical details for lighting control systems	700
	GX5.3 lamp connectors	403-404		for indoor applications	481-487
	GU5.3 lampholders	404		for indoor applications	401 407
	Lampholders with separate mounting spring	404		Lighting Control Systems for	
	for GU5.3 lamps	405-406	6	Outdoor Applications	488-497
	G6.35, GY6.35 lampholders,	403-400		Light Controller - iLC and iPC	492-493
	GZ6.35 lamp connectors	406		Data concentrator - iDC	492-493
	G53 lamp connectors	407		Lux meter - iLUX	492
	B15d, BA15d lampholders	407		Software - iCT	493
	B 13a, BA 13a lampholaets	407			
				Intelligent luminaire information centre - iLIC	496 497
5	Lampholders for Mains Voltage	407 417		Light Controller - iMCU	49/
	Halogen Incandescent Lamps	407-417	7		400 501
	B 15d, BA 15d lampholders	407		Emergency Lighting Modules	498-501
	G9 lampholders, accessories	408-410		With self-diagnosis function	500-501
	GU10, GZ10 lampholders, accessories	410-412		Technical details for emergency lighting modules	502-508
	R7s thermoplastic lampholders	412	8	- " -	
	R7s ceramic lampholders	412-414		Parallel capacitors	510-524
	R7s metal lampholders	415		Parallel capacitors	512-515
	Connection boxes	416		Technical details for parallel capacitors	516-524
	Connectors	417	9		
			7	Components for UL Market	526-532
5	Lampholders for General-service			For discharge lamps	528-530
7	Incandescent and Retrofit Lamps	418-456		For fluorescent lamps	530-532
	E14 thermoplastic lampholders, one-piece		10		
	and cover caps	420-424	10	General Technical Details	533-543
	E27 renovation kit lampholders	425		General Technical Details	534-540
	E14 thermoplastic lampholders, three-piece	425-427		Glossary	541 - 543
	E14 porcelain lampholders, one-piece	428		Table of reference numbers, approval marks	544-561

DISCHARGE LAMPS

A NEW GENERATION OF HI LAMPS

Panasonic has redefined the standard in retail lighting with its new 35~W and 70~W Premier S ceramic discharge lamps.

The lamp is characterised by an extremely high CRI value of more than R_{α} 96, a high degree of luminous efficiency (100 lm/W) as well as near constant luminous flux (luminous flux = 80% at up to 12,000 operating hours).

The lamp's "triple envelope" technology protects the lamp bulb and therefore removes the need to fit luminaires with a front cover since there is no danger of any glass shards falling out should the lamp shatter. Next to facilitating even slimmer luminaire designs, the enclosed bulb also increases easeof maintenance and cost-effectiveness since there is no need to remove or replace a glass cover when lamps are exchanged.

Photometric quality, cost-effectiveness, safety factors and ease of installation are all key criteria when it comes to luminaire design – and all of these criteria are fully satisfied by the Premier S lamp.

Triple-envelope technology

Enclosed bulb prevents glass shards from falling out should the lamp shatter

Highly convenient and low-cost maintenance

Coverless design enables easy lamp replacement

Minimal drop in luminous flux

Results in long service life at nearly constant light quality

High CRI value (Ra 93 / Ra 96)

Especially in the red spectral range

High degree of luminous efficiency (100 lm/W)

Due to perfectly matched system components

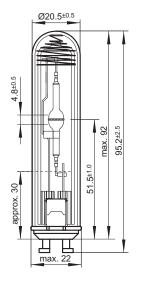
Lamps

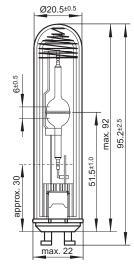
Premier S Metal Halide Lamps

 $35\,\mathrm{W}$ and $70\,\mathrm{W}$ ceramic discharge lamps for open and closed luminaires

Colour temperature: warm white (3000 K)

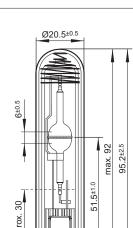
or cool white (4200 K) Colour rendering level: 1A


Lamp base: "twist & lock" GU8.5 base


Operation only with suitable electronic ballasts (see page 103)

Suitable lampholders see page 172

UV filter technology



Premier S 35 W

Premier S 70 W

Nominal	Base	Туре	Ref. No.	Output	Colour	Colour	Luminous	Luminous	CRI	Average	Burning position
output				consumption		temperature	flux*	efficiency		survival lamp life	
W				W		K	lm	lm/W	Ra	hrs.	
35	GU8.5	CPS 35W 3000K	546075	39	warm white	3000	3300	85	93	15,000	free
35	GU8.5	CPS 35W 4200K	546076	39	cool white	4200	3300	85	96	15,000	free
70	GU8.5	CPS 70W 3000K	546077	73	warm white	3000	7300	100	93	15,000	free
70	GU8.5	CPS 70W 4200K	546078	73	cool white	4200	7300	100	96	18,000	free

^{*} Lumen maintenance: > 80% @ 12,000 hrs

ORGANIC LIGHT

OLED STANDS FOR FEEL-GOOD LIGHTING

OLEDs are made of very thin organic semi-conductor layers that, when the power is switched on, radiate the kind of uniform diffused light known from indirect lighting. In addition, OLEDs are already more energy-efficient than halogen lamps.

The potential and application options of OLED technology are extensive. OLEDs are lightweight, thin and will in future also be available in transparent versions, thus opening up numerous further design possibilities.

Dimmable via a 1-10 V interface or PWM signal, VS OLEDs are additionally characterised by optimum values in terms of luminance, efficiency, colour rendering and service life. The extremely thin base part ensures easy mounting and quick replacement of OLED panels.

Typical applications

- High-quality luminaires for effect lighting
- Decorative indoor lighting
- Orientation lighting
- Illuminated signs

OLED features

- Diffused, glare-free and large-area light radiation with a high colour rendering index (CRI)
- Extremely thin design and low weight
- Dimmable via a 1 10 V interface or a PWM signal
- Contain neither mercury nor any other hazardous substances
- UV- and IR-free
- No additional cooling needed

OLEDs

Built-in light modules

These square-shaped OLED modules feature a high CRI value for brilliant colours, are suitable for indoor use and are characterised by a very flat design. OLED modules are available in three white tones. Thanks to the base part, the modules are easy to attach and replace.

Technical notes

OLED module dimensions (WxHxD): 102x95x8.9 mm

Input voltage: 24 V DC $\pm 10\%$

Operating current range over the service life:

117-188 mA ±15%

Power consumption range over the service life:

2.8-4.5 W ±15%

Ambient temperature ta: 5 to 35 °C

Max. casing temperature at the t_{c} point

t_c1 max. 70 °C

t_c2 max. 57 °C

Humidity range: 45 to 85%

Luminance: 3000 cd/m² Luminance uniformity: ≥ 50%

Colour rendering index (CRI) Ra: ≥ 90

Luminous flux: 48 lm

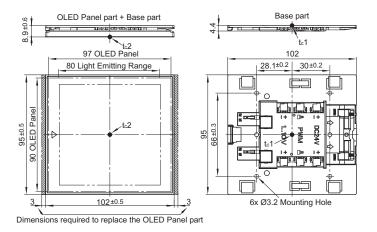
Service life L70: 10,000 hrs

Weight: 100 g

OLED panel incl. base part

Type: PEW-OM 80x80 3000K

new Ref. No.: 186223 colour temperature: 3000 K


Type: PEW-OM 80x80 4000K

new Ref. No.: 186247 colour temperature: 4000 K

Type: PEW-OM 80x80 5000K

new Ref. No.: 186248 colour temperature: 5000 K

2

3

4

5

6

7

8

9

Technical Details - OLED - Organic Light Emitting Diodes

OLED modules for indoor use

Brought to you by the company Panasonic, VS OLED modules consist of two parts:

• OLED panel The OLED panel is the actual light source of the module. To protect it from the weather and

mechanical stress, the panel is enclosed in a casing, whose design enables simple lamp

exchange.

Base part
 The base part serves to hold the OLED panel in place and contains a voltage/current

converter that exactly meets the needs of the respective OLED panel, which goes to ensure

optimum operation of the module.

Apart from the supply connections, the base part also features the connections needed to dim the OLED module. The PWM input can be addressed using the colour controllers of the VS DigiLED CA series, which are suitable for easy integration into DALI/DMX systems.

The intelligent design of the connections also makes it easy to combine OLED and LED technologies.

Installation Instructions for OLED Modules

Instructions for mounting and installing OLED modules

Mandatory regulations

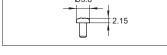
DIN VDE 0100	Erection of low-voltage installations
EN 60598-1	Luminaires - part 1: general requirements and tests
EN 61347-1	Lamp control gear - part 1: general and safety requirements
EN 61347-2-11	Control gear – part 2-11: particular requirements for miscellaneous electronic circuits used with luminaires
EN 55015	Limits and methods of measurement of radio disturbance characteristics of electrical lighting and similar equipment
EN 61000-3-2	Electromagnetic compatibility (EMC) – part 3-2: limits – limits for harmonic current emissions (equipment input current up to and including 16 A per phase)
EN 61000-3-3	Electromagnetic compatibility (EMC) – part 3-3: limits – limitation of voltage fluctuations and flicker in low-voltage circuits (equipment input current up to and including 16 A per phase)
EN 61547	For general lighting purposes - EMC immunity requirements
EN 62471	Photo-biological safety of lamps and lamp systems

Technical Details - OLED - Organic Light Emitting Diodes

Mechanical mounting of OLED modules

Surface Solid, flat surface

Installation location


OLED modules are approved only for installation in indoor luminaires.

OLED modules need to be shielded from humidity and heat.

Fastening M3 screws

Installation location

Any

Further handling information

- OLED modules and their various components must not be subjected to undue mechanical stress:
 - OLED modules must not be stacked on top of one another;
 - OLED modules must not be handled as bulk cargo;
 - Shear forces or pressure stress must be avoided when handling the base part, the terminals and especially the OLED panels.
- Standard ESD (electrostatic discharge) prevention measures need to be taken when handling and installing OLED modules; electrostatic discharge can damage OLEDs.
- Never use an OLED panel with a broken or damaged surface.
- To attach the base part, please use the two central holes or the four corner holes.
- OLED modules are not tested for resistance to vibrations. When installing the module for respective
 applications, please ensure the luminaire design guarantees the OLED panel cannot fall out.
- The module must be disconnected from the power supply prior to replacing the OLED panel.
- The maximum temperature at the t_c point must not be exceeded to ensure fault-free operation of the module
- The modules can produce audible noise. Please test noise development in the individual luminaire.
- Poor terminal connections can cause flashovers, which in unfavourable cases can cause a fire.
 Please ensure all leads are contacted properly.
- This product is not protected against water, moisture or dust. If destined for use in applications subject
 to higher degrees of moisture or dust, OLED modules must be installed in a casing with a suitable
 degree of protection.
- Before any work is carried out on OLED modules, they must be disconnected from the power supply.
 Ignoring this instruction can result in damage, and can activate the module's protective functions.

2

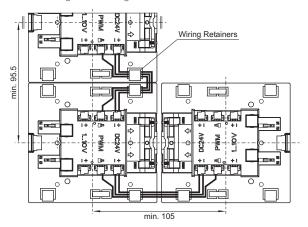
4

5

6

7

8


9

Electrical installation

Push-in terminals The terminals can be used with rigid conductors (AWG22).

Wiring

• See the diagram for wiring instructions

- · Please use the wiring guides to ensure proper wiring.
- Ensure that no leads are squashed or pinched by the OLED panel.
- Avoid criss-crossing leads.
- · Heed lead polarity.
- After proper terminal connection, please tug gently on the lead (using no more than 15 N of force) to ensure a good electrical connection.
- To undo the connection, pull on the lead. Do not use the base part again afterwards.
- Two signal types can be used for dimming purposes:
 - PWM signal: please use a PWM generator of the following specifications:
 PWM frequency: 122 Hz to 1 kHz
 Amplitude: 8 to 24 V
- 1-10 V interface: in acc. with EN 60929
- Further wiring instructions can be found under wiring layout on page 13

Protective functions

EOL behaviour

When an OLED panel nears the end of its service life, the electronics in the base part reduce the current flowing through the panel, which causes the OLED to flicker. This is a sign that the OLED panel needs to be replaced.

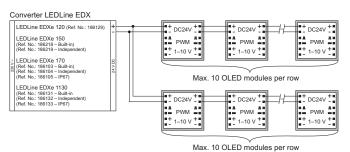
No-load protection

If an OLED panel is removed during operation or if the base part is operated without a panel, the electronics will immediately turn the base part off. To reset, the base part must be briefly disconnected from the power supply.

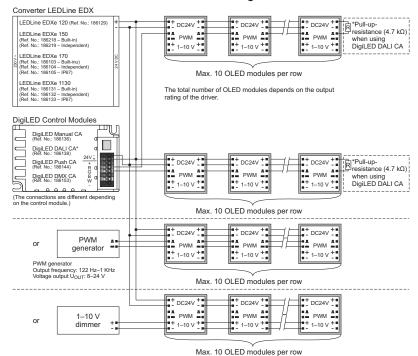
Thermal behaviour

The service life of an OLED panel is decisively influenced by its operating temperature.

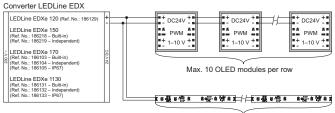
To ensure the longest possible service life of an OLED module, balanced thermal management must be taken into account when designing the luminaire.


Maximum operating temperatures

Measuring points	Max. temperature
t _c 1 (centre of the attachment panel of the base part)	70 °C
t _c 2 (centre of the top surface of the OLED panel)	57 °C


Wiring Layouts

Connection of OLED modules (without a dimming function)



The total number of OLED modules depends on the output rating of the driver.

Connection of OLED modules with a dimming function

Connection of OLED modules and LED modules (without a dimming function)

The number of LED modules depends on the module type.

OLED and LED modules can be operated in combination. However, LED modules cannot be included in rows of OLEDs that are connected in series. Combined OLED/LED systems must be connected in parallel, as shown above. The total number of OLED and LED modules is dependent on the power consumption of the modules as well as the output rating of the driver.

2

3

4

5

6

7

8

9

LED MODULES, OPERATING DEVICES AND CONNECTING TECHNOLOGY

SYSTEMS AND COMPONENTS FOR LIGHTING APPLICATIONS WITH LEDS

Thanks to the characteristics and advantages of LED modules over conventional light sources, there is almost no limit to the ways in which LED modules can be used, and new applications are being found on a continuous basis.

The usefulness of LED modules stretches from architecture and furniture design right through to creating atmospheric lighting in homes, shops, bars and restaurants. LED modules can be integrated into existing lighting systems or integrated into the respective application as a separate light source.

Vossloh-Schwabe develops and manufactures LED modules in different performance classes and shapes on the basis of COB and SMD technology.

The DigiLED series makes a high-performance range of colour-control modules for polychromatic control of LED modules using RGB technology available to users. The digital technology and user-friendly interfaces guarantee LED lighting is simple to use.

Vossloh-Schwabe's high-quality electronic LED control gear, which is available in various performance classes and designs, is designed to supply power to voltage- and constant-current-operated LED applications.

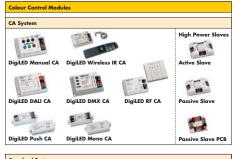
Vossloh-Schwabe's range of LED lighting systems and components is rounded off by connection components for integrating LED modules into lighting applications. Different joining elements to match the individual LED modules guarantee simple, low-cost and soldering-free assembly.

Components for LED Applications

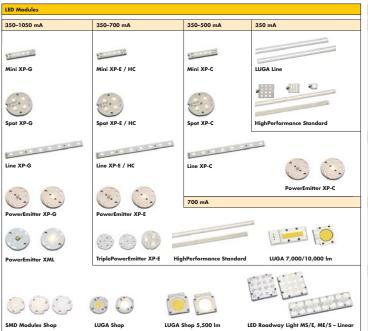
System overview	16-17
Constant-current system	18-53
UGA Line – Linear LED COB modules and accessories	20-2
HighPerformance (COB)	22-23
ED SMD modules for retail environments	24-25
UGA Shop - LED COB modules for retail environments	26-27
ED roadway light ME/S	28-30
ED modules SMD/COB 10,000 lm	3
PowerEmitter XP and XML	32-33
riplePowerEmitter XP with optics and heat sink	34-35
ED modules XP – Line, Spot and Mini	36-38
ED modules Spot XP with optics and heat sink	39
ED modulesHC - Line, Spot and Mini	40-4
PowerOptics3 for XP and XML modules	42-43
PowerOptics for XP modules	44
Reflectores for PowerEmitter XP modules	4.5
Heat sinks for LED modules XP and XML	4.5
ED constant-current drivers	46-53
.EDSpots	54-60
EDSpots XP/XML with heat sink and frames	55-57
EDSpots reflector XP with heat sink and frames	58-59
EDSpots EffectLine XP/XML with heat sink and frames	60
24 V CA system	61-70
High Power 24 V CA modules XP Mono and RGB	62-63
EDLine Flex RGB2 CA Indoor	64
EDLine Flex RGB2 CA Outdoor	65
Colour control modules - DigiLED CA	66-68
ED connection technology for 24 CA system	69
Viring layout High Power	70
24 V standard system	<i>7</i> 1–89
EDLine Flex SMD monochrom/RGB and High Brightness	72-73
EDLine Flex SMD Outdoor monochrom and RGB	74-75
EDLine (COB)	76-77
EDLine (SMD)	78
ED connection technology LEDLine (SMD)	79
Colour control module - DiaiLED	80-8
ED connection technology	82-83
Typical RGB wiring layout	84
ightThile	85
hermally conductive adhesive transfer tapes and thermal tapes for LED modules	86-87
Electronic converters for LED modules 24 V	88-89
Electronic converter for LED modules 12 V	90-91
echnical details for LED applications	92-99
General technical details	533-540
Glossary	541 - 543

i

LED System Overview by Application Fields



System Overview for Voltage Driven LED Modules



LEDLine EDXe 1130 IP67 130 W

System Overview for Current Driven LED Modules

VSSLOH SCHWABE

3

4

5

7

8

9

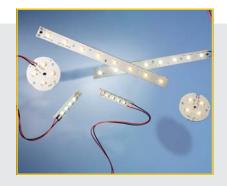
LED MODULES, CONSTANT CURRENT DRIVERS AND ACCESSORIES

The LED modules dealt with in this chapter are constant-currentoperated, built-in modules whose circuit board does not feature its own power-supply electronics. Circular and linear modules featuring various chip types are available.

Ensuring constant-current control of LED modules benefits permanent operation, efficiency (lm/Watt) and the service life of LEDs. Constant-current control is particularly important for high-performance LEDs, as a module brightness of up to 10,000 lm can be achieved.

Various brightness levels can be set by selecting the requisite operating current (350 mA, 500 mA, 700 mA, 1050 mA). In this regard, the maximum admissible current must never be exceeded and heat development must be monitored.

Typical applications


- Installation in luminaires for general lighting purposes
- Residential lighting
- Reading lamps and spots
- Entertainment
- Retail lighting
- Architectural lighting
- Street lighting

The specifications contained in this catalogue can change due to technical innovations. Any such changes will be made without separate notification.

Please read the safety and installation instructions on the individual products as well as further technical information provided in the extensive product descriptions at

www.vossloh-schwabe.com.

1

2

Constant-current LED modules for all applications

Vossloh-Schwabe's constant-current-operated LED modules are characterised by their extreme efficiency, long service life and colour brilliance. The extensive range of different designs and brightness levels results in a multitude of application options.

Whether they are used for indoor or outdoor applications: VS LED modules can be found as a decorative and functional lighting source in offices, homes, buildings and on our streets.

They are:

- highly efficient,
- characterised by a high CRI and
- extremely versatile.

Constant-current driver for current-operated LED modules

To ensure safe operation of LEDs that are connected in series, the operating current must be kept at a constant value by the ballast.

It is recommended to operate all high-performance LED modules in combination with an external constant-current driver.

To ensure the same current flows through every LED, high-performance LEDs can only be connected in series. For each respective application, the source of the constant-current must be selected to ensure the required current and sufficient voltage are supplied to the LED modules. The number of LED modules that can be connected to control gear is dependent on the forward bias of the respective modules.

2

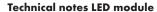
4

5

6

7

8


9

LUGA Line

Built-in PCB lighting modules

The linear LED COB modules produce a very high lumen output. The flat, impact- and vibration-proof modules are available in warm white and neutral white; they can also be seamlessly connected (no gaps).

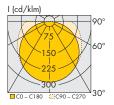
The ceramic PCB ensures optimum thermal management. Thanks to producing a homogeneous light field without any discernible individual light points, these LED modules are ideal for use in reflectors in luminaires constructed for T5 and T8 lamps.

Dimensions: 280 x 15 mm

On-board push terminal system

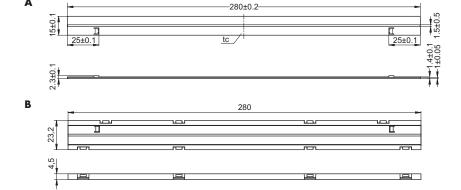
Allowed operating temperature at t_c point:

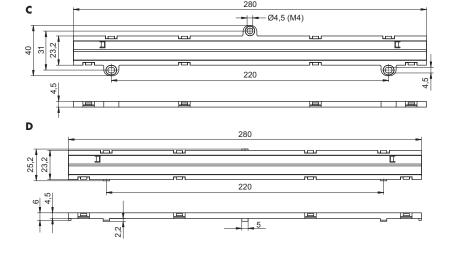
- 20 to 65 °C

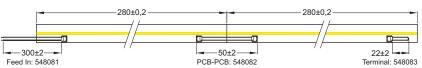

Use of external LED constant-current drivers required Ceramic PCB for optimum thermal management Colour rendering index R_{α} : min. 80 Colour accuracy initially: 3 SDCM per BIN; after 50,000 hrs. operating time: 4 SDCM per BIN ESD protection class 2 Minimum order quantity: 60 pcs.

Technical notes fixing unit

Holder material: thermo-conductive resin Lead exit: lateral or base wiring When joining linear modules to form rows, a minimum clearance of 1 mm between the assembly groups must be observed. Accessories such as a cover, diffuser and reflector can be made available on request.


Typical applications


Office lighting Shop Design T5/T8 replacement as built-in module Furniture lighting



Connection example

	Туре	Ref. No.	Fixing	Colour	Current	Volta	ge DC	(V)	Correlated	CRI		Lumin	OUS	Radio	ation a	ingle*	Drawing	Weight	Power
									colour	Ra		flux*	(lm)	0					
					mA	min.	typ.	max.	temperature* (K)	min.	typ.	min.	typ.	min.	typ.	max.		g	W
	LUGA Line																		
new	DML62EL30/L	548135	_	warm white	350	18.6	19.8	21	3000 -150/+80	80	84	500	550	110	120	130	А	16.0	6
new	DML62EW/L	548136	_	neutral white	350	18.6	19.8	21	4000 -230/+130	80	84	540	600	110	120	130	А	16.0	6
	Fixing unit incl. LUG	A Line m	odule																
new	DML62EL30/L 89300	549258	Built-in	warm white	350	18.6	19.8	21	3000 -150/+80	80	84	500	550	110	120	130	В	39.3	6
new	DML62EW/L 896300	549259	Built-in	neutral white	350	18.6	19.8	21	4000 -230/+130	80	84	540	600	110	120	130	В	39.3	6
new	DML62EL30/L 89301	549260	Screw	warm white	350	18.6	19.8	21	3000 -150/+80	80	84	500	550	110	120	130	С	40.2	6
new	DML62EW/L 89301	549261	Screw	neutral white	350	18.6	19.8	21	4000 -230/+130	80	84	540	600	110	120	130	С	40.2	6
new	DML62EL30/L 89302	549262	Slide-in	warm white	350	18.6	19.8	21	3000 -150/+80	80	84	500	550	110	120	130	D	39.2	6
new	DML62EW/L 89302	549263	Slide-in	neutral white	350	18.6	19.8	21	4000 -230/+130	80	84	540	600	110	120	130	D	39.2	6

 $^{^{\}star}$ Measurement tolerance of colour accuracy: + 7% | Emission data t_{c} = 65 $^{\circ}\text{C}$

Accessories for LUGA Line Modules

Feed-in connector

Feed in connector for power supply

Colour: - black

+ white

Max. permissible current: 1.5 A

Number of strands: 2

(Strand diameter: 0.09 mm²/AWG28)

Type: WU-VB-010

new Ref. No.: 548081

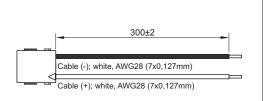
PCB - PCB connector

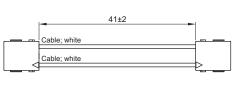
Max. permissible current: 1.5 A

Type: WU-VB-011

new Ref. No.: 548082

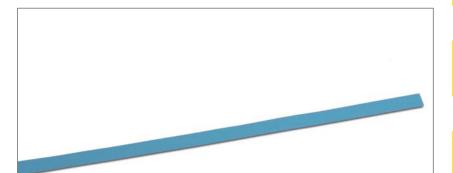
End connector


Type: WU-VB-012


new Ref. No.: 548083

Thermally conductive adhesive tapes

Dimensions: 278 x 13 mm


new Ref. No.: 548179

i

2

3

5

6

7

8

9

HighPerformance (COB)

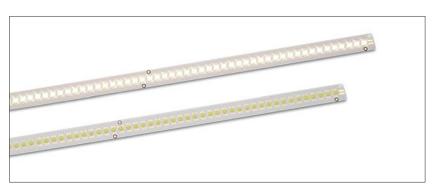
Built-in PCB lighting modules

The HighPerformance modules have a very high lumen output. The modules have a low mounting height and are resistant against shock and vibrations.

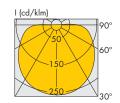
By ensuring high light-point density COB technology can be used to produce brightly and homogeneously illuminated surfaces.

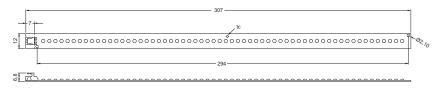
linear modules: $\approx 12 \times 300$ mm with 6 W or 12 W Square modules:

20x20 mm - 1.2 W

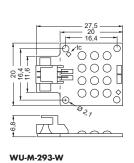

 35×35 mm - 2.5 W

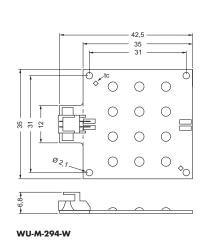
50x50 mm - 5 W

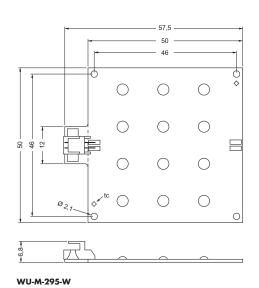

Operating temperature at t_c point: -20 to 70 °C External LED constant-current drivers required Minimum order quantity: 100 pcs.


Typical applications

Architectural lighting
Marking paths, stairs, etc.
Furniture lighting
Light advertising
Entertainment, shop design







WU-M-291-W, WU-M-292-W

VOSSLOH SCHWABE

HighPerformance (COB)

Туре	Ref. No.	Colour	Number of	Current	Voltage	Colour temperature	Typ. luminous flux*	Radiation	Power
			light points					angle	
				mA	V	K	lm	0	W
Line modules									
WU-M-291-W-3200K	532638	warm white	60	350	17	3200	320	140	6
WU-M-291-W-4200K	532639	neutral white	60	350	17	4200	400	140	6
WU-M-291-W-5400K	526742	neutral white	60	350	17	5400	400	140	6
WU-M-291-W-6500K	532640	cool white	60	350	17	6500	360	140	6
WU-M-292-W-3200K	532641	warm white	60	700	17	3200	580	140	12
WU-M-292-W-4200K	532642	neutral white	60	700	17	4200	720	140	12
WU-M-292-W-5400K	526743	neutral white	60	700	17	5400	720	140	12
WU-M-292-W-6500K	532643	cool white	60	700	17	6500	650	140	12
Square modules									
WU-M-293-W-3200K	532645	warm white	12	350	3.5	3200	60	140	1.2
WU-M-293-W-4200K	532646	neutral white	12	350	3.5	4200	75	140	1.2
WU-M-293-W-5400K	526744	neutral white	12	350	3.5	5400	75	140	1.2
WU-M-293-W-6500K	532647	cool white	12	350	3.5	6500	70	140	1.2
WU-M-294-W-3200K	532648	warm white	12	350	7	3200	115	140	2.5
WU-M-294-W-4200K	532649	neutral white	12	350	7	4200	145	140	2.5
WU-M-294-W-5400K	526745	neutral white	12	350	7	5400	145	140	2.5
WU-M-294-W-6500K	532650	cool white	12	350	7	6500	130	140	2.5
WU-M-295-W-3200K	534395	warm white	12	350	14	3200	240	140	5
WU-M-295-W-4200K	534396	neutral white	12	350	14	4200	300	140	5
WU-M-295-W-5400K	526746	neutral white	12	350	14	5400	300	140	5
WU-M-295-W-6500K	534397	cool white	12	350	14	6500	270	140	5

^{*} Emission data at $t_c = 40$ °C

HighPerformance connection cable

Connection cable for all HighPerformance modules

Colour: white and black

Number of strands: 2 (strand diameter: 0.25 mm²)

Minimum bend radius: 12 mm

Length: 300 mm

Ref. No.: 533318

ferrules on bare end of core

Ref. No.: 533366

PCB connector on both sides

PCB connector with

Length: 700 mm

Ref. No.: 534095 PCB connector with

ferrules on bare end of core

i

2

3

4

5

6

7

8

9

LED Modules SMD for Retail Environments

Built-in lighting modules

These LED modules are used in the most diverse areas of retail application – from shop windows, through refrigerated counters right up to mobile food units at markets.

To ensure safe operation, the modules may only be operated using different constant-current converters at a maximum of 700 mA or a maximum of 1050 mA. Sufficient cooling must be ensured. LED SMD modules are available in white and warm white; pre-assembled connectors enable low-cost and solder-free terminal connections.

Technical notes

Dimensions: Ø 56x6 mm and Ø 50x6 mm (WU-M-403)
On-board push-in connector
Casing material: PET
Fixing pillars: Ø 3.4 mm
Temperature fail-safe circuit:

activation temperature $t_c \approx 105~^{\circ}\text{C}$ 12 V DC interface for active cooling element:

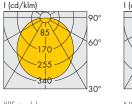
I = 120 mA, temperature-dependent rotation speed control (except WU-M-403)

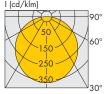
Use of external LED constant-current drivers required Colour rendering index R_{α} : typ. 80

 ${\sf ESD} \ {\sf protection} \ {\sf class} \ 2$

Minimum order quantity: 100 pcs.

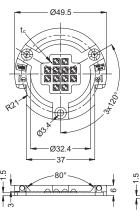
Typical applications

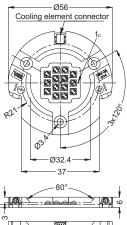

Integration in

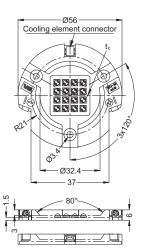

- Reflector luminaires
- Flat surface-mounting luminaires
- Cladding illumination
- Suspended luminaire with external control gear

For use in

- Shop design
- Furniture lighting
- Stairway and corridor illumination







XPE modules

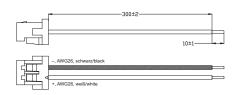
NV modules

WU-M-403

WU-M-404

WU-M-405

LED Modules SMD for Retail Environments


	Туре	Ref. No.	Colour	Correlated	CRI	Luminous	s flux* (lm)			Typ. power	consumption	Typ. radiation
				colour temperature	Ra	at 700 r	nA	at 1050 r	mA	700 mA	1050 mA	angle*
				K	typ.	min.	typ.	A at 1050 mA 700 mA 1050 mA	٥			
	LED modules Ø 50 mm -	- XP										
ew	WU-M-403-XP-2700K W1	545185	warm white	2700 -120/+175	80	1300	1400	not allow	ed	27.7	not allowed	110
ew	WU-M-403-XP-3000K W1	545187	warm white	3000 -130/+220	80	1400	1500	not allow	ed	27.7	not allowed	110
ew	WU-M-403-XP-4000K W1	545189	neutral white	4000 -300/+260	80	1400	1500	not allow	ed	27.7	not allowed	110
ew	WU-M-403-XP-4000K W2	545680	neutral white	4000 -300/+260	80	1600	1700	not allow	ed	27.7	not allowed	110
	LED modules Ø 50 mm -	- NV		•								
ew	WU-M-403-NV-2700K W1	546283	warm white	2700 -120/+175	80	2072	2220	2800	3000	27.6	44.1	115
ew	WU-M-403-NV-3000K W1	546271	warm white	3000 -130/+220	80	2220	2405	3000	3250	27.6	44.1	115
ew	WU-M-403-NV-4000K W1	546284	neutral white	4000 -300/+260	80	2220	2405	3000	3250	27.6	44.1	115
	LED modules Ø 56 mm									•		
ew	WU-M-404-NV-2700K W1	546285	warm white	2700 -120/+175	80	2072	2220	2800	3000	32.2	51.5	125
ew	WU-M-404-NV-3000K W1	546272	warm white	3000 - 130/+220	80	2220	2405	3000	3250	32.2	51.5	125
ew	WU-M-404-NV-4000K W1	546286	neutral white	4000 -300/+260	80	2220	2405	3000	3250	32.2	51.5	125
ew	WU-M-405-NV-2700K W1	546287	warm white	2700 - 120/+175	80	2405	2590	3250	3500	36.8	58.8	125
ew	WU-M-405-NV-3000K W1	546273	warm white	3000 - 130/+220	80	2590	2775	3500	3750	36.8	58.8	125
ew	WU-M-405-NV-4000K W1	546288	neutral white	4000 -300/+260	80	2590	2775	3500	3750	36.8	58.8	125

^{*} Measurement tolerance of luminous flux: \pm 7% | Emission data at t_c = 65 °C

Conection cable for cooling element

For connection of an active cooling element Type: WU-VB-009-300 mm

new Ref. No.: 545356

i

2

3

4

5

6

7

8

9

LUGA Shop 2000/3000/4000 lm

Built-in lighting modules

These LED modules are suitable for use in all retail areas - from shop windows, through refrigerated counters right up to mobile food units at markets.

The COB technology on the ceramic PCB guarantees excellent light quality in combination with a very long service life. The stable casing protects the PCB from mechanical stress and ensures high compatibility with numerous reflectors and cooling solutions.

VS LED COB modules are available in various tones of white (2700 K, 3000 K, 4000 K). Plug-in connectors enable simple, low-cost and solder-free terminal connections.

Technical notes

Dimensions: Ø 50 mm On-board push-in connector Casing material: PET

Allowed operating temperature at t_c point:

-0 to 85 °C

Fixing pillars: Ø 3.2 mm
Temperature fail-safe circuit:

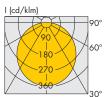
activation temperature $t_{\text{C}} \approx 105~^{\circ}\text{C}$

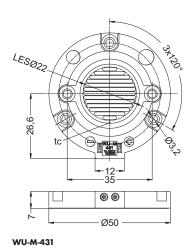
Use of external LED constant-current drivers required

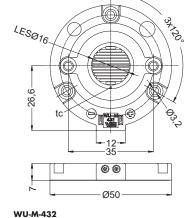
Colour rendering index Ra: typ. 82

Colour accuracy initially: 3 SDCM per BIN; after 50,000 hrs operating time: 4 SDCM per BIN

ESD protection class 2


Minimum order quantity: 100 pcs.




Typical applications

Integration in

- Reflector luminaires (20/35 W HIT replacement)
- Flat surface-mounting luminaires
- Cladding illumination
- Suspended luminaire with external control gear For use in
- Shop design
- · Furniture lighting
- Stairway and corridor illumination

not allowed not allowed 120

	Type	Ket. No.	Colour	Correlated colour	Luminous flux	x" (Im) at					Тур.	CKI
				temperature	350 mA (P _e	= 15 W)	700 mA (P	el = 30.7 W)	1050 mA (P _e	= 46.8 W)	radiation angle	Ra
				K	min.	typ.	min.	typ.	min.	typ.	۰	typ.
new	WU-M-431-2700K	548381	warm white	2700 -75/+125	1468	1600	2666	2908	3519	3825	120	82
new	WU-M-431-3000K	548382	warm white	3000 -75/+165	1509	1681	2736	3070	3605	4006	120	82
new	WU-M431-4000K	548383	neutral white	4000 -215/+185	1559	1732	2834	3150	3719	4140	120	82
new	WU-M-432-2700K	548384	warm white	2700 -75/+125	927	1018	1648	1 <i>7</i> 93	not allowed	not allowed	120	82
new	WU-M-432-3000K	548385	warm white	3000 -75/+165	958	1079	1687	1884	not allowed	not allowed	120	82

1109

1745

1947

998

Preliminary data

 * Measurement tolerance of luminous flux: \pm 7% | Emission data at t_{c} = 65 $^{\circ}$ C

WU-M-432-4000K **548386** neutral white 4000 -215/+185

** CRI $R_a > 90$ on request

LUGA Shop 5500 lm

Built-in lighting modules

These LED modules are suitable for use in all retail areas - from shop windows, through refrigerated counters right up to mobile food units at markets.

The COB technology on the ceramic PCB guarantees excellent light quality in combination with a very long service life. The stable casing protects the PCB from mechanical stress and ensures high compatibility with numerous reflectors and cooling solutions.

VS LED COB modules are available in various tones of white (2700 K, 3000 K, 4000 K). Plug-in connectors enable simple, low-cost and solder-free terminal connections.

Technical notes

Dimensions: Ø 46.6 x 45.5 mm On-board push-in connector Casing material: PET

Allowed operating temperature at tc point:

-0 to 85 °C

Fixing pillars: Ø 3.2 mm Temperature fail-safe circuit:

activation temperature $t_{c} \approx 105$ °C

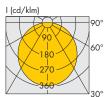
Use of external LED constant-current drivers required

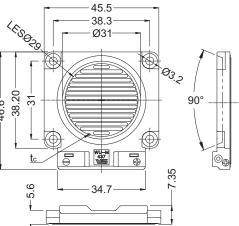
Colour rendering index Ra: typ. 82

Colour accuracy initially: 3 SDCM per BIN; after 50,000 hrs operating time: 4 SDCM per BIN

ESD protection class 2

Minimum order quantity: 100 pcs.


Typical applications


Integration in

- Reflector luminaires (50/70 W HIT replacement)
- Flat surface-mounting luminaires
- Cladding illumination
- Suspended luminaire with external control gear

For use in

- Shop design
- Furniture lighting
- Stairway and corridor illumination

	туре	Ref. No.	Coloui	Correlated colour	Luminous nux	c (im) ai			тур.	CKI
				temperature	700 mA (P _{el}	= 35.3 W	1050 mA (P.	$_{\rm el} = 55.3 \rm W)$	radiation angle	Ra
				K	min.	typ.	min.	typ.	0	typ.
7	WU-M-437-2700K	548826	warm white	2700 -75/+125	3524	3838	4809	5234	120	82
7	WU-M-437-3000K	548827	warm white	3000 -75/+165	3615	4020	4928	5481	120	82
7	WU-M-437-4000K	548828	neutral white	4000 -215/+185	3737	4152	5096	5669	120	82

Preliminary data

- * Measurement tolerance of luminous flux: \pm 7% | Emission data at t_c = 65 °C
- ** CRI $R_a > 90$ on request

LED Roadway Light ME/S

Built-in lighting modules

These LED modules are suitable for standard-compliant street lighting in accordance with EN 13201.

The combination of a robust aluminium base and the IP67 degree of protection enables a simpler, modular luminaire design. The optics attachments guarantee optimum illumination given an installation ratio of 4.5:1 (distance between luminaire poles to the height of the luminaire pole).

The VS ECXd 700/150 W LED driver enables power reduction via phase inversion.

The modules are available in three white tones and are both impact- and vibration-proof.

Technical notes

Dimensions incl. optics (LxWxH): 120x120x16 mm Encapsulated for outdoor applications with degree of proteciton IP67

16 high-efficient High Power LEDs, serial connected Pre-assembled leads, length: 500 mm

2 leads: + (red); - (blue) for luminaires of protection class II

3 leads: + (red); - (blue); earth (green/yellow) for luminaires of protection class I

Allowed operating temperature at $t_{\rm C}$ point

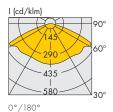
at IF = 700 mA: -20 to 70 °C

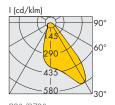
Use of external LED constant-current drivers required

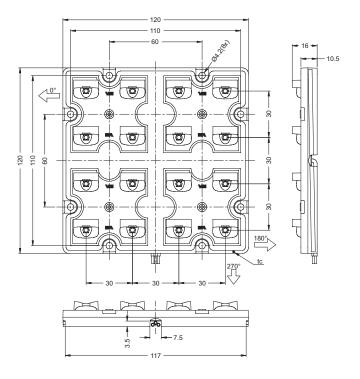
Design for optimum thermal management

Colour rendering index R_a : > 80

ESD protection class 2


Surge protection: 4 kV


Minimum order quantity: 60 pcs.


Typical applications

Integration in outdoor luminaires
Street lighting for class ME and S (acc. EN 13201)

	Туре	Ref. No.	Ref. No.	Colour	Correlated	Luminous flux * (lm) at						Spacing	CRI
		Number of	Number of		colour	400 mA	00 mA 70		700 mA			pole distance	
		leads:	leads:		temperature	$P_{el} = 18 $	$P_{el} = 18 \text{ W}$ $P_{el} = 35 \text{ W}$ $P_{el} = 35 \text{ W}$		$P_{el} = 56.6 W$		to pole height		
		2	3		K	min.	typ.	min.	typ.	min.	typ.		Ra
V	WU-M-425-WW	547230	547233	warm white	3000 -130/+220	1540	1700	2450	2700	3300	3630	4.5:1 asymmetric	> 80
V	WU-M-425-NW	547229	547232	neutral white	4000 -300/+260	1700	1875	2700	2950	3630	3960	4.5:1 asymmetric	> 80
V	WU-M-425-CW	547228	547231	cool white	5000 -255/+310	1700	1875	2700	2950	3630	3960	4.5:1 asymmetric	> 80
V	WU-M-425-CW-LOWCRI	549056	549057	cool white	5000 -400/+600	2020	2185	3235	3485	4325	4660	4.5:1 asymmetric	~ 70

 $^{^{\}star}$ Measurement tolerance of luminous flux: $\pm\,7\%$ | Emission data at $t_{\rm c}$ = 65 $^{\circ}{\rm C}$

new new new

LED Roadway Light ME/S Linear

Built-in lighting modules

These LED modules are suitable for standard-compliant street lighting in accordance with EN 13201.

The combination of a robust base and the IP67 degree of protection enables a simpler, modular luminaire design. The optics attachments guarantee optimum illumination given an installation ratio of 4.5:1 (distance between luminaire poles to the height of the luminaire pole).

The VS ECXd 700/150 W LED driver enables power reduction via phase inversion.

The modules are available in three white tones and are both impact- and vibration-proof.

Technical notes

Dimensions incl. Optics (LxWxH): 240x60x16 mm Encapsulated for outdoor applications with degree of proteciton IP67

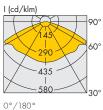
16 high-efficient High Power LEDs, serial connected Pre-assembled leads, length: 500 mm

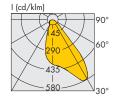
2 leads: + (red); - (blue) for luminaires of protection class II

Allowed operating temperature at t_c point at I_F = 700 mA: -20 to 70 °C

Use of external LED constant-current drivers required

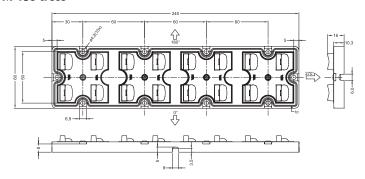
Design for optimum thermal management Colour rendering index R_a : > 80

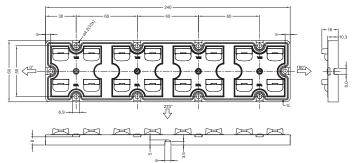

ESD protection class 2


Surge protection: 4 kV

Minimum order quantity: 60 pcs.

Typical applications


Integration in outdoor luminaires
Street lighting for class ME and S (acc. EN 13201)



° 90°/2

WU-M-438 cross

WU-M-438 length

Ref. No.	Colour	Correlated colour	Luminous	flux* (lm)					Spacing	CRI
		temperature*		400 mA 700 mA 1			1050 m	A	pole distance	
			$(P_{el} = 18)$; ∨∨)	$(P_{el} = 35)$	$(P_{el} = 35 W)$		5.6 W)	to pole height	
		K	min.	typ.	min.	typ.	min.	typ.		Ra
optics crosswise										
548568	warm white	3000 -130/+220	1540	1700	2450	2700	3300	3630	4.5:1 asymmetric	> 80
548567	neutral white	4000 -300/+260	1700	1875	2700	2950	3630	3960	4.5:1 asymmetric	> 80
548566	cool white	5000 -255/+310	1700	1875	2700	2950	3630	3960	4.5:1 asymmetric	> 80
OWCRI 549145	cool white	5000 -400/+600	2020	2185	3235	3485	4325	4660	4.5:1 asymmetric	~70
optics lengthwise								•		
548506	warm white	3000 -130/+220	1540	1700	2450	2700	3300	3630	4.5:1 asymmetric	> 80
548505	neutral white	4000 -300/+260	1700	1875	2700	2950	3630	3960	4.5:1 asymmetric	> 80
548504	cool white	5000 -255/+310	1700	1875	2700	2950	3630	3960	4.5:1 asymmetric	> 80
OW/CRI 549146	cool white	5000 -400/+600	2020	2185	3235	3/85	1325	4660	4 5:1 asymmetric	~ 70
	optics crosswise	optics crosswise 548568 warm white 548567 neutral white 548566 cool white OWCRI 549145 cool white optics lengthwise 548506 warm white 548505 neutral white 548504 cool white	temperature* K optics crosswise 548568 warm white 3000 -130/+220 548567 neutral white 4000 -300/+260 548566 cool white 5000 -255/+310 OWCRI 549145 cool white 5000 -400/+600 optics lengthwise 548506 warm white 3000 -130/+220 548505 neutral white 4000 -300/+260 548504 cool white 5000 -255/+310	temperature 400 mA (Pel = 18 min. 18 m	temperature* 400 mA (Pel = 18 W) min. typ. optics crosswise 548568 warm white 3000 -130/+220 1540 1700 548567 neutral white 4000 -300/+260 1700 1875 548566 cool white 5000 -255/+310 1700 1875 OWCRI 549145 cool white 5000 -400/+600 2020 2185 optics lengthwise 548506 warm white 3000 -130/+220 1540 1700 548505 neutral white 4000 -300/+260 1700 1875 548504 cool white 5000 -255/+310 1700 1875	temperature* 400 mA (P _{el} = 18 W) min. typ. min. typ. optics crosswise 548568 warm white 3000 -130/+220 1540 1700 2450 548567 neutral white 4000 -300/+260 1700 1875 2700 548566 cool white 5000 -255/+310 1700 1875 2700 OWCRI 549145 cool white 5000 -400/+600 2020 2185 3235 optics lengthwise 548506 warm white 3000 -130/+220 1540 1700 2450 548505 neutral white 4000 -300/+260 1700 1875 2700 548504 cool white 5000 -255/+310 1700 1875 2700	temperature* 400 mA (Pel = 18 W) min. lyp. min. lyp. optics crosswise 548568 warm white 3000 -130/+220 1540 1700 2450 2700 548567 neutral white 4000 -300/+260 1700 1875 2700 2950 548566 cool white 5000 -255/+310 1700 1875 2700 2950 OWCRI 549145 cool white 5000 -400/+600 2020 2185 3235 3485 optics lengthwise 548506 warm white 3000 -130/+220 1540 1700 2450 2700 548505 neutral white 4000 -300/+260 1700 1875 2700 2950 548504 cool white 5000 -255/+310 1700 1875 2700 2950	temperature* 400 mA (P _{el} = 18 W) K min. typ. min. typ. min. typ. min. 1050 m (P _{el} = 56 min. typ. min. typ. min. 1050 m (P _{el} = 56 min. typ. min. 1060 m 1070 la75 la76 2700 la875 2700 la876 2700 l	temperature* 400 mA (P _{el} = 18 W) K min. typ. min. typ. min. typ. min. typ. optics crosswise 548568 warm white 3000 -130/+220 1540 1700 2450 2700 3300 3630 548567 neutral white 4000 -300/+260 1700 1875 2700 2950 3630 3960 548566 cool white 5000 -255/+310 1700 1875 2700 2950 3630 3960 OWCRI 549145 cool white 5000 -400/+600 2020 2185 3235 3485 4325 4660 optics lengthwise 548506 warm white 3000 -130/+220 1540 1700 2450 2700 3300 3630 548505 neutral white 4000 -300/+260 1700 1875 2700 2950 3630 3960 548505 cool white 5000 -400/+260 1700 1875 2700 2950 3630 3960 548506 cool white 5000 -255/+310 1700 1875 2700 2950 3630 3960 548506 cool white 5000 -255/+310 1700 1875 2700 2950 3630 3960	temperature* 400 mA (Pel = 18 W) K min. lyp. min. lyp. min. lyp. pole distance to pole height to pole height pole distance to pole height to pole height pole distance to pole height to pole height to pole height pole distance to pole distance to pole height pole distance to pole distance to pole height pole distance to pole distance t

^{*} Measurement tolerance of luminous flux: \pm 7% | Emission data at t_c = 65 °C

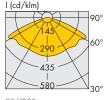
VSSLOH SCHWABE

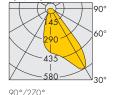
LED Roadway Light ME 2 x 2 LEDs

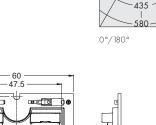
Built-in lighting modules

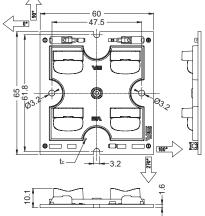
These LED modules are suitable for standard-compliant street lighting in accordance with EN 13201.

Using differing numbers of modules enables flexible and simple implementation of different lumen packages for the various lighting classes (ME1-ME6).


Technical Notes


Dimensions incl. Optics (LxWxH): 60x65x14.5 mm LED built-in module for luminaires 4 high-efficient High Power LEDs LEDs on the module are serial connected Pre-assembled with two WAGO push-in terminals ESD protection class 2


Typical applications


Integration in outdoor luminaires Street lighting for class ME (acc. EN 13201)

	Туре	Ref. No.	Colour	Correlated	Luminous f	minous flux* (lm)						CRI
				colour temperature	400 mA		700 mA		1050 mA		pole distance	
				K	min.	typ.	min.	typ.	min.	typ.	to pole height	Ra
V	WU-M-444-WW-LOW-CRI	549341	warm white	3000 -130/+220	450	480	700	750	910	970	4.5:1 asymmetric	> 65
V	WU-M-444-NW-LOW-CRI	549340	neutral white	4000 -255/+310	490	530	790	850	1075	1150	4.5:1 asymmetric	> 65
V	WU-M-444-CW-LOW-CRI	549339	cool white	5000 -400/+600	490	530	790	850	1075	1150	4.5:1 asymmetric	> 65
	de la companya de la											

^{*} Measurement tolerance of luminous flux: ±7%

new

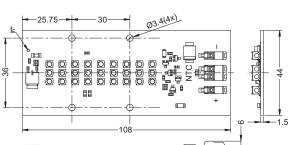
LED Modules SMD/COB 10,000 lm

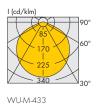
Built-in light modules

The 10,000 lm LED modules are suitable for use both in street lighting as well as high-bay and industrial lighting.

Technical Notes

Dimensions (LxWxH): 108 x44 x 6 mm, Weight: 25 g LED module is operated at high voltage (up to 155 V). Push-in terminals (WAGO 2060 Series)


LEDs on the module are serial connected Reverse polarity protection (up to 450 V)


Thermal overheat protection by power reduction of the LED module (reduced to 15 LEDs in operation

at $t_c = 94$ °C). Reset after restart, ESD protection class 2 Surge protection: 3 kV

NTC-resister for external driver feedback of module temperature

	Туре	Ref. No.	Number	Colour	Correlated colour	Luminous flux* (lm)	uminous flux* (Im)						
			of LEDs		temperature	400 mA 7		700 mA					
					K	min.	typ.	min.	typ.	Ra			
	LED modules wi	ith 27 LEDs				$(P_{el} = 31.6 W)$		$(P_{el} = 55.3 \text{ W})$					
new	WU-M-433-27	548728	27	warm white	3000 -130/+220	3320	3540	4650	4950	> 70			
new	WU-M-433-27	548729	27	neutral white	4000 -300/+260	4040	4350	5970	6430	> 70			
new	WU-M-433-27	548730	27	cold white	5000 -255/+310	4040	4350	5970	6430	> 70			
	LED modules wi	ith 42 LEDs				$(P_{el} = 49.2 \text{ W})$		$(P_{el} = 93.1 W)$					
new	WU-M-433-42	548731	42	warm white	3000 -130/+220	5160	5500	7230	<i>77</i> 10	> 70			
new	WU-M-433-42	548732	42	neutral white	4000 -300/+260	6290	6770	9280	10000	> 70			
new	WU-M-433-42	548733	42	cold white	5000 -255/+310	6290	6770	9280	10000	> 70			

new	
new	

	Туре	Ref. No.	Colour	Correlated colour temperature	Typ. luminous flux* at 700 mA	CRI	LES-type
				K	lm	Ra	
7	on request	on request	neutral white	3000	<i>75</i> 00	80	square
7	on request	on request	neutral white	4000	10000	80	round

Preliminary data

VSSLOH SCHWABE

PowerEmitter XP and XML

Built-in PCB lighting modules

Thanks to the use of highly efficient LEDs, PowerEmitter modules guarantee an extremely high lumen output of up to 731 lm at max. 1050 mA.

The modules can be safely operated with various constant-current converters (350 mA, 500 mA, 700 mA, 1050 mA). Sufficient cooling must be ensured.

Cables have to be soldered onto the solder pads of PowerEmitter modules, which are available in white, neutral white and warm white, to enable terminal connections to be made. The colours of red, green and blue can be made available on request.

To enable the creation of unique light solutions, VS also provides PowerOptics attachments with a variety of radiation angle characteristics (see pages 42 and 43).

Technical notes

PCB diameter: 30 mm

Allowed operating temperature at t_c point:

- -20 to 60 °C for PowerEmitter XP
- -20 to 65 °C for PowerEmitter XML

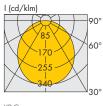
Use of external LED constant-current drivers required FR4-PCB with thermal ducts (PowerEmitter XP)

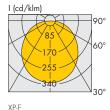
or aluminium PCB (PowerEmitter XML)

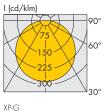
for optimum thermal management

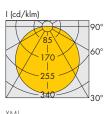
Colour rendering index:

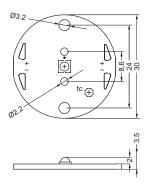
white $R_a = 75$, warm white $R_a = 80$

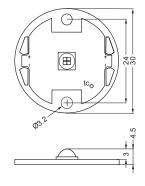

ESD protection class 2


Minimum order quantity: 144 pcs.


Typical applications


Integration in luminaires
Architectural lighting
Marking paths, stairs, etc.
Furniture lighting
Light advertising
Entertainment, shop design





PowerEmitter XP

PowerEmitter XML

PowerEmitter XP

	Туре	Ref. No.	Colour	Correlated	Luminous		Radiation						
				colour temperature	350 mA		500 mA		700 mA		1050 m	Д	angle
					$(P_{el} = 1.2)$	$(P_{el} = 1.2 W)$		$(P_{el} = 1.75 W)$		$(P_{el} = 2.4 \text{ W})$		5 W)	
				K	min.	typ.	min.	typ.	min.	typ.	min.	typ.	٥
	PowerEmitter XP-C												
new	WU-M-421-XPC-WW	546676	warm white	28703200	67.2	80.6	87.4	104.8	not allow	ved	not allow	ved	110
new	WU-M-421-XPC-NW	546671	neutral white	37004260	73.9	87.4	96.1	113.6	not allow	ved	not allowed		110
new	WU-M-421-XPC-CW	546673	white	56506950	100.0	114.0	130.0	148.2	not allow	wed not allowe		ved	110
	PowerEmitter XP-E												
new	WU-M-421-XPE-WW	546684	warm white	28703200	80.6	93.9	104.8	122.1	137.0	159.6	not allow	ved	115
new	WU-M-421-XPE-NW	546685	neutral white	37004260	93.9	107.0	122.1	139.1	159.6	181.9	not allow	ved	115
iew	WU-M-421-XPE-CW	546680	white	56506950	107.0	122.0	139.1	158.6	181.9	207.4	not allow	ved	115
	PowerEmitter XP-G												
new	WU-M-421-XPG-WW	546688	warm white	28703200	100.0	114.0	140.0	159.6	180.0	205.2	250.0	250.0	125
iew	WU-M-421-XPG-NW	546687	neutral white	37004260	107.0	122.0	149.8	170.8	192.6	219.6	267.5	267.5	125
iew	WU-M-421-XPG-CW	546686	white	53007050	122.0	139.0	170.8	194.6	219.6	250.2	305.0 347.5		125

^{*} Measurement tolerance of luminous flux: \pm 7% | Emission data at t₁ = 25 °C

PowerEmitter XML

	Туре	Ref. No.	Colour	Correlated	Luminous	uminous flux * (Im) at								
				colour temperature	350 mA		500 mA 700 mA				1050 mA		angle	
					$(P_{el} = 4 \text{ W}) \qquad (f$		$(P_{el} = 6 W)$		$(P_{el} = 9.3 W)$		$(P_{el} = 12.7 \text{ W})$			
				K	min.	typ.	min.	typ.	min.	typ.	min.	typ.	0	
	PowerEmitter XML													
new	WU-M-424-27K	548032	warm white	26502790	260	300	325	375	442	510	560	645	115	
new	WU-M-424-30K	548031	warm white	29503125	280	320	350	400	476	544	602	688	115	
new	WU-M-424-40K	548030	neutral white	38354110	300	340	375	425	510	<i>57</i> 8	645	<i>7</i> 31	115	

 $^{^{*}}$ Measurement tolerance of luminous flux: $\pm\,7\%$ | Emission data at $t_{\rm j}$ = 85 °C

i

2

3

4

5

6

7

8

9

TriplePowerEmitter XP

Built-in PCB lighting modules

Thanks to the use of highly efficient LEDs, TriplePowerEmitter modules guarantee an extremely high lumen output of up to 560 lm at max. 700 mA.

The modules can be safely operated with various constant-current drivers (350 mA, 500 mA or 700 mA). Sufficient cooling must be ensured.

The TriplePowerEmitter modules are available in white, neutral white and warm white.

The modules are available without an optical attachment or with a fixed 10°, 15°, 20° or 40° optical attachment to enable the creation of different lighting scenes.

Technical notes

PCB diameter: 45 mm

Allowed operating temperature at t_{C} point:

-20 to 65 °C

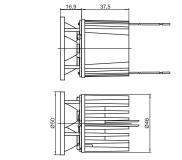
Use of external LED constant-current drivers required Aluminium PCB for optimum thermal management Colour rendering index:

white $R_a = 75$, warm white $R_a = 80$

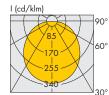
ESD protection class 2

Minimum order quantity: 120 pcs.

Additional technical notes for LED modules with heat sink

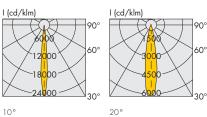

Heat sink material: thermoconductive resin
Pre-assembled leads: Cu tinned, stranded conductors
AWG22, PVC-insulation, length: 300 mm

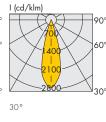
Weight: 90 g Unit: 40 pcs.

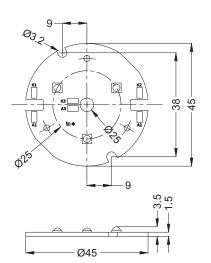

Typical applications

Integration in luminaires
Architectural lighting
Marking paths, stairs, etc
Furniture lighting
Light advertising
Entertainment, shop design

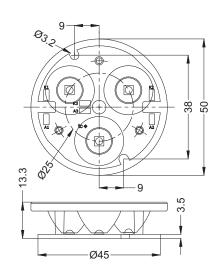
TriplePowerEmitter XP with optics and heat sink


Without optics


1 (cd/klm)


90°

1000


60°

Module without optics

40°

Module with optics

TriplePowerEmitter XP

Туре	Ref. No.	Colour	Correlated Luminous flux* (Im) at						Radiation angle	
			colour temperature	350 mA		500 mA		700 mA		
				$(P_{el} = 3.$	36 W)	$(P_{el} = 4.5)$	95 W)	$(P_{el} = 7.$	14 W)	
			K	min.	typ.	min.	typ.	min.	typ.	0
Without optics										
WU-M-422-XPE-WW	546733	warm white	28703200	241.8	281.7	314.3	366.2	411.1	478.9	115
WU-M-422-XPE-NW	546727	neutral white	37004260	281 <i>.</i> 7	321.0	366.2	417.3	478.9	545.7	115
WU-M-422-XPE-CW	546729	cool white	56506950	321.0	366.0	417.3	475.8	545.7	622.2	115
TriplePowerEmitter XP	10°									
WU-M-422-XPE-WW-10°	546741	warm white	28703200	217.6	253.5	282.9	329.6	370.0	431.0	10
WU-M-422-XPE-NW-10°	546736	neutral white	37004260	253.5	288.9	329.6	375.6	431.0	491.1	10
WU-M-422-XPE-CW-10°	546735	cool white	56506950	288.9	329.4	375.6	428.2	491.1	560.0	10
TriplePowerEmitter XP 2	20°		•		•	·		•		•
WU-M-422-XPE-WW-20°	546749	warm white	28703200	217.6	253.5	282.9	329.6	370.0	431.0	20
WU-M-422-XPE-NW-20°	546750	neutral white	37004260	253.5	288.9	329.6	375.6	431.0	491.1	20
WU-M-422-XPE-CW-20°	546748	cool white	56506950	288.9	329.4	375.6	428.2	491.1	560.0	20
TriplePowerEmitter XP	30°		•		•	·				
WU-M-422-XPE-WW-30°	548090	warm white	28703200	217.6	253.5	282.9	329.6	370.0	431.0	30
WU-M-422-XPE-NW-30°	548089	neutral white	37004260	253.5	288.9	329.6	375.6	431.0	491.1	30
WU-M-422-XPE-CW-30°	548088	cool white	56506950	288.9	329.4	375.6	428.2	491.1	560.0	30
TriplePowerEmitter XP 4	10°		•		•	·				
WU-M-422-XPE-WW-40°	546757	warm white	28703200	217.6	253.5	282.9	329.6	370.0	431.0	40
WU-M-422-XPE-NW-40°	546756	neutral white	37004260	253.5	288.9	329.6	375.6	431.0	491.1	40
WU-M-422-XPE-CW-40°	546755	cool white	56506950	288.9	329.4	375.6	428.2	491.1	560.0	40
	Without optics WU-M-422-XPE-WW WU-M-422-XPE-NW WU-M-422-XPE-CW TriplePowerEmitter XP WU-M-422-XPE-NW-10° WU-M-422-XPE-CW-10° TriplePowerEmitter XP WU-M-422-XPE-CW-20° WU-M-422-XPE-WW-20° WU-M-422-XPE-WW-30° WU-M-422-XPE-WW-30° WU-M-422-XPE-WW-30° WU-M-422-XPE-WW-30° WU-M-422-XPE-WW-30° WU-M-422-XPE-WW-40° WU-M-422-XPE-WW-40° WU-M-422-XPE-NW-40°	Without optics WU-M-422-XPE-WW 546733 WU-M-422-XPE-NW 546727 WU-M-422-XPE-CW 546729 TriplePowerEmitter XP 10° WU-M-422-XPE-NW-10° 546741 WU-M-422-XPE-NW-10° 546735 TriplePowerEmitter XP 20° WU-M-422-XPE-WW-20° 546749 WU-M-422-XPE-NW-20° 546749 WU-M-422-XPE-NW-20° 546748 TriplePowerEmitter XP 30° WU-M-422-XPE-WW-30° 548089 WU-M-422-XPE-NW-30° 548088 TriplePowerEmitter XP 40° WU-M-422-XPE-WW-40° 546757 WU-M-422-XPE-NW-40° 546756	Without optics WU-M-422-XPE-WW 546733 warm white WU-M-422-XPE-NW 546727 neutral white WU-M-422-XPE-CW 546729 cool white TriplePowerEmitter XP 10° WU-M-422-XPE-WW-10° 546741 warm white WU-M-422-XPE-WW-10° 546736 neutral white WU-M-422-XPE-CW-10° 546735 cool white TriplePowerEmitter XP 20° Wu-M-422-XPE-WW-20° 546749 warm white WU-M-422-XPE-NW-20° 546748 cool white TriplePowerEmitter XP 30° WU-M-422-XPE-WW-30° 548090 warm white WU-M-422-XPE-NW-30° 548089 neutral white WU-M-422-XPE-WW-30° 548088 cool white TriplePowerEmitter XP 40° WU-M-422-XPE-WW-40° 546757 warm white WU-M-422-XPE-NW-40° 546756 neutral white	Colour temperature Without optics WU-M-422-XPE-WW 546733 warm white 28703200 WU-M-422-XPE-NW 546727 neutral white 37004260 WU-M-422-XPE-CW 546729 cool white 56506950 TriplePowerEmitter XP 10° WU-M-422-XPE-WW-10° 546741 warm white 28703200 WU-M-422-XPE-NW-10° 546736 neutral white 37004260 WU-M-422-XPE-CW-10° 546735 cool white 56506950 TriplePowerEmitter XP 20° Wu-M-422-XPE-WW-20° 546749 warm white 28703200 WU-M-422-XPE-NW-20° 546748 cool white 56506950 TriplePowerEmitter XP 30° 546748 cool white 56506950 TriplePowerEmitter XP 30° 548089 neutral white 37004260 WU-M-422-XPE-NW-30° 548089 neutral white 36506950 TriplePowerEmitter XP 40° 548088 cool white 56506950 TriplePowerEmitter XP 40° 546757 warm white 28703200 WU-M-422-XPE-N	Without optics K K WU-M-422-XPE-WW 546733 warm white 28703200 241.8 WU-M-422-XPE-NW 546727 neutral white 37004260 281.7 WU-M-422-XPE-CW 546729 cool white 56506950 321.0 TriplePowerEmitter XP 10° WU-M-422-XPE-WW-10° 546741 warm white 28703200 217.6 WU-M-422-XPE-NW-10° 546736 neutral white 37004260 253.5 WU-M-422-XPE-CW-10° 546735 cool white 56506950 288.9 TriplePowerEmitter XP 20° Wu-M-422-XPE-WW-20° 546749 warm white 28703200 217.6 WU-M-422-XPE-NW-20° 546748 cool white 37004260 253.5 WU-M-422-XPE-WW-30° 548090 warm white 28703200 217.6 WU-M-422-XPE-NW-30° 548089 neutral white 37004260 253.5 WU-M-422-XPE-NW-30° 548089 neutral white 36506950 288.9 TriplePowerEmitter XP 40° 548088 cool white	Without optics K K Min. lyp. WU-M-422-XPE-WW 546733 warm white 28703200 241.8 281.7 WU-M-422-XPE-NW 546727 neutral white 37004260 281.7 321.0 WU-M-422-XPE-CW 546729 cool white 56506950 321.0 366.0 TriplePowerEmitter XP 10° WU-M-422-XPE-WW-10° 546741 warm white 28703200 217.6 253.5 WU-M-422-XPE-NW-10° 546736 neutral white 37004260 253.5 288.9 WU-M-422-XPE-NW-10° 546735 cool white 56506950 288.9 329.4 TriplePowerEmitter XP 20° WU-M-422-XPE-WW-20° 546749 warm white 28703200 217.6 253.5 WU-M-422-XPE-NW-20° 546748 cool white 56506950 288.9 329.4 TriplePowerEmitter XP 30° WU-M-422-XPE-WW-30° 548089 neutral white 37004260 253.5 288.9 WU-M-422-XPE-NW-30° 548089 neutral white 37004260	Without optics K K 281.7 314.3 WU-M-422-XPE-WW 546733 warm white 28703200 241.8 281.7 314.3 WU-M-422-XPE-WW 546727 neutral white 37004260 281.7 321.0 366.2 WU-M-422-XPE-WW 546729 cool white 56506950 321.0 366.0 417.3 TriplePowerEmitter XP 10° WU-M-422-XPE-WW-10° 546741 warm white 28703200 217.6 253.5 282.9 WU-M-422-XPE-NW-10° 546735 cool white 56506950 288.9 329.4 375.6 TriplePowerEmitter XP 20° WU-M-422-XPE-WW-20° 546749 warm white 28703200 217.6 253.5 282.9 WU-M-422-XPE-NW-20° 546748 cool white 56506950 288.9 329.4 375.6 TriplePowerEmitter XP 30° WU-M-422-XPE-WW-30° 546748 cool white 56506950 288.9 329.4 375.6 TriplePowerEmitter XP 30° 548089 neutral white	Without optics Wu-M-422-XPE-WW 546733 start warm white 28703200 241.8 281.7 314.3 366.2 417.3 WU-M-422-XPE-NW 546727 neutral white 37004260 281.7 321.0 366.2 417.3 WU-M-422-XPE-CW 546729 cool white 56506950 321.0 366.0 417.3 475.8 TriplePowerEmitter XP 10° WU-M-422-XPE-WW-10° 546741 warm white 28703200 217.6 253.5 282.9 329.6 WU-M-422-XPE-NW-10° 546736 neutral white 37004260 253.5 288.9 329.6 375.6 WU-M-422-XPE-WW-20° 546735 cool white 56506950 288.9 329.4 375.6 428.2 TriplePowerEmitter XP 20° WU-M-422-XPE-NW-20° 546749 warm white 28703200 217.6 253.5 282.9 329.6 WU-M-422-XPE-NW-20° 546749 warm white 28703200 217.6 253.5 282.9 329.6 WU-M-422-XPE-WW-30° 546748 cool white 56506950 288.9 329.4 375.6 <td< td=""><td>Without optics WU-M-422-XPE-WW 546733 warm white 28703200 241.8 281.7 314.3 366.2 411.1 WU-M-422-XPE-NW 546727 neutral white 37004260 281.7 321.0 366.2 417.3 478.9 WU-M-422-XPE-NW 546727 neutral white 36506950 321.0 366.0 417.3 478.9 WU-M-422-XPE-CW 546729 cool white 56506950 321.0 366.0 417.3 475.8 545.7 TriplePowerEmitter XP 10° WU-M-422-XPE-NW-10° 546741 warm white 28703200 217.6 253.5 282.9 329.6 370.0 WU-M-422-XPE-NW-10° 546736 neutral white 37004260 253.5 288.9 329.4 375.6 428.2 491.1 TriplePowerEmitter XP 20° WU-M-422-XPE-WW-20° 546749 warm white 28703200 217.6 253.5 282.9 329.6 370.0 WU-M-422-XPE-WW-20° 546748 cool white 56506950 288.9 329.4<!--</td--><td>Without optics WU-M-422-XPE-WW 546733 base of the part of</td></td></td<>	Without optics WU-M-422-XPE-WW 546733 warm white 28703200 241.8 281.7 314.3 366.2 411.1 WU-M-422-XPE-NW 546727 neutral white 37004260 281.7 321.0 366.2 417.3 478.9 WU-M-422-XPE-NW 546727 neutral white 36506950 321.0 366.0 417.3 478.9 WU-M-422-XPE-CW 546729 cool white 56506950 321.0 366.0 417.3 475.8 545.7 TriplePowerEmitter XP 10° WU-M-422-XPE-NW-10° 546741 warm white 28703200 217.6 253.5 282.9 329.6 370.0 WU-M-422-XPE-NW-10° 546736 neutral white 37004260 253.5 288.9 329.4 375.6 428.2 491.1 TriplePowerEmitter XP 20° WU-M-422-XPE-WW-20° 546749 warm white 28703200 217.6 253.5 282.9 329.6 370.0 WU-M-422-XPE-WW-20° 546748 cool white 56506950 288.9 329.4 </td <td>Without optics WU-M-422-XPE-WW 546733 base of the part of</td>	Without optics WU-M-422-XPE-WW 546733 base of the part of

 $^{^{\}star}$ Measurement tolerance of luminous flux: $\pm\,7\%$ | Emission data at tj = 25 °C

TriplePowerEmitter XP with Optics and Heat Sink

	Туре	Description	Ref. No.	Colour	Correlated	Luminous flux* (lm) at						Radiation angle
					colour temperature	350 mA	4	500 mA		700 mA		
						$P_{el} = 3.5$	36 W	$P_{el} = 4.9$	95 W	$P_{el} = 7.1$	4 W	
					K	min.	typ.	min.	typ.	min.	typ.	0
	TripleEmitter 2	XP 10°										
new	LR3VV	XPE 3000K min P4	548875	warm white	28703200	217.6	253.5	282.9	329.6	370.0	431.0	10
new	LR3VV	XPE 4000K min Q2	548879	neutral white	37004260	236.0	261.9	306.8	340.3	401.2	445.0	10
new	LR3VV	XPE 6300K min Q4	548883	cool white	56506950	270.0	298.4	351.0	387.8	459.0	507.2	10
	TripleEmitter 2	XP 20°										
new	LR3W	XPE 3000K min P4	548874	warm white	28703200	217.6	253.5	282.9	329.6	370.0	431.0	20
new	LR3W	XPE 4000K min Q2	548878	neutral white	37004260	236.0	261.9	306.8	340.3	401.2	445.0	20
new	LR3W	XPE 6300K min Q4	548882	cool white	56506950	270.0	298.4	351.0	387.8	459.0	507.2	20
	TripleEmitter 2	XP 30°										
new	LR3W	XPE 3000K min P4	548873	warm white	28703200	217.6	253.5	282.9	329.6	370.0	431.0	30
new	LR3W	XPE 4000K min Q2	548877	neutral white	37004260	236.0	261.9	306.8	340.3	401.2	445.0	30
new	LR3W	XPE 6300K min Q4	548881	cool white	56506950	270.0	298.4	351.0	387.8	459.0	507.2	30
	TripleEmitter 2	XP 40°	·									
new	LR3W	XPE 3000K min P4	548872	warm white	28703200	217.6	253.5	282.9	329.6	370.0	431.0	40
new	LR3VV	XPE 4000K min Q2	548876	neutral white	37004260	236.0	261.9	306.8	340.3	401.2	445.0	40
new	LR3VV	XPE 6300K min Q4	548880	cool white	56506950	270.0	298.4	351.0	387.8	459.0	507.2	40

^{*} Measurement tolerance of luminous flux: \pm 7% | Emission data at t_i = 25 °C

i

2

3

4

5

6

7

8

9

LED Modules XP

Line XP / Spot XP / Mini XP Built-in PCB lighting modules

The Line XP, Spot XP and Mini XP modules are available with various highly efficient LED arrays and cover a wide range of applications in the field of general lighting.

Depending on the respective LED array the modules operate with a constant-current of 350 to 1050 mA. Care must be taken to ensure adequate cooling to suit the respective module's power input. Available in white and warm white, the modules are designed for cost-effective and solder-free connection using pre-assembled cables.

To enable the creation of unique light solutions (for street lighting for example), VS also provides optics attachments with a variety of radiation angle characteristics (see pages 42-44).

Technical notes

Dimensions

Line XP: 200 x 15 mm

Spot XP: Ø 45 mm

Mini XP: 50×10 mm

Pre-assembled with 2 leads

Allowed operating temperature at t_{c} point:

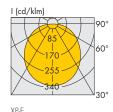
– 20 to 80 °C for XP-C/XP-E

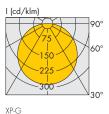
-20 to 70 °C for XP-G

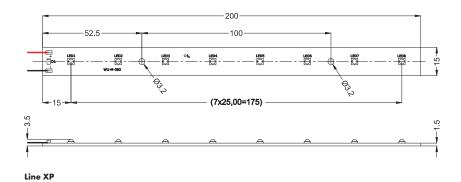
Use of external LED constant-current drivers required Aluminium PCB for optimum thermal management Colour rendering index:

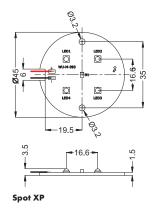
white $R_a = 75$, warm white $R_a = 80$

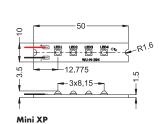
ESD protection class 2


Minimum order quantity: 100 pcs.


Typical applications


Integration in luminaires
Architectural lighting
Marking paths, stairs, etc.
Furniture lighting
Light advertising
Shop design
Street lighting





LED Modules XP - Line, Spot, Mini

	Туре	Ref. No.	Colour	Correlated	Brightness	Luminous flux* at				Radiation
				colour temp.	bin	350 mA	500 mA	700 mA	1050 mA	angle
				K		lm	lm	lm	lm	0
	Line XPC - Line XP	E – Line X	PG			(P _{el} = 9.6 W)	(P _{el} = 14 W)	(P _{el} = 19.6 W)	(P _{el} = 29.4 W)	
	WU-M-392-XPC-WW	543872	warm white	27203040	N4	496.0 537.6	644.8 698.6	not allowed	not allowed	110
	WU-M-392-XPC-WW	543873	warm white	27203040	P2	537.6 591.2	698.9 <i>7</i> 68.6	not allowed	not allowed	110
	WU-M-392-XPC-WW	543874	warm white	27203040	P3	591.2 644.8	<i>7</i> 68.6 838.2	not allowed	not allowed	110
	WU-M-392-XPC-W	543871	white	56506950	Q2	699.2 751.2	909.0 976.6	not allowed	not allowed	110
	WU-M-392-XPC-W	543541	white	56506950	Q3	751.2 800.0	976.61040.0	not allowed	not allowed	110
new	WU-M-392-XPC-W	544673	white	56506950	Q4	800.0 856.0	1040.01112.8	not allowed	not allowed	110
new	WU-M-392-XPC-W	544674	white	56506950	Q5	856.0 912.0	1112.81185.6	not allowed	not allowed	110
	WU-M-392-XPE-WW	543886	warm white	27203040	Р3	591.2 644.8	768.6 838.2	1005.01096.2	not allowed	115
	WU-M-392-XPE-WW	542809	warm white	27203040	P4	644.8 699.2	838.2 909.0	1096.21188.6	not allowed	115
	WU-M-392-XPE-WW	543887	warm white	27203040	Q2	699.2 751.2	909.0 976.6	1188.61277.0	not allowed	115
new	WU-M-392-XPE-WW	544679	warm white	27203040	Q3	751.2 800.0	976.61040.0	1277.01360.0	not allowed	115
	WU-M-392-XPE-W	543883	white	56506950	Q4	800.0 856.0	1040.01112.8	1360.01455.2	not allowed	115
	WU-M-392-XPE-W	543884	white	56506950	Q5	856.0 912.0	1112.81185.6	1455.21550.4	not allowed	115
	WU-M-392-XPE-W	543531	white	56506950	R2	912.0 976.0	1185.61268.8	1550.41659.2	not allowed	115
	WU-M-392-XPE-W	543885	white	56506950	R3	976.01040.0	1268.81352.0	1659.21768.0	not allowed	115
new	WU-M-392-XPG-WW	544682	warm white	27203040	Q4	800.0 856.0	1120.01198.4	1440.01540.8	2000.02140.0	125
new	WU-M-392-XPG-WW	544683	warm white	27203040	Q5	856.0 912.0	1198.41276.8	1540.81641.4	2140.02280.0	125
	WU-M-392-XPG-W	543543	white	53007050	R4	1040.01112.0	1456.01556.8	1872.02001.6	2600.02780.0	125
	WU-M-392-XPG-W	543898	white	53007050	R5	1112.01184.0	1556.81657.6	2001.62131.2	2780.02960.0	125
	Spot XPC - Spot X	PE – Spot	XPG			(P _{el} = 4.8 W)	(P _{el} = 7 W)	(P _{el} = 9.8 W)	(P _{el} = 14.7 W)	
	WU-M-393-XPC-WW	543876	warm white	27203040	N4	248.0 268.8	322.4 349.4	not allowed	not allowed	110
	WU-M-393-XPC-WW	543877	warm white	27203040	P2	268.8 295.6	349.4 384.3	not allowed	not allowed	110
	WU-M-393-XPC-WW	543878	warm white	27203040	Р3	295.6 322.4	384.3 419.1	not allowed	not allowed	110
	WU-M-393-XPC-W	543875	white	56506950	Q2	349.6 375.6	454.5 488.3	not allowed	not allowed	110
	WU-M-393-XPC-W	543539	white	56506950	Q3	375.6 400.0	488.3 520.0	not allowed	not allowed	110
new	WU-M-393-XPC-W	544675	white	56506950	Q4	400.0 428.0	520.0 556.4	not allowed	not allowed	110
new	WU-M-393-XPC-W	544676	white	56506950	Q5	428.0 456.0	556.4 592.8	not allowed	not allowed	110
	WU-M-393-XPE-WW	543891	warm white	27203040	Р3	295.6 322.4	384.3 419.1	502.5 548.1	not allowed	115
	WU-M-393-XPE-WW	542810	warm white	27203040	P4	322.4 349.6	419.1 454.5	548.1 594.3	not allowed	115
	WU-M-393-XPE-WW	543892	warm white	27203040	Q2	349.6 375.6	454.5 488.3	594.3 638.5	not allowed	115
new	WU-M-393-XPE-WW	544680	warm white	27203040	Q3	375.6 400.0	488.3 520.0	638.5 680.0	not allowed	115
	WU-M-393-XPE-W	543888	white	56506950	Q4	400.0 428.0	520.0 556.4	680.0 <i>7</i> 27.6	not allowed	115
	WU-M-393-XPE-W	543889	white	56506950	Q5	428.0 456.0	556.4 592.8	727.6 775.2	not allowed	115
	WU-M-393-XPE-W	543533	white	56506950	R2	456.0 488.0	592.8 634.4	775.2 829.6	not allowed	115
	WU-M-393-XPE-W	543890	white	56506950	R3	488.0 520.0	634.4 676.0	829.6 884.0	not allowed	115
new	WU-M-393-XPG-WW	544684	warm white	27203040	Q4	400.0 428.0	560.0 599.2	720.0 770.4	770.41000.0	125
new	WU-M-392-XPG-WW	544685	warm white	27203040	Q5	428.0 456.0	599.2 638.4	770.4 820.8	820.81070.0	125
	WU-M-393-XPG-W	543545	white	53007050	R4	520.0 556.0	728.0 778.4	936.01000.8	1300.01390.0	125
	WU-M-393-XPG-W	543899	white	53007050	R5	556.0 592.0	778.4 828.8	1000.81065.6	1390.01480.0	125
	Mini XPC - Mini XF	PE – Mini	XPG			(P _{el} = 4.8 W)	(P _{el} = 7 W)	(P _{el} = 9.8 W)	(P _{el} = 14.7 W)	
	WU-M-394-XPC-WW	543880	warm white	27203040	N4	248.0 268.8	322.4 349.4	not allowed	not allowed	110
	WU-M-394-XPC-WW	543881	warm white	27203040	P2	268.8 295.6	349.4 384.3	not allowed	not allowed	110
	WU-M-394-XPC-WW	543882	warm white	27203040	Р3	295.6 322.4	384.3 419.1	not allowed	not allowed	110
	WU-M-394-XPC-W	543879		56506950	Q2	349.6 375.6	454.5 488.3	not allowed	not allowed	110
	WU-M-394-XPC-W	543537	white	56506950	Q3	375.6 400.0	488.3 520.0	not allowed	not allowed	110
new	WU-M-394-XPC-W	544677		56506950	Q4	400.0 428.0	520.0 556.4	not allowed	not allowed	110
	WU-M-394-XPC-W	544678		56506950	Q5	428.0 456.0	556.4 592.8	not allowed	not allowed	110
	* Measurement tolerar					1				

^{*} Measurement tolerance of luminous flux: \pm 7% | Emission data at $t_{\rm j}$ = 25 °C

i

2

3

4

5

5

7

8

9

LED Modules XP - Line, Spot, Mini

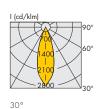
	Туре	Ref. No.	Colour	Correlated	Brightness	Luminous flux* at				Radiation
				colour temp.	bin	350 mA	500 mA	700 mA	1050 mA	angle
				K		lm	lm	lm	lm	0
	Mini XPC – Mini XP	E – Mini XP	G			(P _{el} = 4.8 W)	(P _{el} = 7 W)	$(P_{el} = 9.8 W)$	(P _{el} = 14.7 W)	
	WU-M-394-XPE-WW	543896	warm white	27203040	Р3	295.6 322.4	384.3 419.1	502.5 548.1	not allowed	115
	WU-M-394-XPE-WW	542811	warm white	27203040	P4	322.4 349.6	419.1 454.5	548.1 594.3	not allowed	115
	WU-M-394-XPE-WW	543897	warm white	27203040	Q2	349.6 375.6	454.5 488.3	594.3 638.5	not allowed	115
new	WU-M-394-XPE-WW	544681	warm white	27203040	Q3	375.6 400.0	488.3 520.0	638.5 680.0	not allowed	115
	WU-M-394-XPE-W	543893	white	56506950	Q4	400.0 428.0	520.0 556.4	680.0 727.6	not allowed	115
	WU-M-394-XPE-W	543894	white	56506950	Q5	428.0 456.0	556.4 592.8	727.6 775.2	not allowed	115
	WU-M-394-XPE-W	543535	white	56506950	R2	456.0 488.0	592.8 634.4	775.2 829.6	not allowed	115
	WU-M-394-XPE-W	543895	white	56506950	R3	488.0 520.0	634.4 676.0	829.6 884.0	not allowed	115
new	WU-M-394-XPG-WW	544686	warm white	27203040	Q4	400.0 428.0	560.0 599.2	720.0 770.4	770.41000.0	125
new	WU-M-394-XPG-WW	544687	warm white	27203040	Q5	428.0 456.0	599.2 638.4	770.4 820.8	820.81070.0	125
	WU-M-394-XPG-W	543900	white	53007050	R4	520.0 556.0	728.0 778.4	936.01000.8	1300.01390.0	125
	WU-M-394-XPG-W	543901	white	53007050	R5	556.0 592.0	778.4 828.8	1000.81065.6	1390.01480.0	125

^{*} Measurement tolerance of luminous flux: $\pm\,7\%$ | Emission data at t_j = 25 °C

Modules Spot XP with Optics and Heat Sink

Additional technical notes for LED modules with heat sink

Heat sink material: thermoconductive resin Pre-assembled leads: Cu tinned, stranded conductors AWG22, PVC-insulation, length: 300 mm Allowed operating temperature at tc point:


-20 to 80 °C Weight: 90 g Unit: 40 pcs.

Typical applications

Integration in luminaires Architectural lighting Marking paths, stairs, etc. Furniture lighting Light advertising Shop design Street lighting

LED Spot XP with optics and heat sink

- 4	

	Туре	Description	Ref. No.	Colour	Correlated	Luminou	s flux* (Ir	m) at				Radiation angle
					colour temperature	350 mA	\	500 mA		700 mA		
						$(P_{el} = 4.$.48 W)	$(P_{el} = 6.$	6 W)	$(P_{el} = 9.3)$	52 W)	
					K	min.	typ.	min.	typ.	min.	typ.	۰
	LEDSpot modu	ıles XP 4 10°										
W	LR4VV	XPE 3000K min P4	547790	warm white	28703200	290.2	327.6	377.2	425.9	493.3	556.9	10
W	LR4W	XPE 4000K min Q2	548864	neutral white	37004260	314.6	349.2	409.0	453.7	534.9	593.3	10
w	LR4W	XPE 6300K min Q4	547798	cool white	56506950	360.0	397.8	468.0	51 <i>7</i> .1	612.0	676.3	10
	LEDSpot modu	ıles XP 4 20°										
W	LR4VV	XPE 3000K min P4	547789	warm white	28703200	290.2	327.6	377.2	425.9	493.3	556.9	20
W	LR4W	XPE 4000K min Q2	547940	neutral white	37004260	314.6	349.2	409.0	453.7	534.9	593.3	20
w	LR4W	XPE 6300K min Q4	547797	cool white	56506950	360.0	397.8	468.0	51 <i>7</i> .1	612.0	676.3	20
	LEDSpot modu	ıles XP 4 30°										
W	LR4VV	XPE 3000K min P4	547788	warm white	28703200	290.2	327.6	377.2	425.9	493.3	556.9	30
W	LR4W	XPE 4000K min Q2	548863	neutral white	37004260	314.6	349.2	409.0	453.7	534.9	593.3	30
w	LR4W	XPE 6300K min Q4	547796	cool white	56506950	360.0	397.8	468.0	51 <i>7</i> .1	612.0	676.3	30
	LEDSpot modu	ıles XP 4 40°										
w	LR4VV	XPE 3000K min P4	547726	warm white	28703200	290.2	327.6	377.2	425.9	493.3	556.9	40
w	LR4W	XPE 4000K min Q2	547837	neutral white	37004260	314.6	349.2	409.0	453.7	534.9	593.3	40

5650...6950

468.0

612.0

360.0 397.8

547795

cool white

XPE 6300K min Q4

VSVOSSLOH SCHWABE

40

676.3

LR4W

 $^{^{\}star}$ Measurement tolerance of luminous flux: $\pm\,7\%$ | Emission data at t_{j} = 25 °C

LED Modules HC

Line HC / Spot HC / Mini HC Built-in PCB lighting modules

The high colour rendering index of up to $R_a=92$ and high efficiency values of typically $75\ lm/W$ of Line HC, Spot HC and Mini HC modules clearly set them apart from the competition and make them ideal for shop and interior lighting.

These HC modules (HC = high colour rendering index) operate with a constant-current of between 350 and 700 mA. Care must be taken to ensure suitable cooling for the respective module's power input.

Available in warm white, the modules are designed for cost-effective and solder-free connection using pre-assembled cables. To enable the creation of unique light solutions, VS also provides optics attachments with a variety of radiation angle characteristics (see page 43).

Technical notes

Dimensions

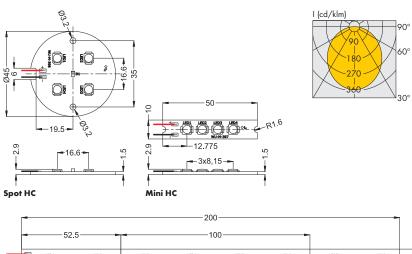
Line HC: 200x15 mm

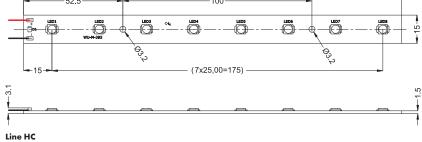
Spot HC: Ø 45 mm

Mini HC: 50x10 mm

Pre-assembled with 2 leads

Allowed operating temperature at t_{C} point:


-20 to 75 °C


Use of external LED constant-current drivers required Aluminium PCB for optimum thermal management ESD protection class 2

Typical applications

Integration in luminaires
Architectural lighting
Shop design
Showcase lighting
Marking paths, stairs, etc.
Furniture lighting
Light advertising

LED Modules HC – Line, Spot, Mini

	Туре	Ref. No.	Colour	Correlated	Bright-	Luminous flux* at			Radiation	CRI
				colour temperature	ness	350 mA	500 mA	700 mA	angle*	Ra
				K	bin	lm	lm	lm	٥	typ.
	Line HC					$(P_{el} = 9.6 W)$	(P _{el} = 14 W)	(P _{el} = 19.6 W)		
	WU-M-395-WW-H3	542812	warm white	28503200	C140	616.0682.0	806.4 892.8	1120.01240.0	120	85
	WU-M-395-WW-H3	543902	warm white	28503200	C155	682.0748.0	892.8 979.2	1240.01360.0	120	85
	WU-M-395-WW-H3	543903	warm white	28503200	C170	748.0814.0	979.21065.6	1360.01480.0	120	85
	WU-M-395-WW-H3	543904	warm white	28503200	C185	814.0880.0	1065.61152.0	1480.01600.0	120	85
new	WU-M-395-WW-H1	545007	warm white	28503200	B06	480.0560.0	_	_	120	92
new	WU-M-395-WW-H1	545008	warm white	28503200	B07	560.0640.0	_	_	120	92
new	WU-M-395-WW-H1	545009	warm white	28503200	B08	640.0720.0	_	_	120	92
new	WU-M-395-WW-H1	545010	warm white	28503200	B09	720.0800.0	_	_	120	92
	Spot HC					$(P_{el} = 4.8 W)$	(P _{el} = 7 W)	(P _{el} = 9.8 W)		
	WU-M-396-WW-H3	542813	warm white	28503200	C140	308.0341.0	403.2 446.4	560.0 620.0	120	85
	WU-M-396-WW-H3	543905	warm white	28503200	C155	341.0374.0	446.4 489.6	620.0 680.0	120	85
	WU-M-396-WW-H3	543906	warm white	28503200	C170	374.0407.0	489.6 532.8	680.0 740.0	120	85
	WU-M-396-WW-H3	543907	warm white	28503200	C185	407.0440.0	532.8 576.0	740.0 800.0	120	85
new	WU-M-396-WW-H1	545011	warm white	28503200	B06	240.0280.0	_	_	120	92
new	WU-M-396-WW-H1	545012	warm white	28503200	B07	280.0320.0	_	_	120	92
new	WU-M-396-WW-H1	545013	warm white	28503200	B08	320.0360.0	_	_	120	92
new	WU-M-396-WW-H1	545015	warm white	28503200	B09	360.0400.0	_	_	120	92
	Mini HC	_				(P _{el} = 4.8 W)	(P _{el} = 7 W)	(P _{el} = 9.8 W)		
	WU-M-397-WW-H3	542814	warm white	28503200	C140	308.0341.0	403.2 446.4	560.0 620.0	120	85
	WU-M-397-WW-H3	543908	warm white	28503200	C155	341.0374.0	446.4 489.6	620.0 680.0	120	85
	WU-M-397-WW-H3	543909	warm white	28503200	C170	374.0407.0	489.6 532.8	680.0 740.0	120	85
	WU-M-397-WW-H3	543910	warm white	28503200	C185	407.0440.0	532.8 576.0	740.0 800.0	120	85
new	WU-M-397-WW-H1	545016	warm white	28503200	B06	240.0280.0	_	_	120	92
new	WU-M-397-WW-H1	54501 <i>7</i>	warm white	28503200	B07	280.0320.0	_	_	120	92
new	WU-M-397-WW-H1	545018	warm white	28503200	B08	320.0360.0	_	_	120	92
new	WU-M-397-WW-H1	545019	warm white	28503200	B09	360.0400.0	_	_	120	92

^{*} Measurement tolerance of luminous flux: $\pm\,7\%$ | Emission data at $t_{\rm j}=25\,^{\circ}{\rm C}$

i

2

3

4

5

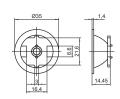
5

7

2

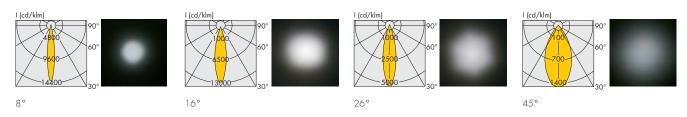
9

PowerOptics3 for XP and XML Modules


PowerOptics3 were specially developed to supplement VS PowerEmitter making it possible for users to put unique lighting solutions into practice. Use of high-grade optical PMMA enables high efficiency factors of up to 90%.

To guarantee easy mounting, the PowerOptics3 modules are backed with self-adhesive tape. However, depending on the type of application and ambient conditions, the PowerOptics3 module may require additional fixing to ensure secure mounting.

026



В

Light distribution curves PowerOptics3

	Туре	Ref. No.	Radiation angle*	Drawing	Dimensions* (mm)
			۰		diameter/module height
	Optics for VS PowerEmitter XP and	I XML			
new	PowerOptics3	547716	8	A	26/14.6
new	PowerOptics3	547717	16	A	26/14.6
new	PowerOptics3	547718	26	A	26/14.6
new	PowerOptics3	547719	45	A	26/14.6
new	PowerOptics3	548868	8	В	35/14.6
new	PowerOptics3	548869	16	В	35/14.6
new	PowerOptics3	548870	26	В	35/14.6
new	PowerOptics3	548871	45	В	35/14.6

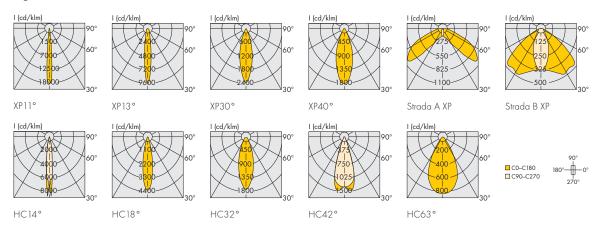
^{*} The values mentioned above represent only statistical variables on account of the complex manufacturing process of light emitting diodes.
The values do not necessarily correspond exactly to the actual parameters of every single product which can vary from the typical specification.

PowerOptics for XP and HC Modules

For Line and Spot modules

Various attachable optics are available for the Line and Spot modules of the XP and HC series to enable different radiation characteristics and illumination levels.

VS PowerOptics are made of PMMA, a material of high optical efficiency, and therefore achieve efficiencies of up to 92%.


The optics are available in various radiation angles and are easily attached to the modules using self-adhesive tape. Depending on the type of application or the expected ambient conditions, it may be necessary to supplement this method of fastening to ensure the optics are securely mounted.

4

Light distribution curves

Туре	Ref. No.	Radiation angle*	Dimensions* (mm)
		0	diameter x height / width x depth x height
Optics for Line and Spot mo	dules of XP series		
PowerOptics XP 11°	543422	11	16.1 x 10.1
PowerOptics XP 13° diff	543423	12	16.1 x 10.1
PowerOptics XP 30°	543424	30	16.1 x 10.1
PowerOptics XP 40°	543425	40	16.1 x 10.1
PowerOpticsStrada A XP	544036	100 x 20	19.6 x 15.4 x 10.5
PowerOpticsStrada B XP	544038	116 x 44	20.0 x 15.5 x 5.3
Optics for Line and Spot mo	dules of HC series		
PowerOptics HC 14°	544031	14	16.1 x 10.1
PowerOptics HC 18° diff	544032	18	16.1 x 10.1
PowerOptics HC 32°	544033	32	16.1 x 10.1
PowerOptics HC 42°	544034	42	16.1 x 10.1
PowerOptics HC 63°	544035	63	16.1 x 10.1

On account of the complex manufacturing process of the modules the above values only represent statistical variables.

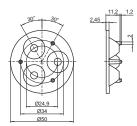
The values do not necessarily correspond exactly to the actual parameters of every single product which can vary from the typical specification.

5

6

7

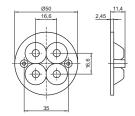
8


9

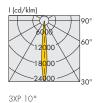
PowerOptics for XP Modules

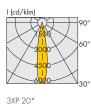
For TriplePowerEmitter and Spot modules

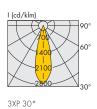
Various attachable optics are available for TriplePowerEmitter and the Spot modules of the XP series to enable different radiation characteristics and illumination levels.

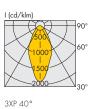

VS PowerOptics are made of PMMA, a material of high optical efficiency, and therefore achieve efficiencies of up to 92%

Fixing

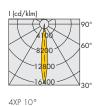

PowerOptics 3 XP: with glue PowerOptics 4 XP: by self tapping screw 2.9 mm x H (H = 6.8 mm + A + B)

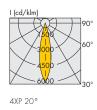


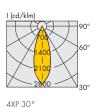


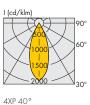


Light distribution curves PowerOptics 3XP









Light distribution curves PowerOptics 4XP

	Туре	Ref. No.	Radiation angle*	Dimensions* (mm)
			0	diameter x height
	Optics for TriplePowerEmitter XP n	nodules		
new	PowerOptics 3XP 10°	547591	10	50 x 11.6
new	PowerOptics 3XP 20°	547589	20	50 x 11.6
new	PowerOptics 3XP 30°	547587	30	50 x 11.6
new	PowerOptics 3XP 40°	547510	40	50 x 11.6
	Optics for Spot XP modules			
new	PowerOptics 4XP 10°	547592	10	50 x 11.4
new	PowerOptics 4XP 20°	547590	20	50 x 11.4
new	PowerOptics 4XP 30°	547588	30	50 x 11.4
new	PowerOptics 4XP 40°	547511	40	50 x 11 4

^{*} On account of the complex manufacturing process of the modules the above values only represent statistical variables.

The values do not necessarily correspond exactly to the actual parameters of every single product which can vary from the typical specification.

Reflectors for PowerEmitter XP modules

Reflectors generate a high efficiency, round spot with homogeneous light distribution

Material: PC, with reflective aluminium coating The reflectors are available in two various radiation angles and are easily attached to the modules using self-adhesive tape.

Depending on the type of application or the expected ambient conditions, it may be necessary to supplement this method of fastening to ensure the reflectors are securely mounted.

 new
 Ref. No.: 548781
 20

 new
 Ref. No.: 546370
 45

1

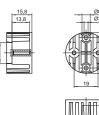
2

3

Heat Sinks for LED Modules XP and XML

Under no circumstances may LEDSpots ever be covered by insulation material or similar. Air ventilation must be ensured.

Heat sinks for PowerEmitter XP and XML modules

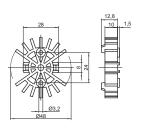

For LED modules with one XP LED up to 700 mA For LED modules with one XML LED up to 350 mA Material: thermoconductive resin

Dimensions: (Ø x depth): $32.4 \times 20 \text{ mm} / 48 \times 12.8 \text{ mm}$

Fixing: with screws Weight: 16.4 g Unit: 250 pcs.

newRef. No.: 548739drawing/photo AnewRef. No.: 544804drawing/photo B

Α

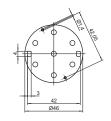




5

6

В


8

Heat sink for TriplePowerEmitter and Spot XP

For LED modules up to 700 mA Material: thermoconductive resin Dimensions: (Ø x depth): 46 x 37.5 mm Fixing: with screws

Fixing: with screws Weight: 51 g Unit: 225 pcs.

new Ref. No.: 544805

9

LED Constant Current Drivers

The electronic stabilised power supplies ECXe are optimised to drive VS High Power LED modules. Primary side switching only. Before connecting LED modules ensure that the power supplier is isolated.

Mains voltage: 220-240 V \pm 10% Mains frequency: 0 Hz, 50-60 Hz Electronic short-circuit protection

Overload protection

Protection against "no load" of

Protection against "no load" operation Degree of protection: IP20, protection class II

SELV-equivalent
Power factor: 0.6
Screw terminals: 2.5 mm²
Quantity of screw terminals:
1x2-poles primary
1x2-poles secondary

With integrated cord grip (except 186180 and 186175) Service life time: 50,000 hrs

permanent operation when maximum temperature t_{cmax} at t_c point will not be exceeded;

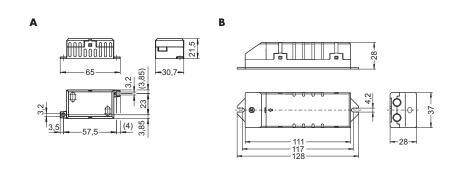
failure rate: < 0.2% per 1,000 hrs

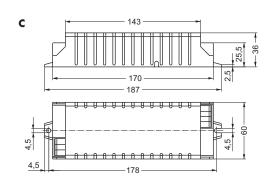
Additional technical details 350 mA / 42 W – 186175

Mains frequency: 50-60 Hz

Protection class I Power factor: 0.97

Quantity of push-in terminals:


1x2-poles + earth terminal primary


1x2-poles secondary

The electronic constant-current source is protected against transient main peaks up to 3 kV (between L and N) and up to 4 kV (between L, N and PE). When using ECXe 350mA/42W together with LED modules in luminaires care must be taken to ensure safety according to EN 60598.

The converters (except ECXe 350mA/42W) are designed for DC-operation (mains frequency: 0 Hz) and can be used for emergency power supplies.

Max.	Туре	Ref. No.	Mains current	Output current	Voltage	Ambient	Casing	Drawing	Weight
output					output	temperature t _a	temperature t _c		
W			mA	mA	V	°C	°C		9
Dimens	ions: 65x30.7x21.5 m	m							
8	ECXe 350mA/8W	186180	60/65	350 +5%	2 - 24	- 20 to 50	80	А	33
Dimens	ions: 128x37x28 mm								
11	ECXe 350mA/11W	186157	122/117	350 ±5%	2 - 32	- 20 to 50	70	В	71
16	ECXe 500mA/16W	186158	160/155	500 ±5%	2 - 32	- 20 to 50	75	В	71
1 <i>7</i>	ECXe 700mA/17W	186159	188/178	700 ±5%	2 - 25	- 20 to 50	70	В	71
20	ECXe 1050mA/20W	186160	210/202	1050 ±5%	2 - 19	- 20 to 45	70	В	71
Dimens	ions: 187x60x36 mm		•	•		•	•	•	
42	ECXe 350mA/42W	186175	210/190	350 ±5%	40-115	-30 to 60	65	С	270

LED Constant Current Drivers

700 mA / 40 W and 1050 mA / 60 W

The electronic constant-current drivers are optimised to drive VS HighPower LED modules.

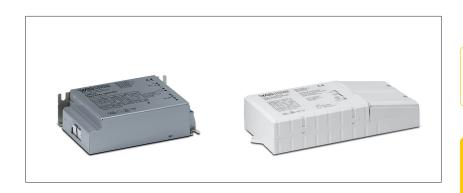
Primary side switching only. Before connecting LED modules ensure that the power supplier is disconnected from mains.

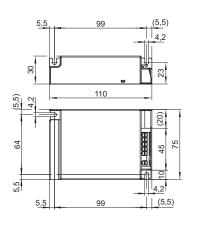
Mains voltage: 220-240 V ±10% Mains frequency: 0 Hz, 50-60 Hz Electronic short-circuit protection Overload and overtemperature protection Protection against "no load" operation

Degree of proteciton: IP20 For luminaires of protection class I

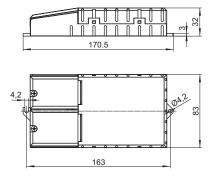
SELV-equivalent Power factor: 0.98 Efficiency: > 0.88

Push-in terminals: 0.2-1.5 mm² Quantity of push-in terminals:


6x1-poles terminal primary (L, N, PE)


2x1-poles secondary
Service life time: 50,000 hrs

permanent operation when maximum temperature $t_{\text{cmax.}}$ at t_{c} point will not be


exceeded;

failure rate: < 0.2% per 1,000 hrs

	Max.	Туре	Ref. No.	Voltage	Mains current	Output	Voltage	Max. voltage	12 V	Ambient	Casing	Weight
	output			0 Hz,		current DC	output DC	without	interface	temperature	temperature	
				50/60 Hz				load DC		ta	t _c	
	W			V	mA	mA	V	(V)	(2 W)	°C	°C	g
	Dimer	nsions: 110x75x30 ı	nm									
new	40	ECXe 700mA/40W	186200	176/264	250/160	700 ±5%	20-57	60	no	-20 to 60	75	210
				220/240	200/180							
new	40	ECXe 700mA/40W	on request	176/264	250/160	700 ±5%	20-57	60	yes	-20 to 60	75	210
				220/240	200/180							
new	60	ECXe 1050mA/60W	186198	176/264	391/261	1050 ±5%	20-58	60	no	-20 to 60	80	226
				220/240	308/286							
new	60	ECXe 1050mA/60W	on request	176/264	391/261	1050 ±5%	20-58	60	yes	-20 to 60	80	226
				220/240	308/286							
	With	ord grip — dimensio	ons: 170.5×83	x32 mm								
new	40	ECXe 700mA/40W	186201	176/264	250/160	700 ±5%	20-57	60	no	-20 to 60	75	257
				220/240	200/240							
new	40	ECXe 700mA/40W	on request	176/264	250/160	700 ±5%	20-57	60	yes	-20 to 60	75	257
				220/240	200/240							
new	60	ECXe 1050mA/60W	186199	176/264	391/261	1050 ±5%	20-58	60	no	-20 to 50	80	273
				220/240	308/286							
new	60	ECXe 1050mA/60W	on request	176/264	391/261	1050 ±5%	20-58	60	yes	-20 to 50	80	273
				220/240	308/286							

VOSSLOH

Dimmable LED Constant Current Drivers

700 mA / 34 W and 1050 mA / 60 W

The constant-current driver of the ECXd series feature a dimming range of 0.5 to 100%. The driver will be in standby mode at a setting of under 0.5%.

The drivers are controllable with DALI controllers or usual push keys. The dimming function is achieved by applying a PWM signal to the nominal current. If no DALI interface is connected, brightness will stay at 100%.

 $Mains\ voltage:\ 220-240\ V\ \pm 10\%$ $Mains\ frequency:\ 0\ Hz,\ 50-60\ Hz$ $Electronic\ short-circuit\ protection$

Overload protection

Protection against "no load" operation

Degree of proteciton: IP20 For luminaires of protection class I

SELV-equivalent
Power factor: 0.97
Efficiency: > 0.85
Standby losses: < 0.5 W
Push-in terminals: 0.5-1.5 mm²

(12 V interface: 0.2-0.5 mm² for 1050 mA)

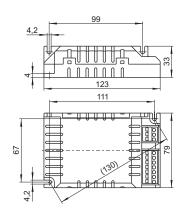
Quantity of push-in terminals: 1x3-poles terminal primary

(1x1-pole PUSH, 1x2-poles DALI)

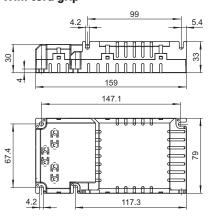
1x2-poles secondary

 1×2 -poles 12 V interface for 1050 mA

Service life time: 50,000 hrs


permanent operation when maximum temperature $t_{\text{cmax.}}$ at t_{c} point will not be

exceeded;


failure rate: < 0.2% per 1,000 hrs

With cord grip

	Max.	Type	Ref. No.	Voltage	Mains current	Output	Voltage	Max. voltage	12 V	Ambient	Casing	Weight
	output	17/2-2		0 Hz,		current DC	output DC	without load DC		temperature	temperature	l · · · · · · · ·
				50/60 Hz						ta	t _c	
	W			V	mA	mA	V	V	(2 W)	°C	°C	g
	Dimen	sions: 123x79x33 r	nm			:						
ew	34	ECXd 700mA/34W	186177	176/264	230/160	700 ±5%	9-48	52	no	-20 to 50	75	180
				220/240	190/170							
ew	60	ECXd 1050mA/60W	186196	176/264	380/252	1050 ±5%	20-57	60	yes	-20 to 50	80	220
				220/240	305/275							
	With c	ord grip – dimensio	ns: 159x7	9x33 mm							•	
ew	34	ECXd 700mA/34W	186195	176/264	230/160	700 ±5%	9-48	52	no	-20 to 50	75	215
				220/240	190/170							
ew	60	ECXd 1050mA/60W	186197	176/264	380/252	1050 ±5%	20-57	60	yes	-20 to 50	80	250
				220/240	305/275							

Adjustable and Dimmable LED Constant-current Drivers

350, 500, 600, 700 mA / 40 W

The constant-current drivers of the ECXd series feature a dimming range of 0.5 to 100%.

The dial can be used set the nominal current to $350\,\text{mA}$, $500\,\text{mA}$, $600\,\text{mA}$ or $700\,\text{mA}$. The dimming function is achieved by the use of a PWM signal.

If no $1-10\ V$ interface is connected, brightness will stay at 100%.

The LEDs are thermally protected by the driver's NTC interface, which ensures the current will be reduced when a critical temperature is reached.

Mains voltage: $220-240 \text{ V} \pm 10\%$ Mains frequency: 50-60 HzElectronic short-circuit protection

Overload protection

Protection against "no load" operation

Degree of proteciton: IP20

For luminaires of protection class I and II

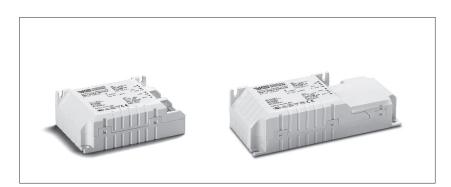
SELV-equivalent Power factor: 0.95 Efficiency: > 0.80

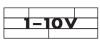
Push-in terminals: 0.5 – 1.5 mm²

Quantity of push-in terminals:

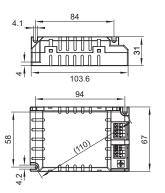
1x2-poles primary

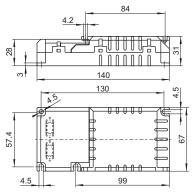
1x2-poles 1-10 V


1x2-poles secondary


1x2-poles NTC connection

Service life time: 50,000 hrs


permanent operation when maximum temperature


 $t_{cmax.}$ at t_{c} point will not be exceeded; failure rate: < 0.2% per 1,000 hrs

With cord grip

Adjustment	Nominal current
	mA
1	350
2	500
3	600
Δ	700

NTC of LED module 220 $k\Omega$								
R (kΩ) Nominal current (%)								
20.7	100							
17.3	60							
14.6	O (off)							

	Max.	Туре	Ref. No.	Voltage	Mains current	Output current	Voltage	Max. voltage	Ambient	Casing	Weight
	output					DC	output DC	without load DC	temperature	temperature	
				50/60 Hz					ta	t _c	
	W			V	mA	mA	V	V	°C	°C	g
	Dimen	sions: 103.6x67x3	1 mm								
new	40	ECXd 700mA/40W	186206	220/240	215/195	350 +5/-10%	20-57	60	-20 to 50	80	190
						500 +5/-10%			-20 to 50		
						600 +5/-10%			-20 to 50		
						700 +5/-10%			-20 to 45		
	With co	ord grip – dimensio	ns: 140x67x	31 mm							
new	40	ECXd 700mA/40W	186207	220/240	215/195	350 +5/-10%	20-57	60	-20 to 50	80	220
						500 +5/-10%			-20 to 50		
						600 +5/-10%			-20 to 50		
						700 +5/-10%			-20 to 45		

Preliminary data

www.vossloh-schwabe.com

VOSSLOH

49

4

5

6

7

8

9

Adjustable and Dimmable LED Constant-current Drivers

800, 900, 1050, 1200 mA / 68 W

The constant-current drivers of the ECXd series feature a dimming range of 1 to 100%.

The dial can be used set the nominal current to 800 mA, 900 mA, 1050 mA or 1200 mA. The dimming function is achieved by the use of a PWM signal.

If no $1-10\ V$ interface is connected, brightness will stay at 100%.

The LEDs are thermally protected by the driver's NTC interface, which ensures the current will be reduced when a critical temperature is reached.

Mains voltage: 220–240 V \pm 10% Mains frequency: 0 Hz, 50–60 Hz Electronic short-circuit protection

Overload protection

Protection against "no load" operation

Degree of proteciton: IP20

For luminaires of protection class I and II

SELV-equivalent, power factor: 0.97

Efficiency: > 0.85

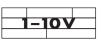
Push-in terminals: 0.5 – 1.5 mm²

Quantity of push-in terminals:

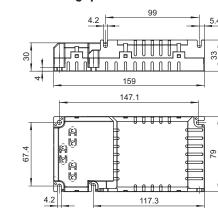
1x2-poles primary

1 x 2-poles 1 - 10 V

1x2-poles secondary


1x2-poles NTC connection

Service life time: 50,000 hrs


permanent operation when maximum temperature

 $t_{cmax.}$ at t_{c} point will not be exceeded; failure rate: < 0.2% per 1,000 hrs

With cord grip

41 -	123	
-	111	
4.2	(130)	62

Adjustment	Nominal current
	mA
1	800
2	900
3	1050
4	1200

NTC of LED module	e 220 kΩ
R $(k\Omega)$	Nominal current (%)
20.7	100
17.3	60
14.6	O (off)

	Max.	Туре	Ref. No.	Voltage	Mains current	Output current	Voltage output	Max. voltage	Ambient	Casing	Weight
	output			0 Hz,		DC	DC	without load DC	temperature	temperature	
				50/60 Hz					ta	t _c	
	W			V	mA	mA	V	V	°C	°C	g
	Dimensi	ons: 123x79x33 mn	1								
new	68	ECXd 1200mA/68W	on request	176/264	365/340	800 +5/-10%	20-57	60	50	80	260
				220/240	435/290	900 +5/-10%	20-57	60	50	80	260
						1050 +5/-10%	20-57	60	50	80	260
						1200 +5/-10%	20-57	60	50	80	260
	With co	rd grip – dimensions	: 159x79x33	mm							
new	68	ECXd 1200mA/68W	on request	176/264	365/340	800 +5/-10%	20-57	60	50	80	300
				220/240	435/290	900 +5/-10%	20-57	60	50	80	300
						1050 +5/-10%	20-57	60	50	80	300
						1200 +5/-10%	20-57	60	50	80	300

Preliminary data

Dimmable LED Constant-current Drivers

1400 mA / 65 W

The constant-current drivers of the ECXd series features a dimming range of 1 to 100%.

The dimming function is achieved by the use of a PWM signal.

If no 1-10 V interface is connected, brightness will stay at 100%.

The LEDs are thermally protected by the driver's NTC interface, which ensures the current is reduced when a critical temperature is reached.

Mains voltage: $220 - 240 \text{ V} \pm 10\%$ Mains frequency: 0 Hz, 50 - 60 Hz Electronic short-circuit protection

Overload protection

Protection against "no load" operation

Degree of proteciton: IP20

For luminaires of protection class I and II

SELV-equivalent Power factor: 0.95 Efficiency: > 0.85

Push-in terminals: 0.5 - 1.5 mm²

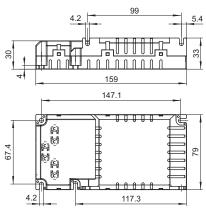
Quantity of push-in terminals:

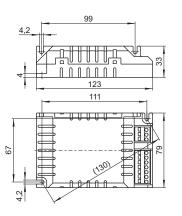
1x2-poles primary

1x2-poles 1-10 V

1x 2-poles secondary 1x 2-poles NTC connection

Service life time: 50,000 hrs


permanent operation when maximum temperature


t_{cmax.} at t_c point will not be exceeded; failure rate: < 0.2% per 1,000 hrs

With cord grip

NTC on LED module	220 kΩ
R $(k\Omega)$	Nominal current (%)
20.7	100
17.3	60
14.6	O (off)

	Мах.	Туре	Ref. No.	Mains voltage	Mains	Current	Voltage	Max. voltage	Ambient	Casing	Weight
	output			O Hz,	current	output DC	output DC	without load DC	temperature	temperature	
				50/60 Hz					ta	t _c	
١	W			V	mA	mA	V	V	°C	°C	9

Dimensions: 123 x 79 x 33 mm new

V	65	ECXd 1400mA/65 W	186208	176/264	430/280	1400 +5/-10%	20-47	50	50	80	260
				220/240	360/340						

new

	with coi	ra grip – aimensions:	159X/9X33 n	nm						
N	65	ECXd 1400mA/65 W	186209	176/264	430/280	1400 +5/-10%	20-47	50	50	300
				220/240	360/340					

Preliminary data

LED Constant-current Drivers

400, 700 mA / 150 W

VS' electronic constant-current sources are designed for use in street lighting systems. They provide a simple power-reduction option by connecting a further phase, which makes it possible to switch between 400 mA and 700 mA.

Mains voltage: $220-277~V\pm10\%$ Mains frequency: 50-60~HzElectronic short-circuit protection

Overload and overtemperature protection Protection against "no load" operation Degree of protection: IP20 or IP67 For luminaires of protection class I

Power factor: 0.95 Efficiency: > 0.9

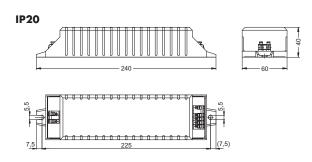
Service life time: 50,000 hrs

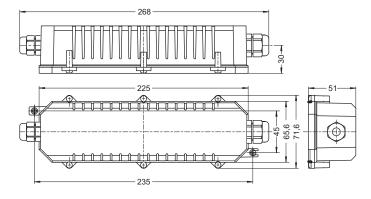
permanent operation when maximum temperature t_{cmax.} at t_c point will not be exceeded; failure rate: < 0.2% per 1,000 hrs

IP20 driver

Push-in terminals: 0.5 – 1.5 mm² Quantity of push-in terminals: 5x1-poles terminal primary 2x1-poles secondary

IP67 driver


Pre-assembled connection leads:
Primary: 5x1 mm², length: 200 mm
Secondary: 2x1.5 mm², length: 200 mm


Additional technical features

The electronic converters are protected against transient main peaks up to 4 kV (between L and N) and up to 5 kV (between L, N and PE).

IP67

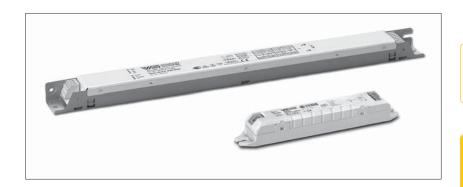
	Max.	Туре	Ref. No.	Voltage	Mains current	Output	Voltage	Max. Voltage	Ambient	Casing	Weight
	output			50/60 Hz		current DC	output DC	without load DC	temperature	temperature	
									ta	t _c	
	W			V	mA	mA	V	V	°C	°C	9
	IP20 – c	dimensions: 240x60x4	0 mm								
new	150	ECXe 700mA/400mA	186202	220-277	735-585	700 ±5%	48-215	445	-40 to 60	80	440
						400 ±5%	48-375				
	IP67 – c	dimensions: 268x71.6	x51 mm								
new	150	ECXe 700mA/400mA	186203	220-277	735-585	700 ±5%	48-215	445	-40 to 60	80	560
						400 ±5%	48-375				

LED Constant-current Drivers Linear

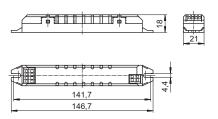
350 mA/75 W, 350 mA/15 W

VS' linear LED constant-current drivers are designed for use in office and retail lighting. The linear design is particularly suitable for luminaire concepts to replace T5/T8 fluorescent lamps with LEDs.

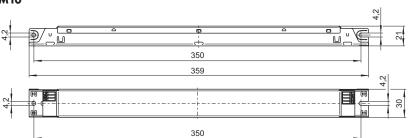
Mains voltage: $220-240 \text{ V} \pm 10\%$ Mains frequency: 0/50-60 Hz Electronic short-circuit protection


Overload protection

Protection against "no load" operation


Degree of proteciton: IP20 SELV (ECXe 350mA/15W) Service life time: 50,000 hrs

permanent operation when maximum temperature


t_{cmax.} at t_c point will not be exceeded; failure rate: < 0.2% per 1,000 hrs

K21

M10

	Max.	Туре	Ref. No.	Mains voltage 0 Hz, 50/60 Hz	Mains current	Current output DC	Voltage output DC	Max. voltage without load DC	Ambient temperature	Casing temperature	Weight
	W			V	mA	mA	V	V	°C	°C	g
	Casing:	M10									
new	75	ECXe 350mA/75W	186226	176/264	350	350 +5/-10%	90-215	420	-20 to 50	75	215
				220/240							
	Casing:	M10 with DALI interfa	ce								
new	<i>7</i> 5	ECXd 350mA/75W	186227	176/264	350	350 +5/-10%	90-215	420	-20 to 50	75	215
				220/240							
	Casing:	K21									
new	15	ECXe 350mA/15W	186229	176/264	140	350 +5/-10%	2-40	42	-20 to 50	80	49
				220/240							

Preliminary data

VOSSLOH SCHWABE

FOR RESIDENTIAL AND FURNITURE LIGHTING

THE PERFECT REPLACEMENT

Convenient LED technology

As the perfect replacement for low-voltage halogen lamps, the new LED modules made by VS are ideal for use in furniture, false ceilings as well as cooker hoods.

These LED modules are available with high-power LEDs and semi-transparent optics attachments. The circular or square metal frame is available in a white, silver, matt silver or gold finish. Furthermore, flexible snap-in fasteners make it extremely easy and quick to exchange halogen spots, which are still in widespread use.

The package is rounded off by a matching LED driver housed in a compact VS LiteLine transformer casing plus a set of cables with preassembled plugs for connecting up to two LED modules.

LEDSpot XP/XML with Heat Sink - Round or Square Frame

For cut-out: Ø 56 mm

LEDSpot with one LED and with heat sink for optimum thermal management

Metal frame, round or square: steel Radiation angle: 60°

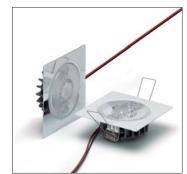
Leads: Cu tinned, stranded conductors AWG22,

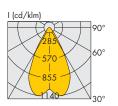
PVC insulation, lengths: 250 mm Snap-in clips for easy installation

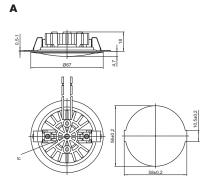
for luminaire sheets (type LCH-002 and -008) for ceilings (type LCH-004 and -009)

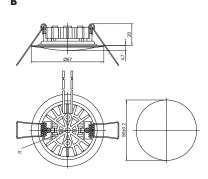
Degree of protection: IP40

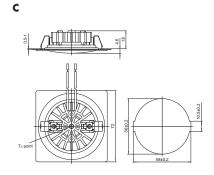
Unit: 90 pcs. type LCH-002, LCH-008 Unit: 40 pcs. type LCH-004, LCH-009

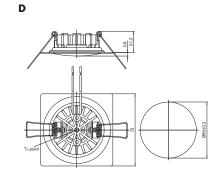

at ambient temperature $t_a = 25$ °C


Current	Operating service life
mA	(lumen maintenance at 70%)
350	50,000 hrs XP-E/40,000 hrs XML
500	50,000 hrs
700	40,000 hrs


Typical applications


Integration in luminaires Architectural lighting Marking paths, stairs, etc. Furniture lighting Light advertising Entertainment, shop design





LEDSpot XP/XML with Heat Sink – Round Frame

	Туре	Description	Ref. No.	Colour	Correlated	Luminous flux* (Im) at				Frame	Drawing		
					colour temperature	350 mA		500 mA		700 mA		colour	
					K	min.	typ.	min.	typ.	min.	typ.		
	LEDSpot X	P at junction tempe	rature t _i =25 °	C	•	P _{el} = 1.	12 W	P _{el} = 1.6	55 W	P _{el} = 2.	38 W		
new	LCH-002	XPE 3000K min Q3	548898	warm white	28703200	79.8	88.0	103.7	114.4	135.7	149.6	silver	А
new	LCH-002	XPE 3000K min Q3	548899	warm white	28703200	<i>7</i> 9.8	88.0	103.7	114.4	135.7	149.6	silver mat	А
new	LCH-002	XPE 3000K min Q3	548900	warm white	28703200	79.8	88.0	103.7	114.4	135.7	149.6	gold	А
new	LCH-002	XPE 3000K min Q3	548901	warm white	28703200	<i>7</i> 9.8	88.0	103 <i>.</i> 7	114.4	135.7	149.6	white	А
new	LCH-004	XPE 3000K min Q3	548886	warm white	28703200	<i>7</i> 9.8	88.0	103.7	114.4	135.7	149.6	silver	В
new	LCH-004	XPE 3000K min Q3	548887	warm white	28703200	<i>7</i> 9.8	88.0	103.7	114.4	135.7	149.6	silver mat	В
new	LCH-004	XPE 3000K min Q3	548888	warm white	28703200	79.8	88.0	103.7	114.4	135.7	149.6	gold	В
new	LCH-004	XPE 3000K min Q3	548889	warm white	28703200	79.8	88.0	103 <i>.7</i>	114.4	135.7	149.6	white	В
new	LCH-002	XPE 4500K min Q4	548902	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	silver	А
new	LCH-002	XPE 4500K min Q4	548903	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	silver mat	А
new	LCH-002	XPE 4500K min Q4	548904	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	gold	А
new	LCH-002	XPE 4500K min Q4	548905	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	white	А
new	LCH-004	XPE 4500K min Q4	547838	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	silver	В
new	LCH-004	XPE 4500K min Q4	548891	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	silver mat	В
new	LCH-004	XPE 4500K min Q4	548892	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	gold	В
new	LCH-004	XPE 4500K min Q4	548893	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	white	В
new	LCH-002	XPE 6300K min R2	548906	cool white	56506950	96.9	107.1	126.0	139.2	164.7	182.1	silver	А
new	LCH-002	XPE 6300K min R2	548907	cool white	56506950	96.9	107.1	126.0	139.2	164.7	182.1	silver mat	А
new	LCH-002	XPE 6300K min R2	548908	cool white	56506950	96.9	107.1	126.0	139.2	164.7	182.1	gold	А
new	LCH-002	XPE 6300K min R2	548909	cool white	56506950	96.9	107.1	126.0	139.2	164.7	182.1	white	А
new	LCH-004	XPE 6300K min R2	548894	cool white	56506950	96.9	107.1	126.0	139.2	164.7	182.1	silver	В
new	LCH-004	XPE 6300K min R2	548895	cool white	56506950	96.9	107.1	126.0	139.2	164.7	182.1	silver mat	В
new	LCH-004	XPE 6300K min R2	548896	cool white	56506950	96.9	107.1	126.0	139.2	164.7	182.1	gold	В
new	LCH-004	XPE 6300K min R2	548897	cool white	56506950	96.9	107.1	126.0	139.2	164.7	182.1	white	В
	LEDSpot X	ML at junction temp	erature t _i =85	°C		P _{el} = 4		-		-			
new	LCH-002	XML 3000K min T6	548912	warm white	29503125	238.0	255.0	not allow	ed	not allow	ved .	silver	А
new	LCH-002	XML 3000K min T6	548913	warm white	29503125	238.0	255.0	not allow	ed	not allow	/ed	silver mat	А
new	LCH-002	XML 3000K min T6	548914	warm white	29503125	238.0	255.0	not allow	ed	not allow	ved	gold	А
new	LCH-002	XML 3000K min T6	548915	warm white	29503125	238.0	255.0	not allow	ed	not allow	/ed	white	А
new	LCH-004	XML 3000K min T6	548920	warm white	29503125	238.0	255.0	not allow		not allow		silver	В
new	LCH-004	XML 3000K min T6	548921	warm white	29503125	238.0	255.0	not allow		not allow		silver mat	В
new	LCH-004	XML 3000K min T6	548922	warm white	29503125	238.0	255.0	not allow		not allow		gold	В
new	LCH-004	XML 3000K min T6	548923	warm white	29503125	238.0	255.0	not allow		not allow		white	В
new	LCH-002	XML 4000K min U2	548916	neutral white	38354110	255.0	272.0	not allow		not allow	ved	silver	А
new	LCH-002	XML 4000K min U2	548917	neutral white	38354110	255.0	272.0	not allow		not allow		silver mat	А
new	LCH-002	XML 4000K min U2	548918	neutral white	38354110	255.0	272.0	not allow		not allow		gold	А
new	LCH-002	XML 4000K min U2	548919	neutral white	38354110	255.0	272.0	not allow		not allow		white	А
new	LCH-004	XML 4000K min U2	548924	neutral white	38354110	255.0	272.0	not allow		not allow		silver	В
new	LCH-004	XML 4000K min U2	548925	neutral white	38354110	255.0	272.0	not allow		not allow		silver mat	В
new	LCH-004	XML 4000K min U2	548926	neutral white	38354110	255.0	272.0	not allow		not allow		gold	В
new	LCH-004	XML 4000K min U2	548927	neutral white	38354110	255.0	272.0	not allow	ed	not allow	/ed	white	В

^{*} Measurement tolerance of luminous flux: $\pm\,7\%$ | Emission data at t_i = 25 °C

LEDSpot XP/XML with Heat Sink – Square Frame

	Туре	Description	Ref. No.	Colour	Correlated	Luminous flux* (lm) at				Frame	Drawing		
					colour temperature	350 mA		500 mA		700 mA		colour	
					K	min.	typ.	min.	typ.	min.	typ.		
	LEDSpot >	(P at junction tempero	ature t _i =25 °	С	•	P _{el} = 1.	12 W	P _{el} = 1.6	5 W	P _{el} = 2.3	38 W		-
new	LCH-008	XPE 3000K min Q3	548363	warm white	28703200	79.8	88.0	103.7	114.4	135.7	149.6	silver	С
new	LCH-008	XPE 3000K min Q3	548364	warm white	28703200	79.8	88.0	103.7	114.4	135.7	149.6	silver mat	С
new	LCH-008	XPE 3000K min Q3	548368	warm white	28703200	79.8	88.0	103.7	114.4	135.7	149.6	gold	С
new	LCH-008	XPE 3000K min Q3	548366	warm white	28703200	<i>7</i> 9.8	88.0	103.7	114.4	135.7	149.6	white	С
new	LCH-009	XPE 3000K min Q3	548418	warm white	28703200	79.8	88.0	103.7	114.4	135.7	149.6	silver	D
new	LCH-009	XPE 3000K min Q3	548419	warm white	28703200	79.8	88.0	103.7	114.4	135.7	149.6	silver mat	D
new	LCH-009	XPE 3000K min Q3	548428	warm white	28703200	79.8	88.0	103.7	114.4	135.7	149.6	gold	D
new	LCH-009	XPE 3000K min Q3	548424	warm white	28703200	<i>7</i> 9.8	88.0	103 <i>.</i> 7	114.4	135.7	149.6	white	D
new	LCH-008	XPE 4500K min Q4	548369	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	silver	С
new	LCH-008	XPE 4500K min Q4	548370	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	silver mat	С
new	LCH-008	XPE 4500K min Q4	548374	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	gold	С
new	LCH-008	XPE 4500K min Q4	548372	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	white	С
new	LCH-009	XPE 4500K min Q4	548429	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	silver	D
new	LCH-009	XPE 4500K min Q4	548430	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	silver mat	D
new	LCH-009	XPE 4500K min Q4	548434	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	gold	D
new	LCH-009	XPE 4500K min Q4	548432	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	white	D
new	LCH-008	XPE 6300K min R2	548375	cool white	56506950	96.9	107.1	126.0	139.2	164.7	182.1	silver	С
new	LCH-008	XPE 6300K min R2	548376	cool white	56506950	96.9	107.1	126.0	139.2	164.7	182.1	silver mat	С
new	LCH-008	XPE 6300K min R2	548380	cool white	56506950	96.9	107.1	126.0	139.2	164.7	182.1	gold	С
new	LCH-008	XPE 6300K min R2	548378	cool white	56506950	96.9	107.1	126.0	139.2	164.7	182.1	white	С
new	LCH-009	XPE 6300K min R2	548435	cool white	56506950	96.9	107.1	126.0	139.2	164.7	182.1	silver	D
new	LCH-009	XPE 6300K min R2	548436	cool white	56506950	96.9	107.1	126.0	139.2	164.7	182.1	silver mat	D
new	LCH-009	XPE 6300K min R2	548440	cool white	56506950	96.9	107.1	126.0	139.2	164.7	182.1	gold	D
new	LCH-009	XPE 6300K min R2	548438	cool white	56506950	96.9	107.1	126.0	139.2	164.7	182.1	white	D
	LEDSpot >	(ML at junction tempe	rature t _i =85	°C		P _{el} = 4 \	N	-		-			
new	LCH-008	XML 3000K min T6	549828	warm white	29503125	238.0	255.0	not allow	ed	not allow	ed	silver	С
new	LCH-008	XML 3000K min T6	548929	warm white	29503125	238.0	255.0	not allow		not allow	ed	silver mat	С
new	LCH-008	XML 3000K min T6	548930	warm white	29503125	238.0	255.0	not allow	ed	not allow	ed	gold	С
new	LCH-008	XML 3000K min T6	548931	warm white	29503125	238.0	255.0	not allow	ed	not allow	ed	white	С
new	LCH-009	XML 3000K min T6	548936	warm white	29503125	238.0	255.0	not allow		not allow	ed	silver	D
new	LCH-009	XML 3000K min T6	548937	warm white	29503125	238.0	255.0	not allow		not allow		silver mat	D
new	LCH-009	XML 3000K min T6	548938	warm white	29503125	238.0	255.0	not allow		not allow		gold	D
new	LCH-009	XML 3000K min T6	548939	warm white	29503125	238.0	255.0	not allow		not allow		white	D
new	ICH-008	XML 4000K min U2	548932	neutral white	38354110	255.0	272.0	not allow		not allow		silver	С
new	LCH-008	XML 4000K min U2	548933	neutral white	38354110	255.0	272.0	not allow		not allow		silver mat	С
new	LCH-008	XML 4000K min U2	548934	neutral white	38354110	255.0	272.0	not allow		not allow		gold	С
new	LCH-008	XML 4000K min U2	548935	neutral white	38354110	255.0	272.0	not allow		not allow		white	С
new	LCH-009	XML 4000K min U2	548940	neutral white	38354110	255.0	272.0	not allow		not allow		silver	D
new	LCH-009	XML 4000K min U2	548941	neutral white	38354110	255.0	272.0	not allow		not allow	ed	silver mat	D
new	LCH-009	XML 4000K min U2	548942	neutral white	38354110	255.0	272.0	not allow		not allow		gold	D
new	LCH-009	XML 4000K min U2	548943	neutral white	38354110	255.0	272.0	not allow	ed	not allow	ed	white	D

^{*} Measurement tolerance of luminous flux: $\pm\,7\%$ | Emission data at t_i = 25 °C

i

2

3

4

5

5

7

8

9

LEDSpot Reflector XP with Heat Sink

For cut-out: Ø 56 mm

LEDSpot with one LED and with heat sink

for optimum thermal management

Reflector with glass diffuser

Metal frame, round: steel

Leads: Cu tinned, stranded conductors AWG22,

PVC insulation, lengths: 250 mm

Snap-in clips for easy installation

for luminaire sheets (type LCH-006)

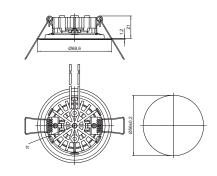
for ceilings (type LCH-007)

Degree of protection: IP40

Unit: 90 pcs. type LCH-006

Unit: 40 pcs. type LCH-007

Operating service life


at ambient temperature $t_a = 25$ °C

Current	Operating service life
mA	(lumen maintenance at 70%)
350	50,000 hrs
500	50,000 hrs
700	40,000 hrs

Typical applications

Integration in luminaires
Architectural lighting
Marking paths, stairs, etc.
Furniture lighting
Light advertising
Entertainment, shop design

В

LEDSpot Reflector XP with Heat Sink

	T	December 1999	nof No	Calaur	Caralatad	1	fl* /l\					D - di - di - d	Г	Danis
	Туре	Description	Ref. No.	Colour	Correlated		flux* (lm)	1		I-700 A		Radiation	Frame	Drawing
					colour	350 mA	0.147	500 mA	5147	700 mA		angle	colour	
					temperature	$P_{el} = 1.1$	2 W	$P_{\rm el} = 1.6$	1	$P_{\rm el} = 2.3$	88 W			
					K	min.	typ.	min.	typ.	min.	typ.	0		
		Reflector XP at jui												
iew	LCH-006	XPE 3000K min Q3	548769	warm white	28703200	79.8	88.0	103.7	114.4	135.7	149.6	20	silver	А
iew	LCH-006	XPE 3000K min Q3	548770	warm white	28703200	79.8	88.0	103.7	114.4	135.7	149.6	20	silver mat	А
iew	ICH-006	XPE 3000K min Q3	548774	warm white	28703200	79.8	88.0	103.7	114.4	135.7	149.6	20	gold	А
new	LCH-006	XPE 3000K min Q3	548772	warm white	28703200	79.8	88.0	103 <i>.7</i>	114.4	135.7	149.6	20	white	А
new	LCH-007	XPE 3000K min Q3	548794	warm white	28703200	79.8	88.0	103.7	114.4	135.7	149.6	20	silver	В
new	LCH-007	XPE 3000K min Q3	548795	warm white	28703200	79.8	88.0	103.7	114.4	135.7	149.6	20	silver mat	В
iew	LCH-007	XPE 3000K min Q3	548799	warm white	28703200	79.8	88.0	103.7	114.4	135.7	149.6	20	gold	В
iew	LCH-007	XPE 3000K min Q3	548797	warm white	28703200	79.8	88.0	103.7	114.4	135.7	149.6	20	white	В
ew	LCH-006	XPE 4500K min Q4	548944	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	20	silver	А
ew	LCH-006	XPE 4500K min Q4	548945	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	20	silver mat	А
ew	LCH-006	XPE 4500K min Q4	548946	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	20	gold	А
iew	LCH-006	XPE 4500K min Q4	548947	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	20	white	А
iew	LCH-007	XPE 4500K min Q4	548952	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	20	silver	В
ew	LCH-007	XPE 4500K min Q4	548953	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	20	silver mat	В
iew	LCH-007	XPE 4500K min Q4	548954	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	20	gold	В
iew	LCH-007	XPE 4500K min Q4	548955	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	20	white	В
iew	LCH-006	XPE 6300K min R2	548775	cool white	54506950	96.9	107.1	126.0	139.2	164.7	182.1	20	silver	A
iew						96.9	107.1	126.0	139.2	164.7	182.1	20	silver mat	A
	LCH-006	XPE 6300K min R2	548776	cool white	54506950									
ew	ICH-006	XPE 6300K min R2	548780	cool white	54506950	96.9	107.1	126.0	139.2	164.7	182.1	20	gold	A
ew	LCH-006	XPE 6300K min R2	548778	cool white	54506950	96.9	107.1	126.0	139.2	164.7	182.1	20	white	A
ew	LCH-007	XPE 6300K min R2	548800	cool white	54506950	96.9	107.1	126.0	139.2	164.7	182.1	20	silver	В
ew	LCH-007	XPE 6300K min R2	548801	cool white	54506950	96.9	107.1	126.0	139.2	164.7	182.1	20	silver mat	В
iew	LCH-007	XPE 6300K min R2	548805	cool white	54506950	96.9	107.1	126.0	139.2	164.7	182.1	20	gold	В
ew	LCH-007	XPE 6300K min R2	548803	cool white	54506950	96.9	107.1	126.0	139.2	164.7	182.1	20	white	В
		Reflector XP at jui		perature tj=2			e 50°							
ew	LCH-006	XPE 3000K min Q3	548782	warm white	28703200	79.8	88.0	103.7	114.4	135.7	149.6	50	silver	А
ew	LCH-006	XPE 3000K min Q3	548783	warm white	28703200	79.8	88.0	103.7	114.4	135.7	149.6	50	silver mat	А
ew	LCH-006	XPE 3000K min Q3	548787	warm white	28703200	79.8	88.0	103.7	114.4	135.7	149.6	50	gold	А
ew	LCH-006	XPE 3000K min Q3	548785	warm white	28703200	79.8	88.0	103.7	114.4	135.7	149.6	50	white	А
iew	LCH-007	XPE 3000K min Q3	548806	warm white	28703200	79.8	88.0	103.7	114.4	135.7	149.6	50	silver	В
ew	LCH-007	XPE 3000K min Q3	548807	warm white	28703200	79.8	88.0	103. <i>7</i>	114.4	135.7	149.6	50	silver mat	В
ew	LCH-007	XPE 3000K min Q3	548811	warm white	28703200	79.8	88.0	103.7	114.4	135.7	149.6	50	gold	В
ew	LCH-007	XPE 3000K min Q3	548809	warm white	28703200	79.8	88.0	103.7	114.4	135.7	149.6	50	white	В
ew	LCH-006	XPE 4500K min Q4	548948	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	50	silver	А
ew	LCH-006	XPE 4500K min Q4	548949	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	50	silver mat	А
iew	LCH-006	XPE 4500K min Q4	548950	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	50	gold	А
iew	LCH-006	XPE 4500K min Q4	548951	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	50	white	А
iew	LCH-007	XPE 4500K min Q4	548956	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	50	silver	В
ew	LCH-007	XPE 4500K min Q4	548957	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	50	silver mat	В
ew	LCH-007	XPE 4500K min Q4	548958	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	50	gold	В
ew	LCH-007	XPE 4500K min Q4	548959	neutral white	42504750	85.0	93.9	110.5	122.1	144.5	159.6	50	white	В
ew	LCH-006	XPE 6300K min R2	548788	cool white	54506950	96.9	107.1	126.0	139.2	164.7	182.1	50	silver	А
ew	LCH-006	XPE 6300K min R2	548789	cool white	54506950	96.9	107.1	126.0	139.2	164.7	182.1	50	silver mat	Α
ew	LCH-006	XPE 6300K min R2	548793	cool white	54506950	96.9	107.1	126.0	139.2	164.7	182.1	50	gold	A
ew	LCH-006	XPE 6300K min R2	548791	cool white	54506950	96.9	107.1	126.0	139.2	164.7	182.1	50		A
													white	В
ew	ICH-007	XPE 6300K min R2	548812	cool white	54506950	96.9	107.1	126.0	139.2	164.7	182.1	50	silver	
ew	LCH-007	XPE 6300K min R2	548813	cool white	54506950	96.9	107.1	126.0	139.2	164.7	182.1	50	silver mat	В
iew	LCH-007	XPE 6300K min R2	548817	cool white	54506950	96.9	107.1	126.0	139.2	164.7	182.1	50	gold	В
ew	LCH-007	XPE 6300K min R2	548815	cool white	54506950	96.9	107.1	126.0	139.2	164.7	182.1	50	white	В

 $^{^{\}star}$ Measurement tolerance of luminous flux: $\pm\,7\%$ | Emission data at $t_{\rm j}=25\,\,^{\circ}{\rm C}$

i

2

3

4

5

5

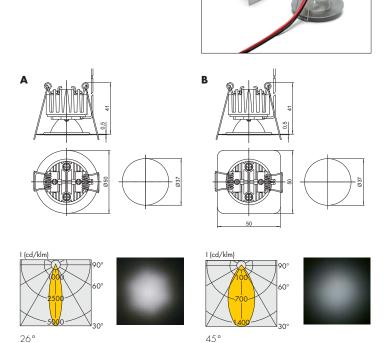
7

8

9

LEDSpot EffectLine XP/XML with Heat Sink

For cut-out: Ø 37 mm
LEDSpot with one LED and with heat sink
for optimum thermal management
Metal frame, round or square: steel, silver
Leads: Cu tinned, stranded conductors AWG22,
PVC insulation, lengths: 250 mm
Snap-in clips for easy installation
for ceilings
Unit: 45 pcs.


Operating service life

at ambient temperature t_a = 25 °C

Current	Operating service life
mA	(lumen maintenance at 70%)
350	50,000 hrs XP-E/40,000 hrs XML
500	50,000 hrs
700	40,000 hrs

Typical applications

Integration in luminaires
Architectural lighting
Marking paths, stairs, etc.
Furniture lighting
Light advertising
Entertainment, shop design

	Туре	Description	Ref. No.	Colour	Correlated	Luminous flux* (lm) at						Radiation	Drawing
					colour temperature	350 mA		500 mA		700 mA		angle	
					K	min.	typ.	min.	typ.	min.	typ.	0	
	LEDSpot E	ffectLine XP at junction	n temperati	re t _i =25 °C		P _{el} = 1.	12 W	P _{el} = 1.	.65 W	P _{el} = 2	.38 W		
new	LCH010	XPE 3000K min Q3	548964	warm white	28703200	84.5	93.2	109.9	121.1	163.7	158.4	26	А
new	LCH010	XPE 3000K min Q3	548960	warm white	28703200	84.5	93.2	109.9	121.1	163. <i>7</i>	158.4	45	А
new	LCH010	XPE 4500K min Q4	548965	neutral white	42504750	90.0	99.4	117.0	129.3	153.0	169.0	26	А
new	LCH010	XPE 4500K min Q4	548961	neutral white	42504750	90.0	99.4	117.0	129.3	153.0	169.0	45	А
new	LCH011	XPE 3000K min Q3	548966	warm white	28703200	84.5	93.2	109.9	121.1	163.7	158.4	26	В
new	LCH011	XPE 3000K min Q3	548962	warm white	28703200	84.5	93.2	109.9	121.1	163. <i>7</i>	158.4	45	В
new	LCH011	XPE 4500K min Q4	548967	neutral white	42504750	90.0	99.4	117.0	129.3	153.0	169.0	26	В
new	LCH011	XPE 4500K min Q4	548963	neutral white	42504750	90.0	99.4	117.0	129.3	153.0	169.0	45	В
	LEDSpot Ef	ffectLine XML at junc	tion tempero	iture t _i =85 °C		P _{el} = 4	w	-		-			
new	LCH010	XML 3000K min T6	548974	warm white	29503125	252.0	270.0	not allov	ved	not allov	wed	26	А
new	LCH010	XML 3000K min T6	548970	warm white	29503125	252.0	270.0	not allov	ved	not allov	wed	45	А
new	LCH010	XML 4000K min U2	548975	neutral white	38354110	270.0	288.0	not allov	ved	not allov	wed	26	А
new	LCH010	XML 4000K min U2	548971	neutral white	38354110	270.0	288.0	not allov	ved	not allov	wed	45	А
new	LCH011	XML 3000K min T6	548976	warm white	29503125	252.0	270.0	not allov	ved	not allov	wed	26	В
new	LCH011	XML 3000K min T6	548972	warm white	29503125	252.0	270.0	not allov	ved	not allov	wed	45	В
new	LCH011	XML 4000K min U2	548977	neutral white	38354110	270.0	288.0	not allov	ved	not allov	wed	26	В
new	LCH011	XML 4000K min U2	548973	neutral white	38354110	270.0	288.0	not allov	ved	not allov	wed	45	В

 $^{^{\}star}$ Measurement tolerance of luminous flux: $\pm\,7\%$ | Emission data at $t_{\rm j}$ = 25 °C

24 V CA MODULES, COLOUR CONTROL AND CONNECTION TECHNOLOGY

With its high-power $24\,\text{V}$ system, Vossloh-Schwabe is responding to the trend towards market harmonisation and simplification of LED control technology.

The modules are operated at $24\,\mathrm{V}$ DC and constant-current control of $350\,\mathrm{mA}$ min. is effected on the circuit board. The module is connected using on-board push-in terminals and matching connecting cables. This enables modular and highly flexible LED systems.

The RGB system is based on the "common anode" principle. The DigiLED CA series permits the operation of high-power RGB modules and low-power modules of "common anode" design.

Typical applications

- General lighting
- Architectural lighting
- Lighting of complex structures
- Entertainment
- Shop design

The specifications contained in this catalogue can change due to technical innovations. Any such changes will be made without separate notification.

Please read the safety and installation instructions on the individual products as well as further technical information provided in the extensive product descriptions at **www.yossloh-schwabe.com.**

High Power 24 V CA Modules Mono and RGB

Built-in PCB lighting modules

The High Power 24 V CA modules are available in white and warm white or RGB with a very high luminous flux.

The round design with 3 or 10 High Power LEDs is particularly suitable for installation in luminaires and spots. The linear design with 6 LEDs is, for instance, suitable for wall-washing and linear luminaires, etc.

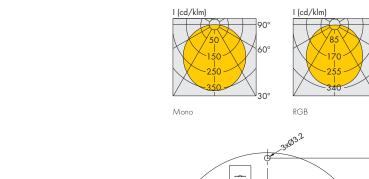
To enable easy understanding of the system, the modules are operated at 24 V DC. Constant-current control of the LEDs is on the circuit board. Contacts are made using an on-board push terminal with matching connection cables.

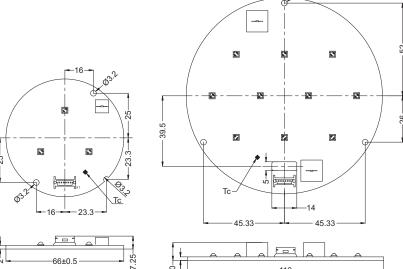
Additional suitable dimming modules (DigiLED CA series) and optics attachments (s. pages 42 and 43) are available to create individual lighting solutions.

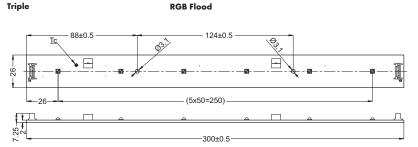
Technical notes

Triple WU-M-440: Ø 66 mm, 3 LEDs Line WU-M-441: 300 x 26 mm, 6 LEDs Flood WU-M-442: Ø 110 mm, 10 LEDs Allowed operating temperature at t_c point: -10 to 85 °C

Aluminium PCB


For improved thermal management VS recommends an additional cooling element, which is suitable for the application.


Colour rendering index: > 80 Increased ESD protection Voltage supply: 24 V DC Minimum order quantity: 50 pcs.


Typical applications

General lighting Architectural lighting Entertainment, shop design Decorative lighting Light advertising

Line

High Power 24 V CA Modules - Mono

Туре	Ref. No.	Colour	Number	Inrush current*	Nominal current*	Colour temperature*	Typ. luminou	us flux* (lm)	Radiation	Max. power*	
			of LEDs	А	А	K	min.	typ.	angle* (°)	W	
Mono Triple											
WU-M-440-WW	548520	warm white	3	0.86	0.42	3000 -130/+220	565	610	115	10	
WU-M-440-NW	548519	neutral white	3	0.86	0.42	4000 -300/+260	565	610	115	10	
Mono Line			•	•		•		•			
WU-M-441-WW	548523	warm white	6	1.66	0.83	3000 - 130/+220	1130	1220	115	20	
WU-M-441-NW	548522	neutral white	6	1.66	0.83	4000 -300/+260	1130	1220	115	20	
Mono Flood				•		•				•	
WU-M-442-WW	548526	warm white	10	1.10	1.10	3000 - 130/+220	1900	1550	115	20	
WU-M-442-NW	548525	neutral white	10	1.10	1.10	4000 -300/+260	1900	1550	115	20	

 $^{^{\}star}$ Measurement tolerance of luminous flux: $\pm\,7\%$ | Emission data at $t_{\rm j}$ = 25 °C

High Power 24 V CA Modules – RGB

Ref. No.	Colour	Number	Inrush current*	Nominal	Dom. wavelength (mm)			Typ. lum	inous flu	x* (lm)	Radiation	Max. power*
		of LEDs	A	current* (A)	red	green	blue	red	green	blue	angle* (°)	W
548518	RGB	3	0.54	0.22	620 - 630	520 - 535	465 - 485	60	115	40	130	5
548521	RGB	6	1.10	0.65	620 - 630	520 - 535	465 - 485	180	315	115	130	15
				_								
548524	RGB	10	1.40	1.10	620 - 630	520 - 535	465 - 485	215	500	135	130	25
	548518 548521	548518 RGB 548521 RGB	of LEDs 548518 RGB 3 548521 RGB 6	of LEDs A 548518 RGB 3 0.54 548521 RGB 6 1.10	548518 RGB 3 0.54 0.22 548521 RGB 6 1.10 0.65	of LEDs A current* (A) red 548518 RGB 3 0.54 0.22 620 - 630 548521 RGB 6 1.10 0.65 620 - 630	of LEDs A current* (A) red green 548518 RGB 3 0.54 0.22 620 - 630 520 - 535 548521 RGB 6 1.10 0.65 620 - 630 520 - 535	of LEDs A current* (A) red green blue 548518 RGB 3 0.54 0.22 620 - 630 520 - 535 465 - 485 548521 RGB 6 1.10 0.65 620 - 630 520 - 535 465 - 485	of LEDs A current* (A) red green blue red 548518 RGB 3 0.54 0.22 620 - 630 520 - 535 465 - 485 60 548521 RGB 6 1.10 0.65 620 - 630 520 - 535 465 - 485 180	of LEDs A curreni* (A) red green blue red green 548518 RGB 3 0.54 0.22 620-630 520-535 465-485 60 115 548521 RGB 6 1.10 0.65 620-630 520-535 465-485 180 315	of LEDs A current* (A) red green blue red green blue 548518 RGB 3 0.54 0.22 620-630 520-535 465-485 60 115 40 548521 RGB 6 1.10 0.65 620-630 520-535 465-485 180 315 115	of LEDs A current* (A) red green blue red green blue angle* (°) 548518 RGB 3 0.54 0.22 620 - 630 520 - 535 465 - 485 60 115 40 130 548521 RGB 6 1.10 0.65 620 - 630 520 - 535 465 - 485 180 315 115 130

 $^{^{\}star}$ Measurement tolerance of luminous flux: $\pm\,7\%$ | Emission data at $t_{\hat{l}}$ = 25 °C

i

7

3

_

6

7

3

9

LEDLine Flex RGB2 CA Indoor

Built-in PCB lighting modules

The LEDLine Flex RGB2 CA is a "common anode" design variant. This permits the user to operate high-power RGB modules together with the new Flex RGB2 CA.

The LEDLine Flex RGB2 CA is fitted with SMD LEDs on a flexible printed circuit board of only approx. 0.15 mm thickness. Even the most complex structures can be illuminated thanks to the use of an extremely pliable foil. LEDLine Flex SMD can be separated into segments of 171 mm without loss of function. This product is available in continuous lengths of 4.104 m. Installation is achieved via double-sided adhesive tape affixed to the rear of the PCB.

Technical notes

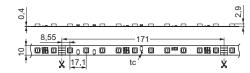
Dimensions of LEDLine Flex SMD

LxW	SMDs	Single	Length	SMDs
mm	pcs.	steps	mm	pcs.
4104×10	240	24	171	10

Allowed operating temperature at t_c point:

-25 to 70 °C

Wide radiation angle (110°)
Voltage supply: 24 V DC
Power consumption per step (171 mm): 2.4 W
Each SMD contains 3 LED-Chips


in the colours red, green and blue

Typical applications

Architectural lighting
Lighting of complex structures
Entertainment, shop design
Marking paths, stairs, etc.
Furniture lighting
Light advertising

Туре	Ref. No.	Colour	Current*		Dom. wavelength*			Typ. luminous flux*			Radiation	Max. power*			
			А			nm Ir		lm		angle*	W				
			red	green	blue	red	green	blue	red	green	blue	0	red	green	blue
WU-M-266-RGB2-CA	536052	RGB	0.48	0.96	0.96	624	528	467	528	853	193	110	11.5	23	23

^{*} The values mentioned above represent only statistical variables on account of the complex manufacturing process of light emitting diodes.

The values do not necessarily correspond exactly to the actual parameters of every single product, which can vary from the typical specifications.

LEDLine Flex RGB2 CA Outdoor

Built-in PCB lighting modules

The LEDLine Flex RGB2 CA Outdoor is an extremely flexible linear module for applications with high moisture or dust burden conditions. Due to the flexible and compact design, the illumination of complex structures and flat designs can be realised. The IP67 protected LEDLine Flex RGB2 CA Outdoor is available in 3 different lengths (see below). The installation is achieved via double-sided adhesive tape affixed to the rear of the PCB.

The colour blend of LEDLine Flex RGB2 CA Outdoor can be adjusted using DigiLED control modules. To increase the number of LED modules DigiLED-Slave can be used.

Technical notes

Dimensions of PCB: 171x10 mm. 855 x 10 mm, 1710 x 10 mm

Encapsulated dimensions (see drawing)

PCB 171 mm: $A = 177^{\pm 5}$ mm PCB 855 mm: $A = 861^{\pm 5}$ mm PCB 1710 mm: $A = 1716^{\pm 5}$ mm Degree of protection: IP67

Allowed operating temperature at tc point:

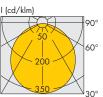
-20 to 50 $^{\circ}$ C

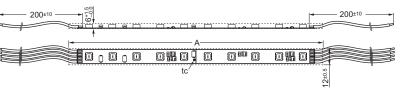
Allowed handling temperature:

10 to 50 °C

Minimum bend radius: 50 mm, flexible in longitudinal direction only Pre-assembled with 4 wires on both ends

Voltage supply: 24 V DC


Typical applications


Lighting of complex structures with high moisture or dust burden Outdoor marking of paths, stairs, etc. Outdoor light advertising Outdoor entertainment, shop design

Architectural lighting

Outdoor border lighting

2		
• •		

Туре	Ref. No.	Colour	Number	Current*		Dom. wavelength*		Typ. luminous		Radiation	Max. power*					
			of SMDs	A nm		flux* (lm)		angle*	W							
WU-M-266-				red	green	blue	red	green	blue	red	green	blue	0	red	green	blue
RGB2-CA-Outdoor 171mm	545420	RGB	10	0.02	0.04	0.04	624	528	467	22	36	8	110	0.48	0.96	0.96
RGB2-CA-Outdoor 855mm	545421	RGB	50	0.10	0.20	0.20	624	528	467	110	180	40	110	2.40	4.80	4.80
RGB2-CA-Outdoor 1710mm	545422	RGB	100	0.20	0.40	0.40	624	528	467	220	360	80	110	4.80	9.60	9.60

The values mentioned above represent only statistical variables on account of the complex manufacturing process of light emitting diodes. The values do not necessarily correspond exactly to the actual parameters of every single product, which can vary from the typical specifications.

VSSLOH SCHWABE

Colour Control Modules – DigiLED CA

The DigiLED CA series is based on a system design that combines simplicity, flexibility and reliability. The DigiLED CA series is suitable for operating both highpower RGB CA modules and low-power RGB CA modules.

In the simplest case, a keypad enables manual colour control. In addition to custom colour control, it is also possible to call up pre-set colour programs for example colour sequences.

Technical notes

Dimensions: 93 x 58 x 29 mm

Ambient temperature t_a: -20 to 45 °C

Operating voltage: 24 V DC

Max. current on the supply line: 5 A

Connectors: push-in terminals: 0.25-1.5 mm², grid: 3.5 mm

All DigiLED not suitable for the US market

DigiLED Manual CA

Colour controls via key pads (6 keys) Individual colour control or selection of pre-set programs $t_c = 55~^{\circ}\text{C}$ max.

Max. current per control channel: 1.25 A Type: WU-ST-001-Digi-manuell-CA

Ref. No.: 186136

DigiLED DALI CA

Digital colour controls via DALI light management $t_{\rm C}$ = 60 $^{\rm o}$ C max.

Max. current per control channel: 1.25 A Type: WU-ST-004-Digi-DALI-CA

Ref. No.: 186138

DigiLED DMX CA

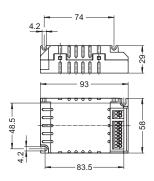
Digital colour controls via DMX light management $t_c = 60 \, ^{\circ}\text{C}$ max.

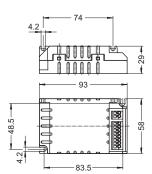
Max. current per control channel: 1.25 A Type: WU-ST-003-Digi-DMX-CA

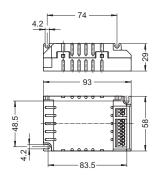
Ref. No.: 186153

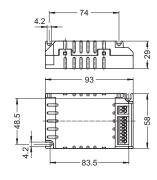
DigiLED IR CA

Colour adjustment by a portable remote control Call up of pre-adjusted setting possible Data transfer via infra-red $t_c = 55~^{\circ}\text{C}$ max.


Max. current per control channel: 1.25 A


Type: WU-ST-005-Digi-IR-CA


Ref. No.: 186154


The CA series of VS colour control modules are available with both a manual operating pad and a DALI interface or "PUSH" or DMX variant.

Furthermore the DigiLED Mono is available. The DigiLED Mono enables the dimming of single-colour (e. g. white) LED modules.

DigiLED DALI CA

Components for LED Applications

DigiLED RF CA

Easy operation possible via radio frequency (RF) and a keypad with 7 buttons. The operation via radio frequency (RF) enables a flexible installation. Optical "line of sight" or cables are not necessary due to RF operation.

Dimensions: $93 \times 58 \times 29 \text{ mm}$

Ambient temperature t_a : -20 to 45 °C

Operating voltage: 24 V DC

Max. current per control channel: 1.25 A

Type: WU-ST-012-DigiLED-RF CA

Ref. No.: 186181

Required to activate the programs

in the DigiLED RF

Dimensions: 86x86x15 mm

Colour: white

Type: WU-ST-009-Walltransmitter

Ref. No.: 536843

DigiLED Push CA

Colour adjustment by separate push button Permits retrieval of pre-set programs $t_c = 55$ °C max.

Max. current per control channel: 1.25 A Type: WU-ST-006-DigiLED-Push CA

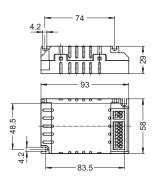
Ref. No.: 186144

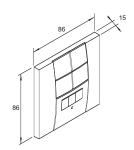
DigiLED Mono CA

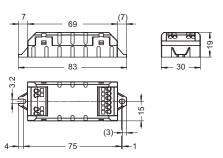
For dimming of single-colour LED modules Dimming via 1-10 V interface or external PWM signal

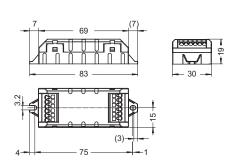
 $t_c = 55$ °C max.

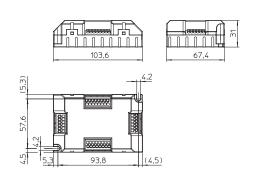
Max. current per control channel: 5 A Type: WU-ST-010-DigiLED-Mono CA


Ref. No.: 186155


DigiLED Slave CA

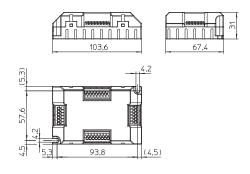

Increase of the system performance for 24 V CA LED built-in system Signal amplification on channels RGB(W) $t_c = 65 \, ^{\circ}\text{C} \text{ max}.$


Max. current per control channel per slave: 1.25 Type: WU-ST-002-DigiLED-Slave CA


Ref. No.: 186142

DigiLED Push CA

DigiLED Mono CA


Components for LED Applications

Passive Slave CA

Increase of the system performance for 24 V CA LED built-in system No signal amplification on channels RGB(W) $\rm t_c=65\ ^{\circ}C$ max.

Type: WU-ST-011-Passive-Slave CA

Ref. No.: 186172



Passive Slave PCB CA

PCB for increase of the system performance for 24 V CA LED built-in system Without casing No signal amplification on channels RGB(W) $_{\rm tc}$ = 65 °C max.

Type: WU-VB-004-Slave-PCB CA

Ref. No.: 186140

Table 1: Terminal connection

Pole	Colour coding	Function	Max. current-carrying	Colour coding		
			capacity	System flatband cable		
1	red	supply line for LED built-in modules (+24 V)	5 A	blue		
2	orange	PMW signal line for channel 1	1.25 A	grey		
3	green	PMW signal line for channel 2	1.25 A	grey		
4	blue	PMW signal line for channel 3	1.25 A	grey		
5	light grey	PMW signal line for channel 4	1.25 A	grey		
6	black	supply line for LED built-in modules (GND)	5 A	grey		

LED Connection Technology for 24 V CA System

Various connection methods like flatband cables, feed in cables, PCB distributors and slaves can be used to effect electrical connections between LED assembly modules and DigiLED CA colour control units.

Flatband and feed-in cables are designed to ensure that LED built-in modules can be connected to a DigiLED CA colour control unit or a PCB distributor or slave board up to the maximum current-carrying capacity specified in Table 1 on page 68.

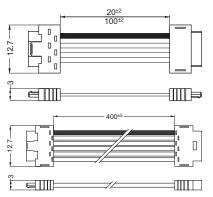
When setting up a 24 V CA system, it must be ensured that the minimum supply voltage stated in the data sheets of the LED built-in modules is attained through the combination of lead lengths.

Flatband system cables

For reverse-polarity protected connections between LED built-in modules and/or groups and for connection to PCB distributors. The six-strand flatband cable is fitted with pre-assembled connectors that plug directly in to the sockets of the LED built-in modules and PCB distributors.

Type: WU-VB-002-HP-20mm

Ref. No.: 539476 cable length: 20 mm

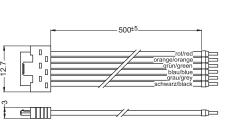

Type: WU-VB-002-HP-100mm

Ref. No.: 539475 cable length: 100 mm

Flatband extension cable

Type: WU-VB-008-HP-extension-400mm

Ref. No.: 543187 cable length: 400 mm

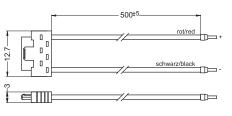

4

Feed-in cable

For connecting LED built-in modules and groups to a DigiLED CA colour control unit or slave board. The reverse-polarity protected connector attached to the feed in cable is plugged on the LED built-in module. The other side of the cable is then connected to the slave board or DigiLED CA colour control unit while ensuring correct polarity (colour coding)

Type: WU-VB-002-HP-Feed-in-500mm

Ref. No.: 535900 cable length: 500 mm

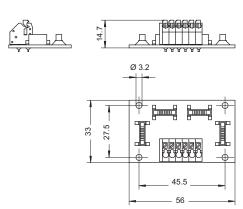


Feed-in cable Mono

For reverse polarity protected connection between monochromatic LED built-in modules and 24 V voltage supply. The dimming function is not supported.

Type: WU-VB-006-HP-Feed-in-500mm mono

Ref. No.: 542267 cable length: 500 mm

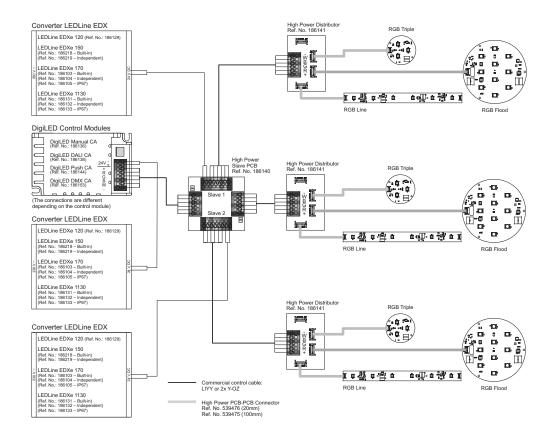

7

PCB distributor

For connecting up to four LED built-in modules or groups to a DigiLED CA colour control unit or slave board. The maximum current-carrying capacity per contact is 5 A on the input side (terminal) and as detailed in Table 1 (page 68) on the output side (connector). A standard six-strand conductor (e.g. LIYY 6X0.75 mm²) and up to four flatband cables can be used.

Type: WU-VB-003-DistriPCB CA

Ref. No.: 186141


9

10

Wiring Layout High Power

The diagram shows the typical wiring layout of the High Power RGB CA system.

The DigiLED CA series colour control modules can be used to operate both VS high-power LED modules and VS low-power LED modules if these are CA design variants.

LED MODULES, COLOUR CONTROL, CONVERTER AND ACCESSORIES

With a standard 24 V system, the modules are operated with 24 V DC converters. LED currents are regulated down to 120 mA via constant-current sources on the modules.

The RGB system was designed in accordance with the "common cathode" principle and is addressed using the DigiLED series of control modules.

Typical applications

- Furniture lighting
- · Architectural lighting
- Light advertising
- Entertainment
- Shop design
- Marking paths, stairs, etc.

LEDProfile IP67

Light modules for IP67-compliant outdoor lighting

Vossloh-Schwabe provides an IP67-compliant encapsulation for LED frames destined for outdoor lighting projects (e.g. architectural lighting).

On request, these frames can be fitted and encapsulated with flexible modules (WU-M-266 or WU-M-359). Depending on the respective LED module, the length of the frame can be extended by several times the by the length of the LED module (171 mm or 85.5 mm). The maximum frame length is 2 m.

The LED arrays can be supplied in white, warm white, monochrome or $\ensuremath{\mathsf{RGR}}$

Please contact your VS sales representative for further details.

The specifications contained in this catalogue can change due to technical innovations. Any such changes will be made without separate notification.

Please read the safety and installation instructions on the individual products as well as further technical information provided in the extensive product descriptions at

www.vossloh-schwabe.com.

LEDLine Flex SMD monochrom/RGB and High Brightness

Built-in PCB lighting modules

The LEDLine Flex SMD is fitted with SMD LEDs on a flexible printed circuit board of only approx. 0.15 mm thickness. Even the most complex structures can be illuminated thanks to the use of an extremely pliable foil. LEDLine Flex SMD can be separated into segments of different lengths (see table) without loss of function. This product is available in continuous lengths of up to nearly 10 m or 4.1 m for RGB and 5 m for High Brightness. Installation is achieved via double-sided adhesive tape affixed to the rear of the PCB.

The entire LEDLine Flex SMD RGB (power consumption of 4.1 m: 57.5 W) can be driven by a 70 W power supply. To increase the number of LED modules DigitED-Slave can be used.

Technical notes

Dimensions of LEDLine Flex SMD

Colour	LxW	SMDs	Single	Length	SMDs	
mm		pcs.	steps	mm	pcs.	
white	9918×10	580	116	85.5	5	
green	9918×10	580	116	85.5	5	
blue	9918×10	580	116	85.5	5	
red	9918×10	522	58	171	9	
yellow	9918×10	522	58	171	9	
RGB	4104×10	240	24	1 <i>7</i> 1	10	
НВ1	4959x10	174	29	171	6	
HB2	4788x10	112	14	342	8	

Allowed operating temperature at t_c point:

-25 to 70 °C

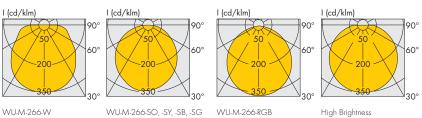
O to 85 °C (for High Brightness)

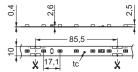
Wide radiation angle (120°),

for RGB modules (110°)

Voltage supply: 24 V DC

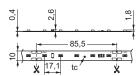
Additional technical notes for RGB modules

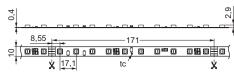

Power consumption per step (171 mm): 2.4 W Each SMD contains 3 LED-chips


in the colours red, green and blue

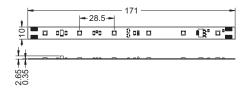
Typical applications

Lighting of complex structures Marking paths, stairs, etc. Furniture lighting Light advertising Entertainment, shop design Architectural lighting

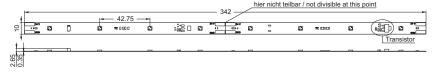




WU-M-266-SB, -SG



WU-M-266-SO, -SY



WU-M-266-W2, -W3, -WW, -WW2

WU-M-266-RGB, -RGB2

HB1: WU-M-359-W, -WW, -WW-H1, -SB, -SG

HB2: WU-M-359-SO, -SY

LEDLine Flex SMD monochrome

Туре	Ref. No.	Colour	Number of	Current*	Dom. wavelength* (nm)	Typ. luminous flux*	Radiation angle*	Power*
			SMDs	А	Colour temperature* (K)	lm	٥	W
WU-M-266-SO	528790	red	522	1.3	625	750	120	31
WU-M-266-SG	528788	green	580	2.6	530	650	120	62
WU-M-266-SB	528786	blue	580	2.6	470	300	120	62
WU-M-266-SY	528792	yellow	522	1.3	590	840	120	31
WU-M-266-WW	529512	warm white	580	2.6	2800 K	1300	120	62
WU-M-266-WW2	534428	warm white	580	2.6	2800 K	1700	120	62
WU-M-266-W2	529524	white	580	2.6	5000 K	2400	120	62
WU-M-266-W3	536051	white	580	2.6	5000 K	3200	120	62

^{*} The values mentioned above represent only statistical variables on account of the complex manufacturing process of light emitting diodes.
The values do not necessarily correspond exactly to the actual parameters of every single product, which can vary from the typical specifications.

LEDLine Flex SMD RGB

Туре	Ref. No.	Colour	Current	*		Dom. wo	avelength ³	k	Typ. lum	ninous flux	x*	Radiation	Мах. ро	wer*	
			А			nm			lm			angle*	W		
			red	green	blue	red	green	blue	red	green	blue	o	red	green	blue
WU-M-266-RGB2	534496	RGB	0.48	0.96	0.96	624	528	467	528	853	193	110	11.5	23	23

^{*} The values mentioned above represent only statistical variables on account of the complex manufacturing process of light emitting diodes.

The values do not necessarily correspond exactly to the actual parameters of every single product, which can vary from the typical specifications.

LEDLine Flex SMD High Brightness

	Туре	Ref. No.	Colour	Number of	Current*	Dom. wavelength* (nm)	CRI	Typ. luminous flux*	Radiation angle*	Power*
				SMDs	А	Colour temperature* (K)	Ra	lm	0	W
N	WU-M-359-SO	535951	red	112	1.8	625	_	840	120	44
N	WU-M-359-SY	542731	yellow	112	1.8	592	_	1100	120	44
N	WU-M-359-SG	535950	green	174	3.8	530	_	2300	120	92
N	WU-M-359-SB	535949	blue	174	3.8	470	_	640	120	92
	WU-M-359-WW	535948	warm white	174	3.8	2800 K	75	2600	120	92
	WU-M-359-WW-H1	543666	warm white	174	3.8	2800 K	92	2200	120	92
	WU-M-359-W	538111	white	174	3.8	5000 K	70	3250	120	92
	de med I	1 1						f		

^{*} The values mentioned above represent only statistical variables on account of the complex manufacturing process of light emitting diodes.

The values do not necessarily correspond exactly to the actual parameters of every single product, which can vary from the typical specifications.

i

2

3

4

5

6

7

8

9

LEDLine Flex SMD Outdoor monochrome and RGB

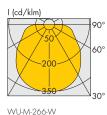
Built-in PCB lighting modules

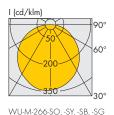
The LEDLine Flex SMD Outdoor is an extremely flexible linear module for applications with high moisture or dust burden conditions. Due to the flexible and compact design, the illumination of complex structures and flat designs can be realised. The IP67 protected LEDLine Flex SMD Outdoor is available in 3 different lengths (see below). The installation is achieved via double-sided adhesive tape affixed to the rear of the PCB.

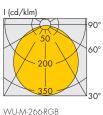
The colour blend of LEDLine Flex SMD Outdoor RGB can be adjusted using DigiLED control modules. To increase the number of LED modules DigiLED-Slave can be used.

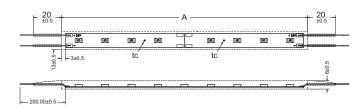
Technical notes

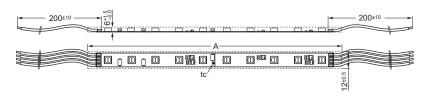
Dimensions of PCB: 171×10 mm, 855×10 mm, 1710×10 mm Encapsulated dimensions (see drawing) PCB 171 mm: A=177 mm^{+3/-6} PCB 855 mm: A=861 mm^{+3/-6} PCB 1710 mm: A=1716 mm^{+4/-6} Degree of protection: 1P67 Allowed operating temperature at t_c point:


-20 to 50 °C Allowed handling temperature: 10 to 50 °C


Minimum bend radius: 50 mm, flexible in longitudinal direction only Pre-assembled with 2 wires or 4 wires for RGB modules on both end Voltage supply: 24 V DC


Typical applications


Lighting of complex structures with high moisture or dust burden Outdoor marking paths, stairs, etc. Outdoor light advertising Outdoor entertainment, shop design Architectural lighting Outdoor border lighting



LEDLine Flex Outdoor monochrome

LEDLine Flex Outdoor RGB

LEDLine Flex SMD Outdoor monochrome

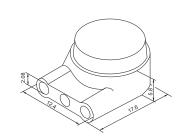
Туре	Ref. No.	Colour	Number of	Current*	Dom. wavelength* (nm)	Luminous flux*	Radiation	Power*
			SMDs	mA	Colour temperature* (K)	lm	angle*	W
WU-M-266-SO-Outdoor 171mm	545411	red	9	22	625	13	120	0.528
WU-M-266-SO-Outdoor 855mm	545412	red	45	110	625	65	120	2.640
WU-M-266-SO-Outdoor 1710mm	545413	red	90	220	625	130	120	5.280
WU-M-266-SG-Outdoor 171mm	545408	green	10	44	530	11	120	1.056
VU-M-266-SG-Outdoor 855mm	545409	green	50	220	530	55	120	5.280
VU-M-266-SG-Outdoor 1710mm	545410	green	100	440	530	110	120	10.560
VU-M-266-SB-Outdoor 171mm	545392	blue	10	44	470	5	120	1.056
VU-M-266-SB-Outdoor 855mm	545406	blue	50	220	470	25	120	5.280
VU-M-266-SB-Outdoor 1710mm	545407	blue	100	440	470	50	120	10.560
VU-M-266-SY-Outdoor 171mm	545414	yellow	9	22	590	15	120	0.528
VU-M-266-SY-Outdoor 855mm	545415	yellow	45	110	590	75	120	2.640
VU-M-266-SY-Outdoor 1710mm	545416	yellow	90	220	590	150	120	5.280
WU-M-266-WW2-Outdoor 171mm	545389	warm white	10	44	2800 K	30	120	1.056
VU-M-266-WW2-Outdoor 855mm	545390	warm white	50	220	2800 K	150	120	5.280
WU-M-266-WW2-Outdoor 1710mm	545391	warm white	100	440	2800 K	300	120	10.560
VU-M-266-W2-Outdoor 171mm	545383	white	10	44	5000 K	23	120	1.056
WU-M-266-W2-Outdoor 855mm	545384	white	50	220	5000 K	112	120	5.280
WU-M-266-W2-Outdoor 1710mm	545385	white	100	440	5000 K	224	120	10.560
VU-M-266-W3-Outdoor 171mm	545386	white	10	44	6600 K	38	120	1.056
VU-M-266-W3-Outdoor 855mm	545387	white	50	220	6600 K	190	120	5.280
WU-M-266-W3-Outdoor 1710mm	545388	white	100	440	6600 K	380	120	10.560

^{*} The values mentioned above represent only statistical variables on account of the complex manufacturing process of light emitting diodes.

The values do not necessarily correspond exactly to the actual parameters of every single product, which can vary from the typical specifications.

LEDLine Flex SMD Outdoor RGB

Туре	Ref. No.	Colour	Number	Dom. w	avelength	k	Max. lu	ıminous flu	ıx*	Radiation	Max. power*		
			of SMD	SMD nm lm		lm	lm		angle*	W			
				red	green	blue	red	green	blue	0	red	green	blue
WU-M-266-RGB2-Outdoor 171mm	545417	RGB	10	624	528	467	22	36	8	110	0.48	0.96	0.96
WU-M-266-RGB2-Outdoor 855mm	545418	RGB	50	624	528	467	110	180	40	110	2.40	4.80	4.80
WU-M-266-RGB2-Outdoor 1710mm	545419	RGB	100	624	528	467	220	360	80	110	4.80	9.60	9.60


^{*} The values mentioned above represent only statistical variables on account of the complex manufacturing process of light emitting diodes.

The values do not necessarily correspond exactly to the actual parameters of every single product, which can vary from the typical specifications.

Recommended connector

Moisture-resistant, gel-filled connector Strand diameter: 0.4-0.9 mm

Ref. No.: 534992

i

2

3

4

5

6

7

8

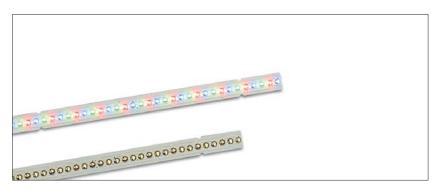
9

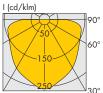
LEDLine (COB)

Built-in PCB lighting modules

The universal LEDLine is based on COB (Chip-on-Board) technology. Owing to its homogeneous light distribution, it can be used for high-quality indoor accent and decorative lighting purposes.

Many other fields of application present themselves in combination with VS LighTiles. Using commercially available flatband cables, the LEDLine modules can be directly connected without leaving visible joins. The modules can be operated by VS system converters and controllers.


Technical notes


Typical applications

Marking paths, stairs, etc. Furniture lighting Light advertising Entertainment, shop design Architectural lighting

Connecting technology


LED connecting technology for these modules you will find on pages 82 and 83.

WU-M-306, WU-M-311, WU-M-314

WU-M-305, WU-M-310, WU-M-313

LEDLine (COB)

Туре	Ref. No.	Colour	Number of	Current*	Dom. wavelength* (nm)	Luminous	Radiation	Power*	Max. number
			LEDs		Colour temperature* (K)	flux*	angle*		of modules**
				mA		lm	0	W	pcs.
LEDLine 150 (COB)									
WU-M-306-RGB	527656	RGB	30	100	R 625 G 535 B 470	33	170	2.4	24
WU-M-306-SO	527657	red	10	20	625	12	170	0.48	48
WU-M-306-SG	527658	green	10	40	535	15	170	0.96	24
WU-M-306-SB	527659	blue	10	40	470	5	1 <i>7</i> 0	0.96	24
WU-M-306-SY	527660	yellow	10	20	590	15	170	0.48	48
WU-M-306-W-3200K	528472	warm white	10	40	3200 K	12	1 <i>7</i> 0	0.96	24
WU-M-306-W-4200K	528473	neutral white	10	40	4200 K	15	170	0.96	24
WU-M-306-W-5400K	527661	neutral white	10	40	5400 K	15	1 <i>7</i> 0	0.96	24
WU-M-306-W-6500K	528474	cool white	10	40	6500 K	14	170	0.96	24
WU-M-314-SOSOSO	528850	red	30	60	625	35	170	1.44	48
WU-M-311-SGSGSG	528855	green	30	120	535	43	170	2.88	24
WU-M-311-SBSBSB	528856	blue	30	120	470	15	1 <i>7</i> 0	2.88	24
WU-M-314-SYSYSY	528908	yellow	30	60	590	40	170	1.44	48
WU-M-311-WWW-3200K	528852	warm white	30	120	3200 K	36	170	2.88	24
WU-M-311-WWW-4200K	528853	neutral white	30	120	4200 K	45	170	2.88	24
WU-M-311-WWW-5400K	528851	neutral white	30	120	5400 K	45	170	2.88	24
WU-M-311-WWW-6500K	528854	cool white	30	120	6500 K	41	170	2.88	24
LEDLine 300 (COB)									
WU-M-305-RGB	527649	RGB	60	200	R 625 G 535 B 470	65	170	4.8	12
WU-M-305-SO	527650	red	20	40	625	25	1 <i>7</i> 0	0.96	24
WU-M-305-SG	527651	green	20	80	535	29	170	1.92	12
WU-M-305-SB	527652	blue	20	80	470	10	170	1.92	12
WU-M-305-SY	527653	yellow	20	40	590	30	170	0.96	24
WU-M-305-W-3200K	528478	warm white	20	80	3200 K	24	1 <i>7</i> 0	1.92	12
WU-M-305-W-4200K	528479	neutral white	20	80	4200 K	30	170	1.92	12
WU-M-305-W-5400K	527655	neutral white	20	80	5400 K	30	1 <i>7</i> 0	1.92	12
WU-M-305-W-6500K	528480	cool white	20	80	6500 K	27	1 <i>7</i> 0	1.92	12
WU-M-313-SOSOSO	528843	red	60	120	625	70	170	2.88	24
WU-M-310-SGSGSG	528848	green	60	240	535	86	170	5.76	12
WU-M-310-SBSBSB	528849	blue	60	240	470	30	170	5.76	12
WU-M-313-SYSYSY	528907	yellow	60	120	590	80	170	2.88	24
WU-M-310-WWW-3200K	528845	warm white	60	240	3200 K	72	170	5.76	12
WU-M-310-WWW-4200K	528846	neutral white	60	240	4200 K	90	170	5.76	12
WU-M-310-WWW-5400K	528844	neutral white	60	240	5400 K	90	170	5.76	12
WU-M-310-WWW-6500K	528847	cool white	60	240	6500 K	81	170	5.76	12

The values mentioned above represent only statistical variables on account of the complex manufacturing process of light emitting diodes.

The values do not necessarily correspond exactly to the actual parameters of every single product, which can vary from the typical specifications.

i

2

3

4

5

6

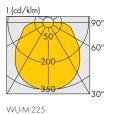
7

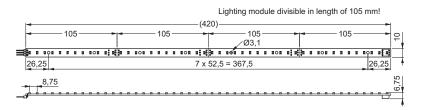
8

9

 $^{^{\}star\star}$ By the use of the DigilED-Slave the quantity of modules can be increased further.

LEDLine (SMD)


Built-in PCB lighting modules


This universal lighting strip can be used for indoor decorative and accent lighting, like for instance marking paths and contours. Owing to its low height and extra-flat connectors, it is particularly suited to furniture installations. LEDLine modules can be bent into a quarter-circle and can be either adhesive-or screw-mounted. LEDLine can be operated by VS system components.

Technical notes

SMDs are driven by constant-current sources Wide radiation angle (120°) Voltage supply: 24 V DC Minimum order quantity: 54 pcs.

Туре	Ref. No.	Number of SMDs	Current*	Typ. colour temperature*	Typ. luminous flux*	Max. power*	Max. quantity of modules
LEDLine 420 (SMD)		The same		ļ			
WU-M-225 W-48 warm white	526151	48	160	2900	140	3.84	6
WU-M-225 W-48 cool white	525873	48	160	4700	198	3.84	6

^{*} The values mentioned above represent only statistical variables on account of the complex manufacturing process of light emitting diodes.
The values do not necessarily correspond exactly to the actual parameters of every single product, which can vary from the typical specifications.

LED Connecting Technology – LEDLine (SMD)

Leads, push terminals and mounting

LEDLine SMD modules can be contacted solderfree using a special connecting cable system. Modules can be connected in straight or angled alignment.

2

Connecting cable for LEDLine (SMD)

Colour: white Number of strands: 2 (Strand diameter: 0.25 mm²)

Ref. No.: 506492 length: 500 mm length: 1000 mm

3

4

Colour: white Number of strands: 2 (Strand diameter: 0.25 mm²)

Length: 500 mm **Ref. No.: 507967**

5

6

7

8

9

Colour Control Modules – DigiLED

The DigiLED module enables three-channel (RGB) colour control. In addition, it can be used for independent brightness control of three single-colour LED modules. In the simplest case, a keypad enables manual colour control. However, next to custom colour control, it is also possible to call up pre-set colour programs like for instance colour sequences.

The load circuits of the DigiLED modules are electronically protected against overload, overheating and short-circuiting. The input circuit is additionally protected by a safety fuse.

Technical notes

Dimensions: 93 x 58 x 29 mm

Ambient temperature t_a: 0 to 45 °C

(DigiLED DALL t_a: -20 to 40 °C)

Operating voltage: 12-30 V DC

Max. current via LED module: 1 A per conductor

Short-circuit protection: electronic

Overload and temperature protection: reversible

Connector: VS system connector All DigiLED not for the US market

DigiLED Manual

Colour controls via key pads (6 keys) with interface for control via external signal line Individual colour control or selection of pre-set programs

Type: WU-ST-DigiLED-manuell **Ref. No.: 509377**

DigiLED DALI

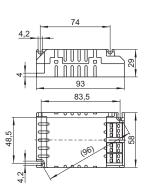
The DigiLED DALI modules enables three-channel (RGB) colour control. In addition, it can be used for independent brightness control of three single-colour LED modules. The DigiLED DALI module offers three addressable 16 bit outputs and can be controlled using all DALI-compatible control devices.

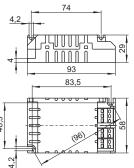
Type: WU-ST-DigiLED-DALI-3CH

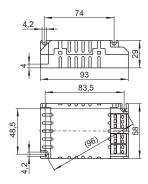
Ref. No.: 529620

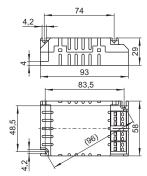
DigiLED DMX

Digital colour controls via DMX light management Type: WU-ST-DigiLED-DMX-2


Ref. No.: 509378


DigiLED Wireless IR


Colour adjustment by a portable remote control Call up of pre-adjusted setting possible data transfer via infra-red


Type: WU-ST-DigiLED-Wireless IR

Ref. No.: 508621

DigiLED Manual

DigiLED DALI

DigiLED DMX

VOSSLOH SCHWABE

Components for LED Applications

DigiLED Slave

Increase of the system performance Colour control over upstreamed DigiLED Combination with all DigiLED variants possible Type: WU-ST-DigiLED-Slave

Ref. No.: 507222

DigiLED 1-10 V

Colour control by 1 – 10 V interface Commercial control elements can be connected Type: WU-ST-DigiLED-1 – 10 V

Ref. No.: 505781

Manual controller

Dimmer with low-voltage interface $1-10~\rm V$ With push-button change-over switch Stud 4 mm, for installation in flushtype boxes with $55~\rm mm$ dia.

Without cover plate: 67x67x51 mm

Ref. No.: 172778

Cover plate with rotary knob: 80x80x9 mm

Colour: white

Ref. No.: 172775

DigiLED Push

Colour control by separate push-button Permits retrieval of pre-set programs Type: WU-ST-006-DigiLED-Push

Ref. No.: 186143

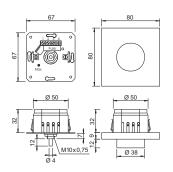
DigiLED RF

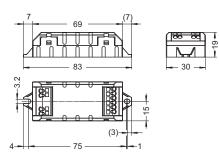
Easy operation possible via radio frequency (RF) and a keypad with 7 buttons. The operation via radio frequency (RF) enables a flexible installation. Optical "line of sight" or cables are not necessary due to RF operation.

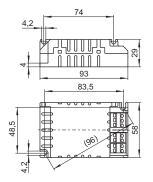
Type: WU-ST-008-DigiLED-RF

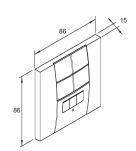
Ref. No.: 536842

Walltransmitter


Required to activate the programs in the DigiLED RF
Dimensions: 86x86x15 mm


Colour: white


Type: WU-ST-009-Walltransmitter


Ref. No.: 536843

DigiLED 1-10 V

DigiLED Push

DigiLED RF

1

2

3

4

5

6

7

8

9

LED Connecting Technology

Leads, push terminals and mounting

LEDLine COB components from $\ensuremath{\mathsf{VS}}$ can be wired by the use of commercial 6-strand flatband cable. Thus an easy, flexible and economical installation is possible.

The user can cut the leads to length on location and mount push terminals based on IDC technology.

Flatband cable

Colour: grey Number of strands: 6 Wire according to AWG28 (Strand diameter: 0.09 mm²) Load capacity: 1.2 A/strand Width: 7.3 mm, thickness: 1 mm Type: WU-VB-KB-6 x 28-grau

Ref. No.: 505222 length: 100 m

Push connector on both sides

Ref. No.: 507609 length: 60 mm Ref. No.: 507610 length: 150 mm

Push connectors

Material: PBT GF

The push connector forms a connecting error proof snap in connection between lead and LED system components. The connection with the cable is assured by IDC contacts. As the push connector can be mounted in any part of the lead a very flexible system topology is possible.

Type: WU-VB-BU-6

Ref. No.: 507051 assembled for customer

specified application

Ref. No.: 505219 not assembled

Pre-assembled flatband cables

Apart from individually pre-assembled cables, Vossloh-Schwabe also provides various inexpensive standard cable lengths for simple wiring of the DigiLED-to-LEDLine COB interface.

Ref. No.: 534401 for 4 modules **Ref. No.: 534402** for 8 modules **Ref. No.: 534403** for 12 modules

1 m Feed-in 300 mm 300 mm 300 mm 534401 1. Module 2. Module 3. Module 4. Module 1 m Feed-in 1. Module 8. Module

1 m Feed-in 1. Module

534403

12. Module

Screened flatband cable

Colour: grey

Number of strands: 6

Connecting cable: spacing 1.27 mm screened

for augmented EMC requirements

Length: 100 m Ref. No.: 506854

Crimping tool

For WU-VB-BU-6

To process and mount flatband cables

Ref. No.: 506835

LineClip for LEDLine modules

Support for linear modules with 10 mm width

Ref. No.: 507775

LED Connecting Technology

PCB distributors

The distribution boards of VS' LED system are designed to enable a variety of easy and flexible wiring layouts.

i

Coupling adapter mono

To connect monochrome light modules to standard installation technology

Not suitable for connection of modules in RGB systems

Type: WU-VB-KM-1-1

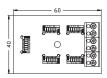
Ref. No.: 506066

3

Coupling adapters

To extend pre-equipped connection leads Type: WU-VB-KP-1-1

Ref. No.: 505217

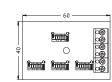

5

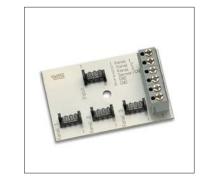
0

Distributors

Distributors enable the secondary lead of the control component to be extended (four-way) to form four leads. In addition, the possibility exists of connecting external components (e.g. LEDLine Flex SMD RGB) via a further-lead using conventional screw terminal. Type: WU-VB-VT-1-4

Ref. No.: 504964

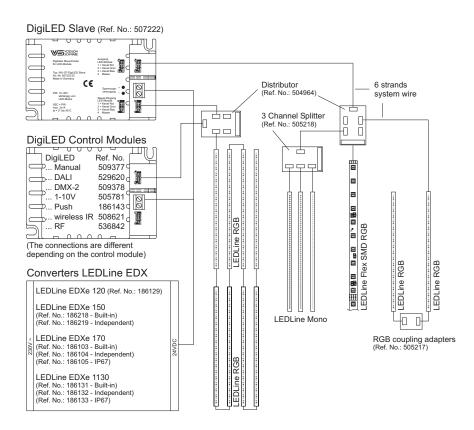



3 channel splitter

Splitter for operating three single-colour LED modules using a three-channel control device.

Type: WU-VB-SP-1-3

Ref. No.: 505218



9

10

Typical RGB Wiring Layout

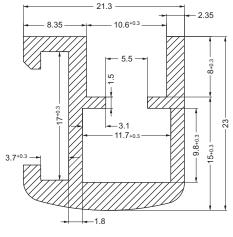
The diagram shows the typical wiring layout of the LED modules in conjunction with VS 24~V converters, colour control modules (DigiLED) and distributors (e.g.: four-way distributor Ref. No. 504964).

Components for LED Applications

LighTile

Lighting modules

LighTiles consist of a laser-engraved, edge-lit acrylic substrate.


The LighTiles need to be equipped with extra-flat, COB technology-based LEDLine modules, whereby the RGB versions enable LighTiles to be configured in any desired light colour.

Depending on the required light output, between one and all four sides of the LighTiles can be edge-lit.

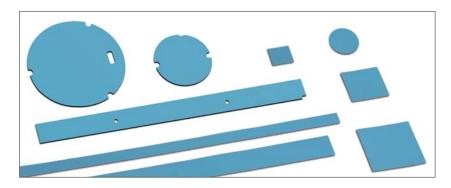
LighTiles are ideal for ceiling or wall-mounted accent or decorative lighting, but are also suitable for functional lighting needs, e.g. for illuminated advertisements, information panels and emergency exit signs.

The reference numbers quoted below refer to the acrylic LighTiles with a custom-fitted and assembled aluminium frame only. The LEDLine PCBs must be ordered separately to suit the given assembly.

3.7*03
Frame

Туре	Ref. No.	Weight	Dimensions of the acrylic substr	ate	Dimensions incl. frame	
		kg	Length (mm)	Width (mm)	Length (mm)	Width (mm)
WU-LT-300x300	5051 <i>7</i> 0	1.6	300	300	330	330
WU-LT-600x300	534025	2.5	600	300	630	330
WU-LT-600x600	505183	5.2	600	600	630	630
WU-LT-900x600	505185	7.6	900	600	930	630
WU-LT-900x900	505192	13.0	900	900	930	930

As standard with laser-engraved pattern in clear acrylic panel. White diffuse acrylic panel available on request.


VSSLOH SCHWABE

Thermally Conductive Adhesive Transfer Tapes for LED Modules

3MTM type 8810 and Bergquist Bond-Ply® 100

Thermally Conductive Adhesive Transfer Tapes are designed to provide a preferential heat-transfer path between heat-generating components and heat-sinks or other cooling devices.

These tapes are tacky pressure sensitive adhesives loaded with thermally conductive ceramic fillers that do not require a heat cure cycle to form an excellent bond to many substrates. Only pressure is needed to form an excellent bond and thermal interface.

The specialized chemistry renders them modestly soft and able to wet to many surfaces, allowing them to conform well to non-flat substrates, provide high adhesion, and act as a good thermal interface.

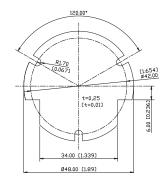
The specialized acrylic chemistry of the tapes provides for excellent thermal stability of the base polymer. The thermally conductive tapes are provided on a silicone treated polyester release liner for ease of handling and die cutting. The tapes offer excellent adhesive performance with good wetting and flow onto many substrate surfaces.

Depending on the type of application and/or the expected ambient conditions, the modules must be additionally secured to ensure optimum fixing.

For detailed information and application guidelines see 3M or Bergquist datasheet for thermally conductive adhesive transfer taper (8805; 8810; 8815; 8820; www.3m.com or Bergquist Bond-Ply® 100; www.bergquistcompany.com).

Туре	Ref. No.	Size	Tape thickness	Liner thickness	Thermal conductive Rth	For VS LED modules
		mm	mm	μm	K/W	
For round LED mode	ules					
Adhesive pad Ø28	536248	Ø28	0.25	37.5 - 30	1.0	PowerEmitter
Adhesive pad Ø43	536977	Ø43	0.20	76	0.5	TriplePowerEmitter Ø45mm, Ø50mm
Adhesive pad Ø63	539625	Ø63	0.25	37.5-50	0.5	High Power 24V RGB Triple
Adhesive pad Ø107	539624	Ø107	0.25	37.5-50	0.1	High Power 24V RGB Flood
For square LED mod	lules					
Adhesive pad 19x19	529158	19x19	0.25	37.5-50	1.4	WU-M-293
Adhesive pad 34x34	529155	34x34	0.25	37.5-50	0.5	WU-M-294
Adhesive pad 49x49	529157	49x49	0.25	37.5-50	0.3	WU-M-295, TriplePowerEmitter Ø50mm
For linear LED modu	ıles					
Adhesive pad 278x13	548179	278×13	0.25	35.5-50	0.3	LUGA Line
Adhesive pad 306x11	529156	306x11	0.25	37.5-50	0.3	WU-M-291, WU-M-292
Adhesive pad 320x35	533815	320x35	0.20	76	0.1	LEDLine High Power
Adhesive pad 297x23	539626	297x23	0.25	37.5-50	0.1	High Power 24V RGB Line

This technical information for 3M™ Thermally Conductive Adhesive Transfer Tape 8810 or Bergquist Bond-Ply® 100 should be considered representative or typical only and should not be used for specification purposes.


Thermal Tapes for LED Modules

2

Thermal conductive graphite tape

For modules for shop design Thermal resistance: R_{th} 0.04 K/W Type: Thermal tape Ø 48 mm Graphite

new Ref. No.: 545689

4

For LED modules ME/S (see page 28) Type: Thermal tape 54×54 mm

new Ref. No.: 548252

5

6

7

8

9

Electronic Converters for LED Modules 24 V

If LED modules are used that are connected in parallel, the voltage-stabilising system is activated. The advantages include easy extendibility and system safety on account of the low voltage.

The electronic converters made by Vossloh-Schwabe guarantee a broad output range at a voltage of 24 V. Typical areas of application are architectural and general lighting, the replacement of halogen lamps as well as furniture lighting.

Devices with the particularly high IP67 degree of protection are designed for use in outdoor applications.

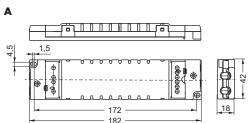
General technical notes

Short-circuit protection: electronic Overload and temperature protection: reversible Protection against "no load" operation Protection class I (EDXe 120: protection class II)

Max.	Туре	Ref. No.	Mains voltage	Voltage	Mains	Output	Ambient	Casing	Power	Drawing/	With cord	Weight
output			50, 60 Hz	output	current	current	temperature t _a	temperature t _c	factor	photo	grip	
W			V	V	mA	А	°C	°C				9
0.1 - 20	EDXe 120	186129	220-240	24 ±0.5	230/210	0.85	- 20 to 45	75	0.5	А	_	155
0.0-50	EDXe 150/24 V	186218	220-240	24 ±0.72	260/235	0.0-2.1	- 40 to 45	70	0.97	В	_	290
0.0-50	EDXe 150/24 V	186219	220-240	24 ±0.72	260/235	0.0-2.1	- 40 to 45	70	0.97	С	yes	320
0.0-70	EDXe 170/24 V	186103	220-240	24 ±0.48	360/310	0.0-2.9	- 20 to 45	70	0.97	В	_	340
0.0-70	EDXe 170/24 V	186104	220-240	24 ±0.48	360/310	0.0-2.9	- 20 to 45	70	0.97	С	yes	360
0.0-130	EDXe 1130/24 V	186131	220-240	24 ±0.48	640/585	0.0-5.4	- 20 to 45	75	0.98	В	_	370
0.0-130	EDXe 1130/24 V	186132	220-240	24 ±0.48	640/585	0.0-5.4	- 20 to 45	75	0.98	С	yes	390
Degree o	of protection: IP67						•					
0.0-70	EDXe 170/24 V IP67	186105	220-240	24 ±0.48	360/330	0.0-2.9	- 20 to 45	70	0.97	D	_	515
0.0-130	EDXe 1130/24 V IP67	186133	220-240	24 ±0.48	640/585	0.0-5.4	- 20 to 45	70	0.97	D	_	545

Converter EDXe 120

Degree of protection: IP20, SELV-equivalent Dimensionse (LxWxH): $182 \times 42 \times 18$ mm


(Drawing: A)
Connections/leads:

prim.: mains connection cable, length: 1.48 m

sec.: screw terminals 1.5 mm²

Ref. No.: 186129

Converters EDXe 150, 170 and 1130/24V

Degree of protection: IP20, SELV Push-in terminals with push button: 2.5 mm² solid lead

Without cord grip

Dimensions (LxWxH): 187x60x36 mm Fixing centres: 178 mm (drawing: B)

Type: EDXe 150/24 V

new Ref. No.: 186218 output: 0-50 W Dimensions (LxWxH): 200x61x49 mm Fixing centres: 191 mm (drawing: B) Type: EDXe 170/24 V

> Ref. No.: 186103 output: 0-70 W

Type: EDXe 1130/24 V

Ref. No.: 186131 output: 0-130 W

With cord grip

Cord grip approved for mains leads: H03W-F 3X0.75 mm² or NYM 3X1,5 mm² Cord grip approved fo routput leads: SIHY-Cu 4X1 mm² or SIHSI-Cu 4X1 mm² Dimensions (LxWxH): 224x60x36 mm Fixing centres: 210 mm (drawing: C) Type: EDXe 150/24 V

new Ref. No.: 186219 output: 0-50 W Dimensions (LxWxH): 245x61x49 mm Fixing centres: 231 mm (drawing: C)

Type: EDXe 170/24 V

Ref. No.: 186104 output: 0-70 W

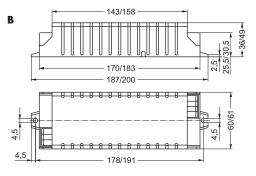
Type: EDXe 1130/24 V

Ref. No.: 186132 output: 0-130 W

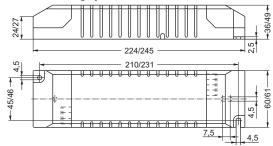
Converter EDXe 170 IP67/24 V

Degree of protection: casing IP67, SELV Dimensions (LxWxH): 268 x 71.6 x 51 mm Fixing centres: 235 mm (drawing: D) Pre-assembled connection:

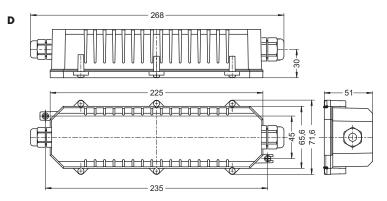
prim.: 3X1 mm², HO5RN-F, length: 500 mm sec.: 2X2 mm², SO7RN-F, length: 500 mm


Ref. No.: 186105 output: 0-70 W

Converter EDXe 1130 IP67/24 V


Degree of protection: casing IP67, SELV Dimensions (LxWxH): 268 x 71.6 x 51 mm Fixing centres: 235 mm (drawing: D) Pre-assembled connection:

prim.: 3X1 mm², HO5RN-F, length: 500 mm sec.: 2X2 mm², SO7RN-F, length: 500 mm output: 0-130 W Ref. No.: 186133



C - with cord grip

Electronic Converters for LED Modules 12 V

If LED modules are used that are connected in parallel, the voltage-stabilising system is activated. The advantages include easy extendibility and system safety on account of the low voltage.

The electronic converters made by Vossloh-Schwabe guarantee a broad output range at a voltage of 12 V. Typical areas of application are architectural and general lighting, the replacement of halogen lamps as well as furniture lighting.

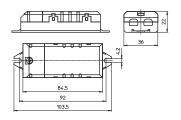
Devices with the particularly high IP67 degree of protection are designed for use in outdoor applications.

General technical notes

Short-circuit protection: electronic Overload and temperature protection: reversible Protection against "no load" operation Protection class I (EDXe 112: protection class II)

Max.	Туре	Ref. No.	Mains voltage	Voltage	Mains	Output	Ambient	Casing	Power	Drawing	With cord	Weight
power	17,65		50, 60 Hz	tuatuo	current	'	temperature t _a		factor	Photo	grip	
W			V	V	mA	А	°C	°C °				g
0.1-12	EDXe 112	186204	220-240	12 ±0.6	120	1	- 20 to 50	75	0.57	А	_	60
0.0-50	EDXe 150/12 V	186216	220-240	12.1 ±0.24	260/230	0.0-4.2	-40 to 45	70	0.97	В	_	375
0.0-50	EDXe 150/12 V	186217	220-240	12.1 ±0.24	250/240	0.0-4.2	- 40 to 45	70	0.97	С	yes	425
0.0-70	EDXe 170/12 V	186112	220-240	12.1 ±0.24	365/335	0.0-5.8	- 20 to 45	70	0.97	В	_	340
0.0-70	EDXe 170/12 V	186113	220-240	12.1 ±0.24	365/335	0.0-5.8	- 20 to 45	70	0.97	С	yes	360
Degree	of protection: IP67	•	•			•		•		•	•	•
0.0-70	EDX 170/12 V IP67	186114	220-240	12 1 ±0.24	365/335	00-58	- 20 to 45	70	0.07	D		515

Converter EDXe 112/12 V


Degree of protection: IP20, SELV-equivalent Dimensions (LxWxH): 103.5x36x22 mm Fixing centres: 92 mm (drawing: A) Prim. and sec. connections:

each with $2 \times 2.5 \text{ mm}^2$ screw terminals

new Ref. No.: 186204

Δ

Converters EDXe 150 and 170/12V

Degree of protection: IP20, SELV Push-in terminals with push button: 2.5 mm² solid lead

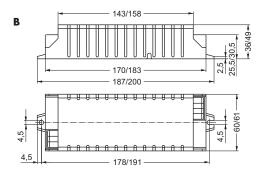
Without cord grip

Dimensions (LxWxH): 187x60x36 mm Fixing centres: 178 mm (drawing: B) Type: EDXe 150/12 V

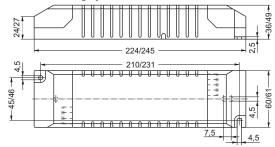
output: 0-50 W new Ref. No.: 186216 Dimensions (LxWxH): 210x61x49 mm Fixing centres: 191 mm (drawing: B) Type: EDXe 170/12 V

> Ref. No.: 186112 output: 0-70 W

With cord grip


Cord grip approved for mains leads: H03W-F 3X0.75 mm² or NYM 3X1.5 mm² Cord grip approved fo routput leads: SIHY-Cu 4X1 mm² or SIHSI-Cu 4X1 mm² Dimensions (LxWxH): 224x60x36 mm Fixing centres: 210 mm (drawing: C) Type: EDXe 150/12 V

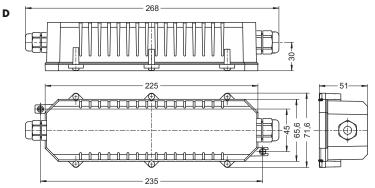
new Ref. No.: 186217 output: 0-50 W Dimensions (LxWxH): 245x61x49 mm Fixing centres: 231 mm (drawing: C)


Type: EDXe 170/12 V

Ref. No.: 186113 output: 0-70 W

B and C - EDXe 150 / EDXe 170

C - with cord grip


Converter EDXe 170 IP67/12 V

Degree of protection: casing IP67, SELV Dimensions (LxWxH): 268 x 71.6 x 51 mm Fixing centres: 235 mm (drawing: D) Pre-assembled connection:

prim.: 3X1 mm², HO5RN-F, length: 500 mm sec.: 2X2 mm², SO7RN-F, length: 500 mm

Ref. No.: 186114 output: 0-70 W

VS VOSSLOH SCHWABE

Technical Details

Glossary

Components for LED Applications

General technical details	533-540
Assembly and safety information for LEDSpots and LED modules with heat sink	98-99
Assembly instructions - LED components	96-98
CIE chromaticity chart	95
General information on LED technology	92-99

92

541-543

General information on LED technology

Thanks to the constant developmental progress made in LED semiconductor technology, the fields of application for LEDs are growing continuously. Mood and architectural lighting, for instance, are already benefiting from the saturated colours of and possibilities afforded by RGB colour control. Ever higher light efficiency levels at higher currents are making white LEDs increasingly attractive for general lighting. Among others, further decisive advantages are great longevity, low energy consumption, neither UV or IR radiation nor any hazardous substances.

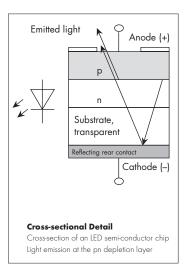
The key basis of modern optoelectronics is the availability of high-performance LEDs in the three primary colours red, green and blue as well as white and warm white. By assembling these on circuit boards and in combination with converters and control systems, lighting systems can be created for the most diverse areas of use.

Vossloh-Schwabe's production of LED modules is based on tried-and-tested COB and SMD technology. This makes it possible to design modules in various dimensions and performance classes. COB (Chip On Board) technology enables super-flat designs with very high chip densities. SMD (Surface Mounted Device Technology) enables convenient, quick and simultaneous assembly of LED and electronics devices.

Working principle of light emitting diodes (LEDs)

An LED semiconductor chip is a semiconductor component that is made up of two differently doped crystallayers, one of which positive (p) and the other negative (n). Light is emitted at the depletion-layer pn boundary for a current flow in forward direction.

An LED converts applied electric energy into visible electromagnetic radiation. The construction and doping of a semiconductor depends on the desired wavelength λ (colour), which can only be monochromatic (red, orange, yellow, green or blue). Colour blends are created by varying the number of LEDs in the individual colours. By adding certain converter materials, LEDs can also produce white and warm white light. This type of light generation using a semiconductor is generally referred to as luminescence, i.e. the generation of cold light whose rays contain no warmth and are emitted without infrared (IR).


Semiconductor materials for LED chips

Irrespective of the specific model, an LED always consists of the following components: leadframe, LED chip and contacting using conductive adhesive and bonding.

While the leadframe can be made of a PCB or ceramics, plastics and other materials, the LED chips are mounted on a die-cut reflector (cathode) using conductive adhesive to achieve higher light intensities with a focused beam of light. The anode is connected using bonding wire.

The optical viewing angle (ϕ) of an LED is determined by the geometry of the casing including reflector and the position of the chip within the casing.

Small in size and highly resistant against mechanical impact/stress, LEDs are an ideal component for lighting applications. Special modular solutions are also available for applications involving differing ambient conditions (humidity, ambient temperature, etc.).

ı

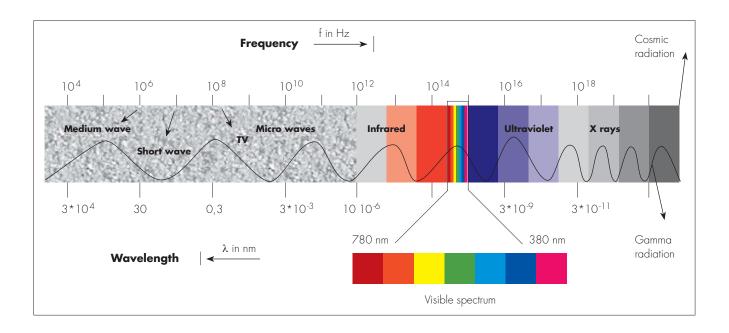
2

3

4

5

6


7

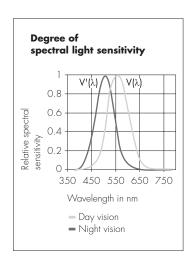
8

9

Visible light within the electromagnetic spectrum

Visible light only accounts for a small part of the electromagnetic spectrum. The part of the electromagnetic spectrum that is visible for humans ranges from ultraviolet ($\lambda = 380$ nm) to dark red ($\lambda = 780$ nm).

Light sensitivity of the human eye

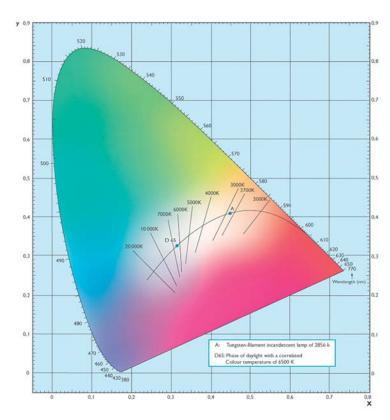

By day, the maximum light sensitivity (Km) of the human eye for green is at $\lambda = 555$ nm and drops to $\lambda = 510$ nm by night. Light sensitivity falls off sharply for both higher and lower wavelengths and only totals 1% of day vision for blue at $\lambda = 430$ nm and dark red at $\lambda = 720$ nm. Thus, in order for the human eye to perceive light of these wavelengths at the same intensity as yellow-green light, its luminance LV needs to be 100 times greater.

Service life of LEDs

The service life of an LED is determined by various factors:

- the degradation rate of the semiconductor material and the encapsulation material
- ullet the applied operating current I_F
- the ambient temperature ta during operation and
- the thermal resistance

The term degradation describes the decrease in brightness of an LED chip as a result of the applied forward current during normal operation. Given normal operating conditions ($t_a = 25\,^{\circ}\text{C}$ at $I_F = 10-30\,\text{mA}$), LEDs will provide a service life of up to 100,000 operating hours (typically 50,000 hours for High Power applications), after which time the brightness of the LED will have dropped to 70% of its original value.


LED efficiency

In theory, the internal efficiency of an LED chip is 90%, meaning that 90% of the applied electrical energy is converted into visible light at the pn junction layer.

However, a part of the light emitted at the pn junction layer cannot pass through the semiconductor structure and it remains a major technological challenge to optimise the coupling of light out of the chip with the help of innovative designs. These processes determine the external degree of LED efficiency, which denotes the magnitude of visible output that can pass through the semiconductor structure when, for instance, 1 W of electrical power is applied to an LED.

Colour design with LEDs

CIE Chromaticity Chart (CIE 1931 according to DIN 5033)

The CIE chromaticity triangle (standardised CIE 1931 chromaticity chart according to DIN 5033) makes it possible to precisely plot the colours of light sources and objects using two standardised (and previously gauged) chromaticity coordinates, the x and y values. Every point in this chart represents the chromaticity location of a certain chroma. Colours of the same chromaticity only differ from each other in terms of their intensity (colour saturation). The so-called "no-colour point" (white, grey and black, depending on brightness) is situated in the middle of the chart at x=0.33 and y=0.33.

The boundary of the chromaticity chart is made up of the gamut of spectral colours from 380 nm (blue-violet) to 780 nm (dark red) and the so-called purple boundary. As a result of additive mixing of two or more coloured light sources the chromaticity coordinates are always along a direct line between the starting coordinates.

7

3

4

5

6

7

8

9

When using LED lighting, different colours can be created using additive colour mixing (RGB) or by transforming the wavelengths a diode emits by adding a luminescent material in a manner similar to fluorescent lamps. In the case of additive colour mixing/control, appropriate control devices are used to adjust the brightness of the individual LED colours (RGB) to create the desired light colour.

LED system components

- LED light modules
- LED operating devices
- LED control modules
- LED connection technology

When selecting LED components, it is important to take account of their technical specifications, especially with regard to voltage range, current and temperature. VS provides a large range of components for the various areas that all go to build a perfectly matched system. The technical specifications of the various components can be found on the product pages. All VS LED operating devices work with a safety extra-low voltage (SELV) or SELV equivalent on the output side.

Assembly Instructions for LEDs

For mounting and installing LED components

Mandatory regulations

DIN VDE 0100	Erection of low voltage installations
EN 60598-1	Luminaires - part 1: general requirements and tests
EN 60838-2-2	Miscellaneous lampholders - part 2-2: particular requirements - connectors for LED-modules
EN 61347-1	Lamp controlgear – part 1: general and safety requirements
EN 61347-2-11	Controlgear - part 2-11: particular requirements for miscellaneous electronic circuits used with luminaires
EN 61347-2-13	Lamp controlgear - part 2-13: particular requirements for DC or AC supplied electronic controlgear for LED modules
EN 62031	LED modules for general lighting – safety specifications
EN 62384	DC or AC supplied control gear for LED modules - performance requirements
EN 55015	Limits and methods of measurement of radio disturbance characteristics of electrical lighting and similar equipment
EN 61000-3-2	Electromagnetic compatibility (EMC) – part 3-2: limits – limits for harmonic current emissions (equipment input current = 16 A per phase)
EN 61000-3-3	Electromagnetic compatibility (EMC) – part 3-3: limits – limitation of voltage fluctuations and flicker (equipment input current = 16 A per phase)
EN 61547	Equipment for general lighting purposes - EMC immunity requirements
EN 62471	Photobiological safety of lamps and lamp systems

Mechanical mounting of LED operating devices

Surface Solid, flat surface for good heat discharge required.

Avoid mounting protruding surfaces.

Mounting location

Converters must be protected against moisture and heat.

Installation in external luminaires

Luminaire requires water protection rate of = 4 (e.g. IP54).

Heat transfer

If the converter is destined for installation in a luminaire, sufficient heat transfer must be ensured between the converter and the luminaire casing. Converters should be mounted

with the greatest possible clearance to sources of heat.

During operation, the temperature measured at the t_{C} point of the converter

must not exceed the specified maximum value.

Additional mounting instructions for independent LED operating devices

Mounting position Any

Clearance Min. of 0.10 m from walls, ceilings, insulation

Min. of 0.10 m from other electronic ballasts

Min. of 0.25 m from sources of heat (LEDs or other lamps)

Surface Solid; device must not be allowed to sink into insulation materials

Safety information for LED modules

Warning

The installation of LED modules may only be undertaken by qualified staff. Installation must be conducted at zero potential after disconnection from the line. Modules can have sharp edges or corners. Please take special care during installation to avoid injury. The High Power 24 V Triple, Line and Flood, the HighPerformance, Power Emitter, TriplePowerEmitter, LEDLine High Power, XP and HC Line Spot and Mini modules can get hot. Please provide warning notices at the luminaire body if necessary.

Assembly and handling information for LED modules

LED modules and all PCB components must not be subjected to undue mechanical stress:

- LED modules must not be handled as bulk cargo.
- Shear and pressure stress must be avoided on SMD LEDs and the grouting material of COB LEDs during assembly and handling.

The circuit path must not be damaged or interrupted. We recommend using clips or plastic screws for installation purposes to avoid short circuits and damage to the modules.

The LED modules are not protected against short-circuiting, overloading or overheating. The use of Vossloh-Schwabe electronic power supply units is therefore absolutely essential. Using other power supply units is not recommended. Please ensure you choose the correct electronic power supply unit for the module in question and that the respective output parameters (current, voltage, wattage) are correct (see www.vossloh-schwabe.com).

Please ensure standard ESD (electrostatic discharge) protection measures are employed when handling and installing LED modules. Electrostatic discharge can damage LEDs.

Please ensure the correct polarity of the leads prior to commissioning. Reversed polarity can destroy the modules.

Ī

2

3

4

5

6

7

8

9

The modules are not protected against dust or moisture (except LEDLine Flex SMD Outdoor). When LED modules are operated in unduly moist or dusty environments, care must be taken to ensure each module is built into a protective casing in compliance with the correct IP classification or provided with corrosion protection. Damage caused by moisture and/or corrosion will not be recognised as a material or manufacturing defect.

To ensure smooth module operation, care must be taken that module temperatures at the $t_{\rm c}$ point never exceed the maximum values stipulated in the data on catalogue pages.

Due to the numerous installation options and differing operating conditions, no precise installation guidelines can be provided that will ensure the maximum temperature values are never exceeded. In principle, the High Power 24 V Triple, Line and Flood, the HighPerformance, PowerEmitter, TriplePowerEmitter, LEDLine High Power, XP and HC Line, Spot and Mini can be mounted on a flat metal surface that must, however, provide a large enough surface area to ensure the generated heat can be dissipated to the surroundings.

Please ensure adhesive pads or other products with adhesive areas (LEDLine Flex SMD, LEDLine Flex SMD Outdoor) are only used on dry and clean surfaces that are free of grease, oil, silicone and dirt particles. Owing to the varying application options and different types of surface as well as ambient conditions, VS accepts no liability for the quality of the adhesive bond achieved when mounting these products.

Assembly and safety information for LEDSpots and LED modules with heat sink

Installation and maintenance must always be performed by a qualified fitter in accordance with relevant legislation. The following instructions must be strictly observed. Vossloh-Schwabe Deutschland GmbH accepts no liability for any possible inaccuracies during installation, any non-compliance with these instructions or for any possible omissions in this publication.

In addition, Vossloh-Schwabe Deutschland GmbH reserves the right to make modifications at any time and without prior notification. This data sheet is an integral part of the equipment and its safety devices and should therefore be kept in a safe place for easy reference. The equipment must always be disconnected from the mains prior to undertaking any maintenance work. The safety instructions on the type plate of the components must be strictly observed.

Safe operation is only possible by the use of external constant-current sources.

Power supply units must be used for operation, in which the following protective measures are ensured:

- Short-circuit protection
- Overload protection
- · Overheating protection
- SELV equiv. (Safety Extra Low Voltage)

Please ensure the correct polarity of the leads prior to commissioning. Reversed polarity can destroy the modules

The maximum output of the power supply must be observed

ESD (electrostatic discharge) protection measures must be observed when handling and installing the LED modules.

The modules are not protected against dust or moisture. When modules are operated in unduly moist or dusty environments, care must be taken to ensure each module is built into a protective casing in compliance with the correct IP classification or provided with corrosion protection. Damage caused by moisture and/or corrosion will not be recognised as a material or manufacturing defect.

Under no circumstances may LED modules ever be covered by insulation material or similar. Air ventilation must be ensured.

For optimal load of used constant-current driver the LEDSpots can only be connected in series. The quantity of LEDSpots is limited by the sum of forward voltage and the capacity of used constant-current driver. Under no circumstances may the sum of the forward bias exceed 60 V DC.

A parallel connection of the modules is not allowed.

Tests have shown the following chemicals to be harmful to LEDs used on the modules. It is recommended not to use the under-mentioned chemicals anywhere in an LED system. The fumes from even small amounts of these chemicals may damage the LEDs.

- Chemicals that might outgas aromatic hydrocarbons (e.g., toluene, benzene, xylene)
- Methyl acetate or ethyl acetate (i.e., nail polish remover)
- Cyanoacrylates (i.e., "Superglue")
- Glycol ethers
 - (including Radio Shack®, Precision Electronics Cleaner dipropylene glycol monomethyl ether)
- Formaldehyde or butadiene (including Ashland PLIOBOND® adhesive)
- Dymax 984-LVUF conformal coating
- Loctite Sumo glue
- Gorilla glue
- Clorox bleach
- Clorox Clean-Up cleaner spray
- Loctite 384 adhesive
- Loctite 7387 activator
- Loctite 242 threadlocker

Photobiological safety of lamps and lamp systems; German version EN 62471:2008 General lighting: exempt group

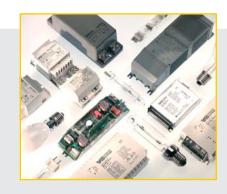
1

2

3

4

5


6

7

8

9

ELECTRONIC AND ELECTROMAGNETIC

ELECTRONIC AND ELECTRO-MAGNETIC OPERATING DEVICES

For high-pressure sodium lamps (HS), metal halide lamps (HI) and mercury vapour lamps (HM)

Electronic ballasts

Modern discharge lamps operate very efficiently in combination with electronic ballasts. The numerous advantages of using electronic ballasts to operate high-pressure discharge lamps are listed in more detail on the product pages.

With the help of temperature and service-life tests, VS electronic ballasts guarantee a high degree of reliability. The quality of the electronic ballasts is ensured by continuous in-circuit tests and function tests like burn-in tests.

Magnetic ballasts

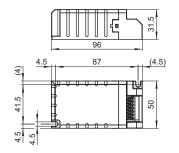
The electrical specifications of VS' range of ballasts comply with lamp-specific requirements. Vossloh-Schwabe attaches great importance to ensuring the impedance value of electromagnetic ballasts is kept within particularly narrow tolerances. This advantage, which is achieved by individual adjustment of the air gap during the automated production and testing process of every ballast, decisively contributes to optimising light output, light colour and service life of discharge lamps.

The range includes ballasts with variable voltage tapping points and varying degrees of inherent heating as well as encapsulated devices.

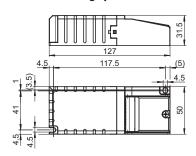
Ballasts for Discharge Lamps

For high-pressure sodium lamps (HS), metal halide lamps (HI) and mercury vapour lamps (HM)

Electronic ballasts, accessories	102-111
Dimmable electronic ballasts	110-111
Control gear units for HS and HI lamps	112-118
Electromagnetic ballasts	119-141
for HS and HI lamps	119-130
for HM and HI lamps	131 – 134
for SDW-T/-TF lamps	135
for power reduction	136-141
Technical details for discharge lamps	184-225
General technical details	533-540
Glossary	541 - 543


Compact Electronic Ballasts for HI Lamps 20 and 35 W

Shape: K35


Casing: heat-resistant polyamide, encapsulated with polyurethane (EHXc 35G.327 B and EHXc 35G.327 I) For ceramic discharge tube lamps (C-HI) Power factor: > 0.9 Operation frequency: 135 Hz Push-in terminals: 0.5 - 1.5 mm² Constant power consumption Protection against "no load" operation For luminaires of protection class I and II Degree of protection: IP20 Permissible load capacity: 120 pF RFI-suppressed Fixing brackets for screws M4 for base mounting No flickering of defective lamps

K35

K35 with cord grip

	Lamp				Electronic ballast									System
	Output	Туре	Base	Power con-	Туре	Ref. No.	Voltage AC	Mains	Energy	Ambient	Casing	Ignition	Weight	Output
				sumption			50, 60 Hz	current	efficiency	temperature	temperature	voltage		
	W			W			V -10%+6%	А		ta (°C)	tc (°C)	kV	9	W
	Electro	nic bu	uilt-in ballasts											
new	20	НІ	GU6.5, G8.5, GX8.5,	1 x 20	EHXc 20.329 B	188991	220-240	0.11	A2	-15 to 60	max. 75	2-4	130	23
			GX10											
new	35	НІ	GU6.5, G8.5, GX8.5,	1 x 39	EHXc 35G.327 B	188993	220-240	0.2	A2	-15 to 45	max. 80	2-4	180	43.5
			GX10, G12											
	Indepe	nden	t electronic ballasts	with cord	grip									
new	20	НІ	GU6.5, G8.5, GX8.5,	1 x 20	EHXc 20.329 I	188992	220-240	0.11	A2	- 15 to 60	max. 75	2-4	145	23
			GX10											
new	35	НІ	GU6.5, G8.5, GX8.5,	1 x 39	EHXc 35G.327 I	188994	220-240	0.2	A2	- 15 to 45	max. 80	2-4	195	43.5
			GX10, G12											

Electronic Ballasts for HI Lamps 35, 50 and 70 W

Shape: M3/K34

Casing: aluminium (M3),

heat-resistant polycarbonate (K34)

For ceramic discharge tube lamps (C-HI)

Power factor: ≥ 0.95

Ignition voltage: max. 5 kV

Operation frequency: 173 Hz

Push-in terminals with push-button: 0.75 - 2.5 mm²

Total harmonic distortion: < 10%

Temperature protection

Constant power consumption

Protection against "no load" operation

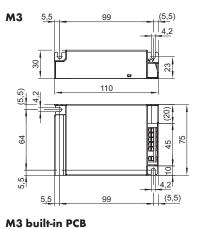
For luminaires of protection class I (metal casing)

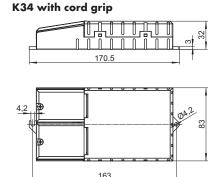
For luminaires of protection class I and II

(plastic casing)

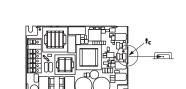
Degree of protection: IP20

Permissible load capacity: 20-120 pF


RFI-suppressed


Fixing brackets for screws M4

for base mounting


No flickering of defective lamps

t_c point definition

_amp				Electronic balla	ıst							System
Output	Туре	Base	Power con-	Туре	Ref. No.	Voltage AC	Mains	Energy	Ambient	Casing	Weight	Output
			sumption			50, 60 Hz	current	efficiency	temperature	temperature		
\vee			W			V ±10%	A		ta (°C)	tc (°C)	Weight Q	W
Electro	nic b	uilt-in ballast (with cap)										
35	HI	GU6.5, G8.5, GU8.5,	1 x 39	EHXc 35.325	183033	220 - 240	0.20-0.18	A2	-20 to 65	max. 80	220	43
		GX8.5, G12, E27										
50	HI	G8.5, G12	1 x 50	EHXc 50.358	183028*	220 - 240	0.26-0.24	A2	-20 to 60	max. 80	220	55
70	HI	G8.5, GU8.5, GX8.5, G12,	1 x 73	EHXc 70.326	183036	220 - 240	0.36-0.34	A2	-20 to 55	max. 80	220	80
		PG12-2, E27, RX7s										
Built-in	PCB	– Electronic built-in ballo	ısts (without	cap)								
35	HI	GU6.5, G8.5, GU8.5,	1 x 39	EHXc 35.325	183034	220 - 240	0.20-0.18	A2	-20 to 65	max. 80	180	43
		GX8.5, G12, E27										
50	HI	G8.5, G12	1 x 50	EHXc 50.358	183030*	220 - 240	0.26-0.24	A2	-20 to 60	max. 80	180	55
70	HI	G8.5, GU8.5, GX8.5, G12,	1 x 73	EHXc 70.326	183037	220 - 240	0.36-0.34	A2	-20 to 55	max. 80	180	80
		PG12-2, E27, RX7s										
Indepe	ender	nt electronic ballasts with	n cord grip									
35	HI	GU6.5, G8.5, GU8.5,	1 x 39	EHXc 35.325	183035	220 - 240	0.20-0.18	A2	-20 to 65	max. 75	260	43
		GX8.5, G12, E27										
50	HI	G8.5, G12	1 x 50	EHXc 50.358	183029*	220-240	0.26-0.24	A2	-20 to 60	max. 70	260	55
70	HI	G8.5, GU8.5, GX8.5, G12,	1 x 73	EHXc 70.326	183038	220 - 240	0.36-0.34	A2	-20 to 55	max. 75	260	80
	W Electro 335 50 70 Sindependent 550 550 550 550 550 550 550 550 550 55	W	Guestian Guestian	Sumption W Sumption W State State	Sumption W Sumption W Sumption W State State	Sumption W Sumption W Sumption W State State	Sumption W Sumption W Sumption W W W W W W W W W	Sumption W Sumption W Sumption W Sumption W W Sumption W W Sumption W W W W W W W W W	Sumption W Sumption Sumption W Sumption W W Sumption W W W W W W W W W	Sumption Sumption	Sumption W W W W W W W W W	Sumption Sumption W W W W W W W W W

^{*} In development

Electronic Ballasts for HI Lamps 35 and 70 W

Shape: M3 EffectLine

Casing: heat-resistant polycarbonate For ceramic discharge tube lamps (C-HI)

Power factor: ≥ 0.95 Ignition voltage: max. 5 kV Operation frequency: 173 Hz

Push-in terminals with push-button: $0.5-1.5~\text{mm}^2$

Total harmonic distortion: < 10%

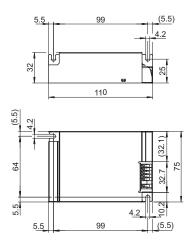
Temperature protection

Constant power consumption

Protection against "no load" operation

For luminaires of protection class I and II

Degree of protection: IP20 Permissible load capacity: 20-120 pF


RFI-suppressed

Life-time at $t_{\text{C max}}$. = 30,000 hrs Fixing brackets for screws M4

for base mounting

M3 EffectLine

	Lamp				Electronic ballast									
	Output	Туре	Base	Power con-	Туре	Ref. No.	Voltage AC	Mains	Energy	Ambient	Casing	Weight	Output	
				sumption			50, 60 Hz	current	efficiency	temperature	temperature			
	W			W			V ±10%	А		ta (°C)	t _c (°C)	g	W	
new	35	HI	GU6.5, G8.5, GU8.5,	1 x 39	EHXe 35.356	183026*	220-240	0.20-0.18	A2	- 15 to 65	max. 80	220	43	
			GX8.5, G12, E27											
new	70	HI	G8.5, GU8.5, GX8.5,	1 x 73	EHXe 70.357	183027*	220-240	0.36-0.34	A2	- 15 to 50	max. 80	220	80	
			G12, PG12-2, E27, RX7s											

^{*} In development

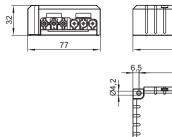
Independent **Electronic Ballasts** for HI Lamps 35, 50 and 70 W

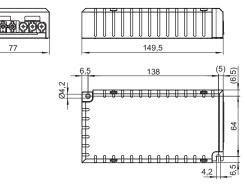
Shape: K36

Casing: heat-resistant polycarbonate Easy connection by plug-in connector primary: GST18 1-coded/black with locking secondary: ST18 0-coded For ceramic discharge tube lamps (C-HI) Power factor: 0.95 Ignition voltage: max. 5 kV Operation frequency: 173 Hz Total harmonic distortion: < 10% Temperature protection Constant power consumption Protection against "no load" operation For luminaires of protection class I and II Degree of protection: IP20 Permissible load capacity: 20-120 pF RFI-suppressed Fixing brackets for screws M4 for base mounting

Additional technical features

The electronic ballast is protected against transient mains peaks up to 2.5 kV.




Overheating protection with VS thermal cut-out system with automatic reset which evaluates the temperature of the ballast.

At lamp operation voltage of > 120 V the electronic ballast will switch itself off.

K36

Lamp				Electronic ballast								
Output	Туре	Base	Power con-	Туре	Ref. No.	Voltage AC	Mains	Energy	Ambient	Casing	Weight	Output
			sumption			50, 60 Hz	current	efficiency	temperature	temperature		
W			W			V ±10%	A		ta (°C)	t _c (°C)	g	W
35	НІ	GU6.5, G8.5, GU8.5,	1 x 39	EHXc 35.339	188919	220-240	0.20-0.18	A2	-20 to 55	max. 75	250	43
		GX8.5, G12, E27										
50	НІ	G8.5, G12	1 x 50	EHXc 50.359	183031*	220-240	0.26-0.24	A2	-20 to 55	max. 75	250	55
70	НІ	G8.5, GU8.5, GX8.5,	1 x 73	EHXc 70.340	188920	220-240	0.36-0.34	A2	-20 to 50	max. 75	250	80
		G12, PG12-2, E27, RX7s										

Circuit diagrams see page 190

new

^{*} In development

Electronic Ballasts for HI Lamps 2×35 and 2×70 W

Shape: K32

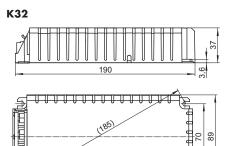
Casing: heat-resistant polycarbonate For ceramic discharge tube lamps (C-HI)

Power factor: 0.98 Ignition voltage: max. 5 kV Operation frequency: 176 Hz

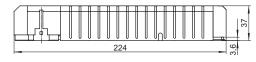
Push-in terminals with push-button: $0.75-2.5 \text{ mm}^2$

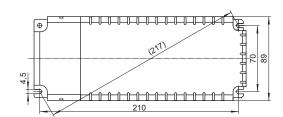
Total harmonic distortion: < 10%

Temperature protection: a lamp is switched off


in the event of overheating Constant power consumption Protection against "no load" operation For luminaires of protection class I and II Degree of protection: IP20 Permissible load capacity: 20-100 pF RFI-suppressed

Fixing brackets for screws M4


for base mounting


Separate ignition channels enable independent lamp operation

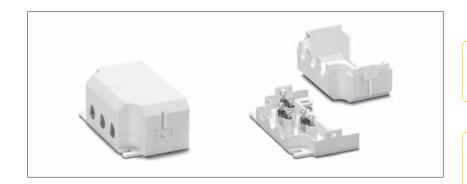
K32 with cord grip

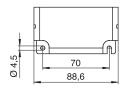
Lamp				Electronic ballast									
Output	Туре	Base	Power con-	Туре	Ref. No.	Voltage AC	Mains	Energy-	Ambient	Casing	Weight	Output	
			sumption			50, 60 Hz	current	efficiency	temperature	temperature			
W			W			V - 10%+6%	A		ta (°C)	t _c (°C)	g	W	
Electro	onic b	uilt-in ballasts											
2x35	НІ	GU6.5, G8.5, GU8.5, GX8.5,	2 x 39	EHXc 235.316	188223	220-240	0.4-0.36	A2	-25 to 50	max. 80	405	86	
		G12, E27											
2x70	НІ	G8.5, GU8.5, GX8.5, G12,	2 x 73	EHXc 270.317	188224	220-240	0.74-0.68	A2	-25 to 45	max. 80	440	160	
		PG12-2, E27, RX7s											
Indep	ende	nt electronic ballasts with c	ord grip										
2x35	НІ	GU6.5, G8.5, GU8.5, GX8.5,	2 x 39	EHXc 235.316	188455	220-240	0.4-0.36	A2	-25 to 50	max. 80	455	86	
		G12, E27											
2x70	НІ	G8.5, GU8.5, GX8.5, G12,	2 x 73	EHXc 270.317	188456	220-240	0.74-0.68	A2	-25 to 45	max. 80	490	160	
		PG12-2, E27, RX7s											

Cord Grip for Electronic Built-in Ballasts

For shape K31 and K32

By using the cord grip electronic built-in ballasts for metal halide lamps become independent ballasts.


Material: heat-resistant polycarbonate
For use with electronic built-in ballasts
with casing K31 and K32
For mains leads:
H03VV-F 3X0.75 or NYM 3X1.5 mm²
For lamp leads: SIHY-Cu 3X1 mm²


or SIHSI-Cu 3X1 mm²

Weight: 50 g Unit: 20 pcs.

By turning the cable clamp by 180° the lead diameter can be reduced to 5 mm.

Ref. No.: 188080

4

5

6

7

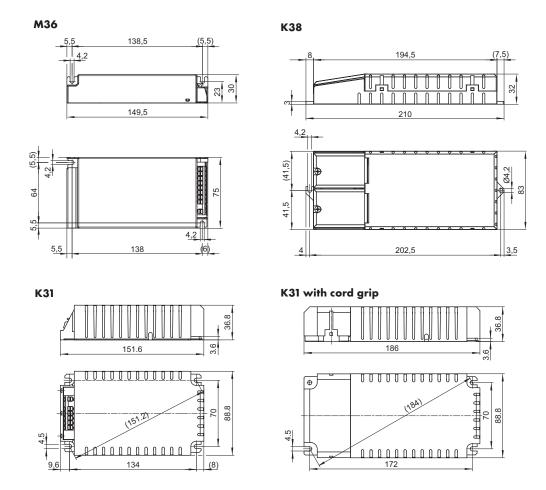
8

9

Electronic Ballasts for HI Lamps 100 and 150 W

Shape: M36/K31/K38

Casing: aluminium (M36), heat-resistant polycarbonate (K31, K38) For ceramic discharge tube lamps (C-HI)


Power factor: 0.98 Ignition voltage: max. 5 kV Operation frequency: 170 Hz

Push-in terminals with push-button: $0.75-2.5~\text{mm}^2$

Total harmonic distortion: < 10%
Temperature protection
Constant power consumption
Protection against "no load" operation
For luminaires of protection class I and II
Degree of protection: IP20
Permissible load capacity: 20-240 pF
RFI-suppressed
Fixing brackets for screws M4
for base mounting

Electronic Ballasts for HI Lamps 100 and 150 W

Shape: M36 and K31, K38

	Lamp				Electronic ballast									System
	Output	Туре	Base	Power con-	Туре	Ref. No.	Voltage AC	Mains	Energy	Ambient	Casing	Casing	Weight	Output
				sumption			50, 60 Hz	current	efficiency	temperature	temperature			
	W			W			V ±10%	A		ta (°C)	tc (°C)		9	W
	Electro	nic b	uilt-in ballasts											
new	100	HI	G12, E40	1 x 100	EHXc 100.353	183000*	220-240	0.49-0.45	A2	-20 to 50	max. 75	M36	306	108
	150	НІ	G12, PGX12-2,	1 x 147	EHXc 150G.334	183046	220-240	0.73-0.67	A2	-20 to 45	max. 85	K31	540	160
			E27, E40, RX7s											
	Indepe	nder	nt electronic ball	asts with c	ord grip									
new	100	НІ	G12, E40	1 x 100	EHXc 100.353	183001*	220-240	0.49-0.45	A2	-20 to 45	max. 75	K38	350	108
	150	НІ	G12, PGX12-2,	1 x 147	EHXc 150G.334	183047	220-240	0.73-0.67	A2	-20 to 45	max. 85	K31	582	160
			E27, E40, RX7s											

Circuit diagrams see page 190

i

2

3

4

5

6

7

8

9

^{*} In development

Dimmable Electronic Built-in Ballasts for HI and HS Lamps 50–250 W

Shape: K40/K41 and M42

For dimmable metal halide lamps and dimmable high pressure sodium lamps Casing: aluminium (M42), heat-resistant polycarbonate (K40/K41)

Dimming range: acc. to lamp specification

Communication protocols: DALI or MidNight
For use with open- or closed-loop control units
Suitable MidNight Controller 186240 (for installation in the distribution board) or 186241 (as a mobile controller) is available on request.

Power factor: > 0.98 Ignition voltage: max. 4.5 kV Operation frequency: 81 Hz

Push-in terminals with push-button: 0,75-2,5 mm²

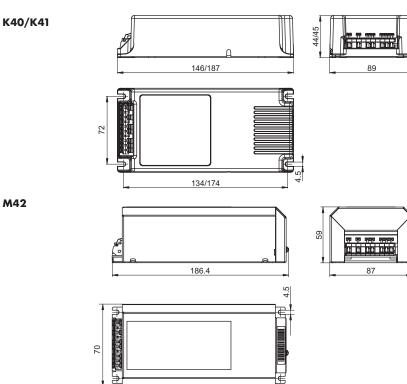
Total harmonic distortion: < 6%

Temperature protection

Constant power consumption

Protection against "no load" operation

For luminaires of protection class I and II


Degree of protection: IP20

Permissible load capacity: 250 pF

RFI-suppressed

Fixing brackets for screws M4 for base mounting Compatible with IEC 62386 (DALI version)

173

	Lamp				Electronic ballast									System
	Output	Туре	Base**	Power con-	Туре	Ref. No.	Voltage AC	Mains	Energy-	Ambient	Casing	Casing	Weight	Output
				sumption			50, 60 Hz	current	efficiency	temperature	temperature			
	W			W			V ±10%	А		ta (°C)	tc (°C)		g	W
	DALI -	- Casin	g K40, K41 and M42											
new	50	HI/HS	G8.5, G12, E27	1 x 50	EHXd 50.360	183048*	220-240	0.26-0.23	A2	-25 to 65	max. 80	K40	380	56
new	70	HI/HS	G8.5, GU8.5, GX8.5,	1 x 70	EHXd 70.361	183049*	220-240	0.35-0.32	A2	-25 to 60	max. 80	K40	380	79
			G12, PG12-2, E27, RX7s											
new	100	HI/HS	G12, E40	1 x 100	EHXd 100.362	183050*	220-240	0.50-0.46	A2	-25 to 60	max. 75	K41	520	107
new	150	HI/HS	G12, G22, PGX12-2,	1 x 150	EHXd 150.363	183051*	220-240	0.75-0.69	A2	-25 to 50	max. 75	K41	520	161
			Fc2, E27, E40, RX7s											
new	250	HI/HS	Fc2, E40, RX7s	1 x 250	EHXd 250.364	183052*	220-240	1.22-1.12	A2	-25 to 45	max. 65	M42	930	267
	MidN	ight – C	Casing K40, K41 and A	۸42										
new	50	HI/HS	G8.5, G12, E27	1 x 50	EHXd 50.365 M	183053*	220-240	0.26-0.23	A2	-25 to 65	max. 80	K40	380	56
new	70	HI/HS	G8.5, GU8.5, GX8.5,	1 x 70	EHXd 70.366 M	183054*	220-240	0.35-0.32	A2	-25 to 60	max. 80	K40	380	79
			G12, PG12-2, E27, RX7s											
new	100	HI/HS	G12, E40	1 x 100	EHXd 100.367 M	183055*	220-240	0.50-0.46	A2	-25 to 60	max. 75	K41	520	107
new	150	HI/HS	G12, G22, PGX12-2,	1 x 150	EHXd 150.368 M	183056*	220-240	0.75-0.69	A2	-25 to 50	max. 75	K41	520	161
			Fc2, E27, E40, RX7s											
new	250	HI/HS	Fc2, E40, RX7s	1 x 250	EHXd 250.369 M	183057*	220-240	1.22-1.12	A2	-25 to 45	max. 65	M42	930	267

Circuit diagrams see page 190

^{*} In development | ** Please ensure that lamps are only dimmed if specified as "dimmable" by the manufacturer.

Independent Dimmable Electronic Ballasts IP65 for HI and HS Lamps 50–250 W

Shape: M43/M44 and M45

For dimmable metal halide lamps and dimmable high pressure sodium lamps
Casing: aluminium

Dimming range: acc. to lamp specification

Communication protocols: DALI or MidNight
For use with open- or closed-loop control units
Suitable MidNight Controller 186240 (for installation in the distribution board) or 186241 (as a mobile controller) is available on request.

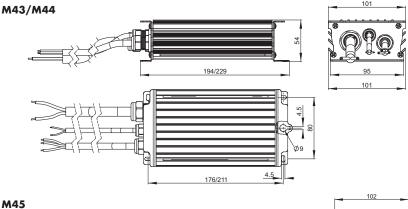
Power factor: > 0.98, Ignition voltage: max. 4.5 kV Operation frequency: 81 Hz

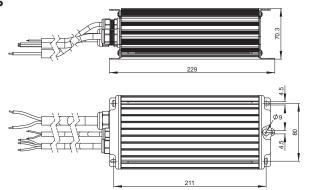
Leads: Mains: H05VV-F 3X1.5 mm²
DALI: YSLY-OZ 2X0.75 mm²
Lamp: X-SIHF 2X1.5 mm²
Lead lengths: 60 cm

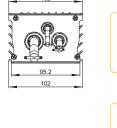
Total harmonic distortion: < 6%

Temperature protection

Constant power consumption
Protection against "no load" operation


For luminaires of protection class I and II


Degree of protection: IP65


Permissible load capacity: 250 pF

RFI-suppressed, Fixing brackets for screws M4 for base mounting, Compatible with IEC 62386 (DALI version)

														1 / 1
	Output	Туре	Base**	Power con-	Туре	Ref. No.	Voltage AC	Mains	Energy-	Ambient	Casing	Casing	Weight	Output
				sumption			50, 60 Hz	current	efficiency	temperature	temperature			
	W			W			V ±10%	A		ta (°C)	tc (°C)		g	W
	DALI -	- Casin	ng M43, M44 and M45											
new	50	HI/HS	G8.5, G12, E27	1 x 50	EHXd 50.360	183060*	220-240	0.26-0.23	A2	-25 to 65	max. 80	M43	1000	56
new	70	HI/HS	G8.5, GU8.5, GX8.5,	1 x 70	EHXd 70.361	183061*	220-240	0.35-0.32	A2	-25 to 60	max. 80	M43	1000	79
			G12, PG12-2, E27, RX7s											
new	100	HI/HS	G12, E40	1 x 100	EHXd 100.362	183062*	220-240	0.50-0.46	A2	-25 to 60	max. 75	M44	1200	107
new	150	HI/HS	G12, G22, PGX12-2,	1 x 150	EHXd 150.363	183063*	220-240	0.75-0.69	A2	-25 to 50	max. 75	M44	1200	161
			Fc2, E27, E40, RX7s											
new	250	HI/HS	Fc2, E40, RX7s	1 x 250	EHXd 250.364	183064*	220-240	1.22-1.12	A2	-25 to 50	max. 65	M45	1500	267
	MidNi	ight –	Casing M43, M44 and	M45										
new	50	HI/HS	G8.5, G12	1 x 50	EHXd 50.365 M	183065*	220-240	0.26-0.23	A2	-25 to 65	max. 80	M43	1000	56
new	70	HI/HS	G8.5, GU8.5, GX8.5,	1 x 70	EHXd 70.366 M	183066*	220-240	0.35-0.32	A2	-25 to 60	max. 80	M43	1000	79
			G12, PG12-2, E27, RX7s											
new	100	HI/HS	G8.5, G12, E27	1 x 100	EHXd 100.367 M	183067*	220-240	0.50-0.46	A2	-25 to 60	max. 75	M44	1200	107
new	150	HI/HS	G12, G22, PGX12-2,	1 x 150	EHXd 150.368 M	183068*	220-240	0.75-0.69	A2	-25 to 50	max. 75	M44	1200	161
			Fc2, E27, E40, RX7s											
new	250	HI/HS	Fc2, E40, RX7s	1 x 250	EHXd 250.369 M	183069*	220-240	1.22-1.12	A2	-25 to 50	max. 65	M45	1500	267

Circuit diagrams see page 190

VSSLOH SCHWABE 2

3

4

5

6

7

8

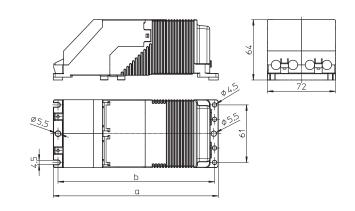
9

^{*} In development | ** Please ensure that lamps are only dimmed if specified as "dimmable" by the manufacturer.

Control Gear Units for HS and HI Lamps 35 to 150 W

Compact plastic casing Shape: 64 x 72 mm

For high pressure sodium lamps (HS), metal halide lamps (HI) and ceramic discharge lamps (C-HI) Compact control gear unit with ballast with patented, intelligent thermal cut-out with automatic reset (which evaluates the temperature and current of the ballast), digital timer ignitor with IPP++ technology and compensation capacitor with thermal fuse


As individual components no longer need to be wired, there is a significant reduction in assembly time and costs.

Protection class II

Degree of protection: IP40
Permissible load capacity: 20–1000 pF
Lead length to the lamp: max. 10 m
tw 130

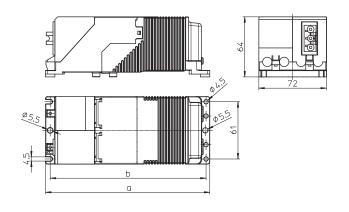
Push-in terminals: 0.5–2.5 mm²
Cord grips for mains and lamp leads
Further outputs and voltages on request

Lamp			Control gear unit									
Output	Туре	Current	Туре	Ref. No.	Voltage AC	Mains current	а	b	Weight	ta	Power factor	Energy efficiency*
W		А			V, Hz	А	mm	mm	kg	°C	λ	
230 V,	50 Hz											
35	HS, HI	0.53	VNaHJ 35PZTG.568	536199	230, 50	0.210	175	166	1.32	55	0.92	EEI=A3
70	HS, HI	0.98	VNaHJ 70PZTG.566	535657	230, 50	0.380	175	166	1.32	45	0.91	EEI=A3
100	HS, HI	1.20	VNaHJ 100PZTG.571	536200	230, 50	0.560	214	205	1.85	45	0.85	EEI=A3
150	HS, HI	1.80	VNaHJ 150PZTG.567	535695	230, 50	0.720	214	205	2.25	45	0.91	EEI=A3
240 V,	50 Hz											
35	HS, HI	0.53	VNaHJ 35PZTG.568	536201	240, 50	0.210	175	166	1.32	55	0.94	EEI=A3
70	HS, HI	0.98	VNaHJ 70PZTG.566	536202	240, 50	0.370	175	166	1.32	40	0.94	EEI=A3
100	HS, HI	1.20	VNaHJ 100PZTG.571	536203	240, 50	0.560	214	205	1.85	40	0.86	EEI=A3
150	HS, HI	1.80	VNaHJ 150PZTG.567	536204	240, 50	0.730	214	205	2.25	40	0.91	EEI=A3
220 V,	60 Hz											
35	HS, HI	0.53	VNaHJ 35PZTG.574	536205	220, 60	0.220	175	166	1.32	60	0.98	EEI=A3
70	HS, HI	0.98	VNaHJ 70PZTG.575	536207	220, 60	0.370	175	166	1.32	50	0.97	EEI=A3
150	HS, HI	1.80	VNaHJ 150PZTG.576	536209	220, 60	0.800	214	205	2.25	45	0.98	EEI=A3

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

Control Gear Units for HS and HI Lamps 35 to 150 W

Compact plastic casing with integrated GST18 connector (red) Shape: 64 x 72 mm


For high pressure sodium lamps (HS), metal halide lamps (HI) and ceramic discharge lamps (C-HI) Compact control gear unit with ballast with patented, intelligent thermal cut-out with automatic reset (which evaluates the temperature and current of the ballast), digital timer ignitor with IPP++ technology and compensation capacitor With integrated GST18 connector As individual components no longer need to be wired, there is a significant reduction in assembly time and costs.

Protection class II

Degree of protection: IP40

Permissible load capacity: 20-1000 pF Lead length to the lamp: max. 10 m tw 130 Push-in terminals: 0.5 - 2.5 mm² Cord grip for mains lead Further outputs and voltages on request

			1									
Lamp			Control gear unit									
Output	Туре	Current	Туре	Ref. No.	Voltage AC	Mains current	а	b	Weight	ta	Power factor	Energy efficiency*
W		А			V, Hz	A	mm	mm	kg	°C	λ	
230 V,	50 Hz											
35	HS, HI	0.53	VNaHJ 35PZTG.568	536210	230, 50	0.210	175	166	1.32	55	0.92	EEI=A3
70	HS, HI	0.98	VNaHJ 70PZTG.566	536211	230, 50	0.380	175	166	1.32	45	0.91	EEI=A3
150	HS, HI	1.80	VNaHJ 150PZTG.567	536213	230, 50	0.720	214	205	2.25	45	0.91	EEI=A3
240 V,	50 Hz											
35	HS, HI	0.53	VNaHJ 35PZTG.568	536214	240, 50	0.210	175	166	1.32	55	0.94	EEI=A3
70	HS, HI	0.98	VNaHJ 70PZTG.566	536215	240, 50	0.370	175	166	1.32	40	0.94	EEI=A3
150	HS, HI	1.80	VNaHJ 150PZTG.567	536216	240, 50	0.730	214	205	2.25	40	0.91	EEI=A3
220 V,	60 Hz											
35	HS, HI	0.53	VNaHJ 35PZTG.574	536217	220, 60	0.220	175	166	1.32	60	0.98	EEI=A3
70	HS, HI	0.98	VNaHJ 70PZTG.575	536218	220, 60	0.370	175	166	1.32	50	0.97	EEI=A3
150	HS, HI	1.80	VNaHJ 150PZTG.576	536219	220, 60	0.800	214	205	2.25	45	0.98	EEI=A3

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

1

2

3

4

5

5

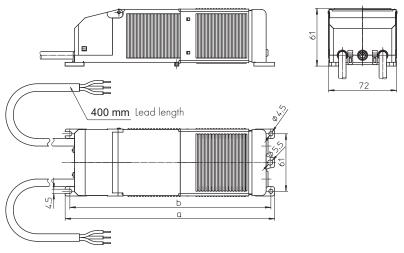
7

8

9

Control Gear Units IP65 for HS and HI Lamps 35 to 150 W

Encapsulated unit in compact plastic casing Shape: 61 x 72 mm


For high pressure sodium lamps (HS), metal halide lamps (HI) and ceramic discharge lamps (C-HI) Compact control gear unit with ballast with patented, intelligent thermal cut-out with automatic reset (which evaluates the temperature and current of the ballast), digital timer ignitor with IPP++ technology and compensation capacitor with thermal fuse

As individual components no longer need to be wired, there is a significant reduction in assembly time and costs.

Protection class II

Degree of protection: IP65
Permissible load capacity: 20–1000 pF
Lead length to the lamp: max. 10 m
tw 130

Lamp			Control gear unit									
Output	Туре	Current	Туре	Ref. No.	Voltage	Mains current	а	Ь	Weight	ta	Power factor	Energy efficiency*
W		А			V, Hz	А	mm	mm	kg	°C	λ	
230 V,	50 Hz											
35	HS, HI	0.53	VNaHJ 35PZTG.050	533391	230, 50	0.240	222	214	1.95	60	0.96	EEI=A3
50	HS	0.76	VNaH 50PZTG.058	543733	230, 50	0.290	222	214	1.95	60	0.94	EEI=A3
<i>7</i> 0	HS, HI	0.98	VNaHJ 70PZTG.051	533392	230, 50	0.370	222	214	1.95	50	0.97	EEI=A3
100	HS, HI	1.20	VNaHJ 100PZTG.078	533393	230, 50	0.560	249	240	2.25	55	0.90	EEI=A3
150	HS, HI	1.80	VNaHJ 150PZTG.052	533394	230, 50	0.740	249	240	2.75	50	0.94	EEI=A3
240 V,	50 Hz											
35	HS, HI	0.53	VNaHJ 35PZTG.053	534107	240, 50	0.240	222	214	1.95	60	0.96	EEI=A3
70	HS, HI	0.98	VNaHJ 70PZTG.054	534109	240, 50	0.370	222	214	1.95	50	0.97	EEI=A3
150	HS, HI	1.80	VNaHJ 150PZTG.055	534115	240, 50	0.730	249	240	2.75	50	0.95	EEI=A3
220 V,	60 Hz											
35	HS, HI	0.53	VNaHJ 35PZTG.041	534122	220, 60	0.220	222	214	1.95	70	0.98	EEI=A3
70	HS, HI	0.98	VNaHJ 70PZTG.067	534111	220, 60	0.370	222	214	1.95	50	0.97	EEI=A3
150	HS, HI	1.80	VNaHJ 150PZTG.068	534117	220, 60	0.800	249	240	2.25	45	0.98	EEI=A3

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

Control Gear Units for HS and HI Lamps 250 and 400 W

Shape: 76 x 91 mm

For high pressure sodium lamps (HS), metal halide lamps (HI) and ceramic discharge lamps (C-HI) Fully wired slim, weather-proof control gear unit with ballast with thermal cut-out with automatic reset, capacitor, timer ignitor and connection terminal Suitable for installation in or on pylons Frontal cable feed using a PG thread fitting Front access to terminals Screw-fixed end cap Screw terminals: 0.75-2.5 mm² For luminaires of protection class I Degree of protection: IP54 Permissible load capacity: 20-1000 pF Distance to the lamp: max. 10 m tw 130

With connection for protective earth conductor

10 L1 Ø 112

Lamp				Control gear unit							
Output	Туре	Current	Mains current	Туре	Ref. No.	Voltage AC	L	L1	Weight	Power factor	Energy efficiency*
W		A	А			V, Hz	mm	mm	kg	λ	
250	HS, HI	3.0	1.3	VNaHJ 250PZT.745	531476	230, 50	322	302	4.30	> 0.94	A2
400	HS, HI	4.45	2.0	VNaHJ 400PZT.743	531475	230, 50	357	337	5.62	> 0.91	A2

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

2

3

4

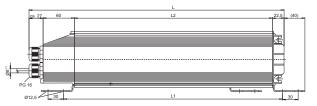
5

6

7

8

9


Ballast Units for HS and HI Lamps 600 to 2000 W

Shape: 114×116 mm

For high-pressure sodium vapour lamps (HS) and metal halide lamps (HI)
Slim, weather-proof ballast unit fully wired with ballast, capacitor and connection terminal
Suitable for installation in or on pylons
With connection for protective earth conductor
Frontal cable feed using a PG thread fitting
Front access to terminals or fuses
Optional additional third PG connection for mains feed-through wiring
Screw-fixed end cap

Diverse mounting options using an assembly plate or rail Screw terminals: 0.75-10 mm² For luminaires of protection class I tw 130

Degree of protection: IP54

Lamp				Ballast unit								
Output	Туре	Current	Mains current	Туре	Ref. No.	Voltage AC	L	L1	L2	Weight	Power factor	Energy efficiency*
W		А	А			V, Hz	mm	mm	mm	kg	λ	
600	HS	6.2	3.1	VNaH 600.02	531182	230 - 240, 50	452	375	335	9.6	> 0.90	A2
1000	HS	10.3	5.0	VNaHJ 1000.61	531472	230 - 240, 50	487	410	370	11.6	> 0.90	A2
	НІ	9.5	4.9									A2
2000	HI	8.8	5.7	VJ 2000.05	531193	380 - 400, 50	570	500	460	15.2	> 0.90	A2
2000	НІ	10.3	6.0	VJD 2000.63	531474	380 - 400, 50	627	550	510	20.2	> 0.90	A2

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

Degree of protection: IP65

Fully encapsulated ballast unit with leads

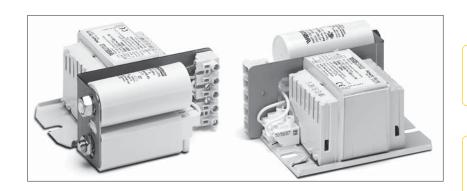
	Lamp				Ballast unit								
	Output	Туре	Current	Mains current	Туре	Ref. No.	Voltage AC	L	L1	L2	Weight	Power factor	Energy efficiency*
	W		А	А			V, Hz	mm	mm	mm	kg	λ	
7	1000	HS	10.3	5.0	VNaHJ 1000.61	531480	220, 50	487	410	370	11.6	> 0.90	A2
		HI	9.5	4.9									A2
7	2000	HI	10.3	6.0	VJD 2000.63	531481	380, 50	627	550	510	20.2	> 0.90	A2

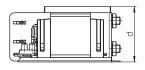
^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

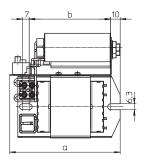
new

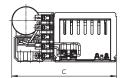
new

Compact Assembly Kits for HS and HI Lamps 35 to 150 W


Ballast shape: 53 x 66 mm


For high pressure sodium lamps (HS), metal halide lamps (HI) and ceramic discharge lamps (C-HI) Compact assembly kit with ballast with or without patented, intelligent thermal cut-out with automatic reset (which evaluates the temperature and current of the ballast), superimposed ignitor and compensation capacitor With luminaire terminal block:


screw terminal 0.75-2.5 mm² With earth terminal Permissible load capacity: 20-100 pF Lead length to the lamp: max. 1.5 m tw 130


On request:

Further outputs and voltages With digital timer ignitor For pulse ignition system

As individual components no longer need to be wired, there is a significant reduction in assembly time and costs.

Especially suitable for change of lamp technology from HM to HS.

Output	Туре	Current	Туре	Ref. No.	Voltage AC	Mains	Temperature	а	b	С	d	Weight	Power	Energy
						current	protection						factor	efficiency*
W		А			V, Hz	А		mm	mm	mm	mm	kg	λ	
230 V,	50 Hz													
35	HS, HI	0.53	PKNaHJ 35.008	546797	230, 50	0.22	yes	117	86	108	54	1.2	> 0.90	EEI=A3
50	HS	0.76	PKNaH 50PZT.992	543378	230, 50	0.30	yes	117	86	111	59	1.4	> 0.90	EEI=A3
70	HS, HI	0.98	PKNaHJ 70.128	538675	230, 50	0.37	yes	117	86	111	59	1.4	> 0.90	EEI=A3
				538685			no							EEI=A3
100	HS, HI	1.20	PKNaHJ 100.941	538676	230, 50	0.56	yes	117	86	111	59	1.6	> 0.90	EEI=A3
				538686			no							EEI=A3
150	HS, HI	1.80	PKNaHJ 150.620	538677	230, 50	0.74	yes	151	120	115	63	2.2	> 0.90	EEI=A3
				538687			no							EEI=A3
220 V,	60 Hz													
35	HS, HI	0.53	PKNaHJ 35.008	547285	220, 60	0.23	yes	117	86	108	54	1.2	> 0.90	EEI=A3
				543401			no							
70	HS, HI	0.98	PKNaHJ 70.653	547287	220, 60	0.37	yes	117	86	111	59	1.4	> 0.90	EEI=A3
				538680			no							
100	HS, HI	1.20	PKNaHJ 100.271	538681	220, 60	0.56	no	117	86	111	59	1.6	> 0.90	EEI=A3
150	HS, HI	1.80	PKNaHJ 150.679	538682	220, 60	0.74	no	151	120	115	63	2.2	> 0.90	EEI=A3
220/24	10 V, 60	Hz											•	
100	HS, HI	1.20	PKNaHJ 100.345	543295	220/240,60	0.60	no	117	86	111	60	1.6	> 0.90	EEI=A3
150	HS, HI	1.80	PKNaHJ 150.301	543299	220/240,60	0.80	no	151	120	115	63	2.2	> 0.90	EEI=A3
	230 V, 35 50 70 100 150 220 V, 35 70 100 150 220/24 100	230 V, 50 Hz 35 HS, HI 50 HS 70 HS, HI 100 HS, HI 220 V, 60 Hz 35 HS, HI 100 HS, HI 150 HS, HI 220/240 V, 60 100 HS, HI	230 V, 50 Hz 35 HS, HI 0.53 50 HS 0.76 70 HS, HI 1.20 150 HS, HI 1.80 220 V, 60 Hz 35 HS, HI 0.98 100 HS, HI 1.20 150 HS, HI 1.20	230 V, 50 Hz 35 HS, HI 0.53 PKNaHJ 35.008 50 HS 0.76 PKNaH 50PZT.992 70 HS, HI 0.98 PKNaHJ 100.941 150 HS, HI 1.20 PKNaHJ 150.620 220 V, 60 Hz 35 HS, HI 0.53 PKNaHJ 35.008 70 HS, HI 0.53 PKNaHJ 35.008 100 HS, HI 0.98 PKNaHJ 70.653 100 HS, HI 1.20 PKNaHJ 100.271 150 HS, HI 1.80 PKNaHJ 150.679 220/240 V, 60 Hz 100 HS, HI 1.20 PKNaHJ 150.679	W A 230 V, 50 Hz 35 HS, HI 0.53 PKNaHJ 35.008 546797 50 HS 0.76 PKNaH 50PZT.992 543378 70 HS, HI 0.98 PKNaHJ 70.128 538675 538685 538685 538685 100 HS, HI 1.20 PKNaHJ 100.941 538676 538686 538686 538687 538687 220 V, 60 Hz 35 HS, HI 0.53 PKNaHJ 35.008 547285 543401 70 HS, HI 0.98 PKNaHJ 70.653 547287 538680 100 HS, HI 1.20 PKNaHJ 100.271 538681 150 HS, HI 1.80 PKNaHJ 150.679 538682 220/240 V, 60 Hz 100 HS, HI 1.20 PKNaHJ 100.345 543295	W A V, Hz 230 V, 50 Hz 35 HS, HI 0.53 PKNaHJ 35.008 546797 230, 50 50 HS 0.76 PKNaH 50PZT.992 543378 230, 50 70 HS, HI 0.98 PKNaHJ 70.128 538675 230, 50 538685 538685 230, 50 538686 230, 50 150 HS, HI 1.80 PKNaHJ 150.620 538677 230, 50 538687 230, 50 538687 230, 50 538687 220 V, 60 Hz 35 HS, HI 0.53 PKNaHJ 35.008 547285 220, 60 547287 220, 60 538680 220, 60 538680 100 HS, HI 1.20 PKNaHJ 100.271 538681 220, 60 150 HS, HI 1.80 PKNaHJ 150.679 538682 220, 60 220/240 V, 60 Hz 100 HS, HI 1.20 PKNaHJ 100.345 543295 220/240, 60	W A V, Hz Current A 230 V, 50 Hz 35 HS, HI 0.53 PKNaHJ 35.008 546797 230, 50 0.22 50 HS 0.76 PKNaH 50PZT.992 543378 230, 50 0.30 70 HS, HI 0.98 PKNaHJ 70.128 538675 230, 50 0.37 538685 100 HS, HI 1.20 PKNaHJ 100.941 538676 230, 50 0.56 150 HS, HI 1.80 PKNaHJ 150.620 538677 230, 50 0.74 220 V, 60 Hz 35 HS, HI 0.53 PKNaHJ 35.008 547285 220, 60 0.23 543401 70 HS, HI 0.98 PKNaHJ 70.653 547287 220, 60 0.37 100 HS, HI 1.20 PKNaHJ 100.271 538681 220, 60 0.56 150 HS, HI 1.80 PKNaHJ 150.679 538682 220, 60 0.74 220/240 V, 60 Hz HS, HI 1.20 PKNaHJ 100.345 543295<	W A V, Hz Current A protection Protection 230 V, 50 Hz 35 Hs, HI 0.53 PKNaHJ 35.008 546797 230, 50 0.22 yes 0.76 PKNaH 50PZT.992 543378 230, 50 0.30 yes 0.30 yes 70 Hs, HI 0.98 PKNaHJ 70.128 538675 230, 50 Hs, HI 1.20 PKNaHJ 100.941 538676 538685 no 538685 no 0.37 yes no 150 Hs, HI 1.80 PKNaHJ 150.620 538677 230, 50 Hs, HI 0.53 PKNaHJ 35.008 547285 220, 60 no 538687 230, 50 0.74 yes no 0.74 yes no 70 Hs, HI 0.98 PKNaHJ 70.653 543401 70 Hs, HI 1.20 PKNaHJ 100.271 538681 220, 60 0.37 yes no 0.37 yes no 0.37 yes no 150 Hs, HI 1.80 PKNaHJ 150.679 538682 220, 60 0.74 no 0.56 no 0.74 no 150 Hs, HI 1.80 PKNaHJ 150.679 538682 220, 60 0.60 no 0.56 no 150 Hs, HI 1.80 PKNaHJ 150.679 538682 220, 60 0.74 no	W A V, Hz A prolection A mm 230 V, 50 Hz 35 HS, HI 0.53 PKNaHJ 35.008 PKNaHJ 35.008 PKNaH 50PZT.992 PKNaH 50PZT.992 PKNaHJ 70.128 PKNaHJ 100.941 PKNaHJ 100.941 PKNaHJ 100.941 PKNaHJ 100.941 PKNaHJ 150.620 PKNaHJ 150.620 PKNaHJ 150.620 PKNaHJ 150.620 PKNaHJ 150.620 PKNaHJ 150.620 PKNaHJ 70.653 PKNaHJ 70.659 PKNaHJ 100.271 PKNAHJ 100.271 PKNAHJ 100.271 PKNAHJ 150.679 PKNAHJ 150.679 PKNAHJ 150.679 PKNAHJ 150.679 PKNAHJ 150.679 PKNAHJ 150.679 PKNAHJ 100.345 PKN	No. No.	No	230 V, 50 Hz 35	230 V, 50 Hz 35	Courrent Profection Name Nam

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

2

3

4

5

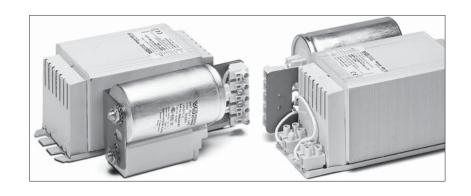
6

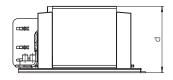
7

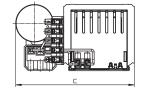
8

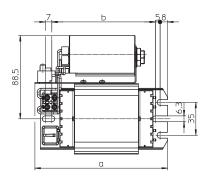
9

Compact Assembly Kits for HS and HI Lamps 250 and 400 W


Ballast shape: 71 x 75 mm


For high pressure sodium lamps (HS), metal halide lamps (HI) and ceramic discharge lamps (C-HI) Compact assembly kit with ballast with or without thermal cut-out with automatic reset, superimposed ignitor and compensation capacitor

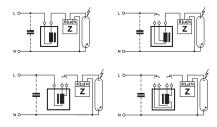

With luminaire terminal block: screw terminal 0.75-2.5 mm² With earth terminal Permissible load capacity: 20-100 pF Lead length to the lamp: max. 1.5 m tw 130


On request:

Further outputs and voltages With digital timer ignitor For pulse ignition system

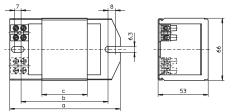
As individual components no longer need to be wired, there is a significant reduction in assembly time and costs.

Especially suitable for change of lamp technology from HM to HS.


Lamp			Assembly kit											
Output	Туре	Current	Туре	Ref. No.	Voltage AC	Mains	Temperature	а	Ь	С	d	Weight	Power	Energy
						current	protection					kg	factor	efficiency*
W		А			V, Hz	А		mm	mm	mm	mm	kg	λ	
230 V,	50 Hz											-		
250	HS, HI	3.00	PKNaHJ 250.741	538678	230, 50	1.20	yes	141	110	128	73	3.2	> 0.90	A2
				538688			no	1						A2
400	HS, HI	4.45	PKNaHJ 400.743	538679	230, 50	1.80	yes	171	140	129	73	5.2	> 0.90	A2
				538689			no	1						A2
220 V,	60 Hz		•										•	
250	HS, HI	3.00	PKNaHJ 250.742	538683	220, 60	1.20	no	141	110	126	71	3.2	> 0.90	A2
400	HS, HI	4.45	PKNaHJ 400.744	538684	220, 60	1.80	no	171	140	129	71	5.2	> 0.90	A2

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

Standard Ballasts for HS and HI **Lamps 35 to 70 W**


Shape: 53 x 66 mm

For high pressure sodium lamps (HS), metal halide lamps (HI) and ceramic discharge lamps (C-HI) Vacuum-impregnated with polyester resin Screw terminals: 0.5-2.5 mm² Protection class I tw 130 Ballasts for pulse ignition system on request

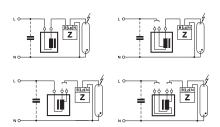
Power factor Energy

W		А			V, Hz	mm	mm	mm	kg	K	λ	efficiency*	μF	А
35	HS, HI	0.53	NaHJ 35.485	526517	220/230, 50	108	86	28	0.91	60	0.40	EEI=A3	6	0.22/0.21
35	HS, HI	0.53	NaHJ 35.485	161367	230/240, 50	108	86	28	0.91	60	0.40	EEI=A3	6	0.22/0.21
35	HS, HI	0.53	NaHJ 35.638	161371	220, 60	108	86	28	0.91	50	0.41	EEI=A3	5	0.23
50	HS	0.76	NaH 50.486	161379	230/240, 50	108	86	36	1.07	65	0.37	EEI=A3	8	0.30/0.29
50	HS	0.76	NaH 50.654	161399	220, 60	108	86	28	0.91	60	0.36	EEI=A3	8	0.31
50	HS	0.76	NaHJ 70/50.157	160613	230, 50	108	86	42	1.23	55	0.37	EEI=A3	8	0.30
70	HS, HI	0.98								70	0.37	EEI=A3	12	0.38
70	HS, HI	0.98	NaHJ 70.300	174961	220, 50	108	86	36	1.07	75	0.40	EEI=A3	12	0.40
70 70	-	0.98	NaHJ 70.300 NaHJ 70.128	174961 533568	220, 50	108	86 86	36 36	1.07		0.40	EEI=A3	12	0.40
	HS, HI		,	-	-					70				
70	HS, HI	0.98	NaHJ 70.128	533568	230, 50	108	86	36	1.07	70 75	0.36	EEI=A3	12	0.38
70 70	HS, HI HS, HI HS, HI	0.98 0.98	NaHJ 70.128 NaHJ 70.228	533568 547860	230, 50 230, 50	108	86 86	36 36	1.07	70 75 70/75	0.36 0.36	EEI=A3 EEI=A3	12 12	0.38
70 70 70	HS, HI HS, HI HS, HI HS, HI	0.98 0.98 0.98	NaHJ 70.128 NaHJ 70.228 NaHJ 70.128	533568 547860 539434	230, 50 230, 50 230/240, 50	108 108 108	86 86 86	36 36 36	1.07 1.07 1.07	70 75 70/75 70	0.36 0.36 0.36	EEI=A3 EEI=A3 EEI=A3	12 12 12	0.38 0.38 0.38/0.37
70 70 70 70	HS, HI HS, HI HS, HI HS, HI	0.98 0.98 0.98 0.98	NaHJ 70.128 NaHJ 70.228 NaHJ 70.128 NaHJ 70.158	533568 547860 539434 161662	230, 50 230, 50 230, 240, 50 240, 50	108 108 108 108	86 86 86 86	36 36 36 42	1.07 1.07 1.07 1.23	70 75 70/75 70 75	0.36 0.36 0.36 0.36	EEI=A3 EEI=A3 EEI=A3	12 12 12 12	0.38 0.38 0.38/0.37 0.37

new

Standard Ballasts for HS and HI Lamps 70 to 250 W

Shape: 53 x 66 mm


Lamp			Ballast										Capac	itor
Output	Туре	Current	Туре	Ref. No.	Voltage AC	а	b	С	Weight	Δt	Power factor	Energy	СР	IN
W		А			V, Hz	mm	mm	mm	kg	K	λ	efficiency*	μF	А
70	HS, HI	0.98	NaHJ 100/70.703	161469	230, 50	145	120	55	1.55	60	0.37	EEI=A3	12	0.38
100	HS, HI	1.20								70	0.43	EEI=A3	12	0.55
70	HS, HI	0.98	NaHJ 100/70.519	161158	230/240, 50	145	120	75	2.03	50	0.36	A2	12	0.38/0.37
100	HS, HI	1.20								60	0.42	EEI=A3	12	0.55/0.53
70	HS, HI	0.98	NaHJ 100/70.709	161471	220, 60	145	120	55	1.55	50	0.39	EEI=A3	10	0.40
100	HS, HI	1.20								60	0.44	EEI=A3	10	0.57
100	HS, HI	1.20	NaHJ 100.126	507671	220, 50	108	86	42	1.24	75	0.44	EEI=A3	12	0.55
100	HS, HI	1.20	NaHJ 100.941	161707	230/240, 50	108	86	42	1.24	75/80	0.42	EEI=A3	12	0.55/0.53
100	HS, HI	1.20	NaHJ 100.271	530195	220, 60	108	86	42	1.24	75	0.45	EEI=A3	10	0.57
100	HS, HI	1.20	NaHJ 150/100.973	169591	230, 50	145	120	75	2.03	55	0.41	A2	12	0.55
150	HS, HI	1.80								<i>7</i> 5	0.41	EEI=A3	20	0.77
150	HS, HI	1.80	NaHJ 150.159	533602	220, 50	145	120	64	1.80	75	0.41	EEI=A3	20	0.80
150	HS, HI	1.80	NaHJ 150.620	533565	230, 50	145	120	64	1.80	70	0.40	EEI=A3	20	0.77
150	HS, HI	1.80	NaHJ 150.620	534540	240, 50	145	120	64	1.80	75	0.40	EEI=A3	20	0.74
150	HS, HI	1.80	NaHJ 150.679	526196	220, 60	145	120	55	1.55	75	0.44	EEI=A3	16	0.80
150	HS, HI	1.80	NaHJ 150.679	537793	220, 60	117	92	55	1.55	75	0.44	EEI=A3	16	0.80
250	HS, HI	3.00	NaHJ 250.204	529087	220, 50	160	135	95	2.50	80	0.42	EEI=A3	32	1.32
250	HS, HI	3.00	NaHJ 250.160	160597	220, 50	180	155	110	2.84	75	0.41	EEI=A3	32	1.32
250	HS, HI	3.00	NaHJ 250.915	161686	230, 50	180	155	110	2.84	80	0.40	EEI=A3	32	1.26
250	HS, HI	3.00	NaHJ 250.340	504109	230/240, 50	180	155	110	2.84	80	0.39	EEI=A3	32	1.26/1.21
250	HS, HI	3.00	NaHJ 250.340	178177	240, 50	180	155	110	2.84	80	0.39	EEI=A3	32	1.21
250	HS, HI	3.00	NaHJ 250.163	529072	220, 60	160	135	95	2.50	70	0.42	A2	25	1.35
250	HS, HI	3.00	NaHJ 250.163	160604	220, 60	180	155	95	2.50	70	0.42	A2	25	1.35

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

Ballasts with Thermal Cut-out for HS and HI Lamps 35 to 150 W

Shape: 53 x 66 mm

For high pressure sodium lamps (HS), metal halide lamps (HI) and ceramic discharge lamps (C-HI)
Vacuum-impregnated with polyester resin
With VS-patented, intelligent temperature switch with automatic reset (evaluates the temperature and current of the ballast)
Protection class I
tw 130
Ballasts for pulse ignition system on request

Push-in terminals: 0.5-1.5 mm²

7

8

C

b

a

Screw terminals: 0.5 - 2.5 mm²

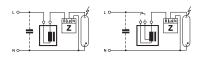
Lamp			Ballast											Сар	acitor
Output	Туре	Current	Туре	Ref. No.	Voltage AC	Drawing	а	b	С	Weight	Δt	Power factor	Energy	C _P	IN
W		А			V, Hz		mm	mm	mm	kg	K	λ	efficiency*	μF	A
Push-ii	n termir	nals: 0.	5-1.5 mm²												
35	HS, HI	0.53	NaHJ 35.209	543737	230/240, 50	А	108	86	36	1.07	35	0.36	A2	6	0.22
35	HS, HI	0.53	NaHJ 35.485	506122	230/240, 50	А	108	86	28	0.91	60	0.40	EEI=A3	6	0.22/0.21
35	HS, HI	0.53	NaHJ 35.638	509170	220, 60	А	108	86	28	0.91	50	0.41	EEI=A3	5	0.23
50	HS	0.76	NaH 50.206	543738	230, 50	А	108	86	48	1.39	45	0.35	A2	8	0.30
50	HS	0.76	NaHJ 70/50.1 <i>57</i>	507341	230, 50	А	108	86	42	1.23	55	0.37	EEI=A3	8	0.30
70	HS, HI	0.98									70	0.37	EEI=A3	12	0.38
50	HS	0.76	NaHJ 70/50.520	538361	230, 50	А	117	92	55	1.55	45	0.36	EEI=A3	8	0.30
70	HS, HI	0.98									55	0.36	EEI=A3	12	0.38
70	- '	0.98	NaHJ 70.128	535191	230, 50	А	108	86	36	1.07	70	0.36	EEI=A3	12	0.38
70	HS, HI	0.98	NaHJ 70.226	543741	230, 50	А	108	86	48	1.39	50	0.37	A2	12	0.38
70	HS, HI	0.98	NaHJ 70.128	533572	230/240, 50	А	108	86	36	1.07	70/75	0.36	EEI=A3	12	0.38/0.37
70	HS, HI		NaHJ 70.653	509169	220, 60	А	108	86	36	1.07	60	0.42	EEI=A3	10	0.40
70	HS, HI	0.98	NaHJ 100/70.703	507342	230, 50	А	145	120	55	1.55	60	0.37	EEI=A3	12	0.38
100	HS, HI										70	0.43	EEI=A3	12	0.55
100	HS, HI	1.20	NaHJ 100.213	543739	230, 50	А	117	92	55	1.55	55	0.41	A2	12	0.55
100	HS, HI	1.20	NaHJ 100.670	506120	230/240, 50		117	92	55	1.55	70	0.42	EEI=A3	12	0.55/0.53
100	HS, HI	1.20	NaHJ 100.941	539492	230/240, 50	А	108	86	42	1.23	75/80	0.42	EEI=A3	12	0.55/0.53
100	HS, HI	1.20	NaHJ 150/100.973	507343	230, 50	А	145	120	75	2.02	55	0.41	A2	12	0.55
150	HS, HI	1.80									<i>75</i>	0.41	EEI=A3	20	0.57
150	HS, HI	1.80	NaHJ 150.620	535216	230, 50	А	145	120	64	1.80	70	0.40	EEI=A3	20	0.77
150	HS, HI	1.80	NaHJ 150.620	538543	, .,	А	145	120	64	1.80	70/75	0.40	EEI=A3	20	0.77/0.74
150	HS, HI	1,80	NaHJ 150.355	509100	230/240, 50	А	145	120	75	2.02	65	0.39	EEI=A3	20	0.77/0.74
150	HS, HI	1.80	NaHJ 150.679	509171	220, 60	А	145	120	75	2.02	65	0.42	EEI=A3	16	0.80

* Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

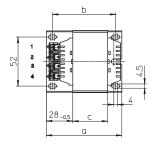
new

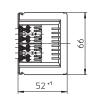
Ballasts with Thermal Cut-out for HS and HI Lamps 35 to 250 W

Shape: 53 x 66 mm


	Lamp			Ballast											Сар	acitor
	Output	Туре	Current	Туре	Ref. No.	Voltage AC	Drawing	а	b	С	Weight	Δt	Power factor	Energy	СР	IN
	W		А			V, Hz		mm	mm	mm	kg	K	λ	efficiency*	μF	А
	Screw	termin	als: 0.	5-2.5 mm²												
	35	HS, HI	0.53	NaHJ 35.485	503010	230/240, 50	В	108	86	28	0.91	60	0.40	EEI=A3	6	0.22/0.21
	35	HS	0.53	NaH 50/35.797	539515	230, 50	В	108	86	36	1.07	45	0.40	EEI=A3	6	0.22
	50	HS	0.76									70	0.37	EEI=A3	8	0.30
new	50	HS	0.76	NaH 50.486	507498	230/240, 50	В	108	86	36	1.07	65	0.37	EEI=A3	8	0.30
	50	HS	0.76	NaHJ 70/50.695	507697	230/240, 50	В	108	86	48	1.39	50	0.37	EEI=A3	8	0.30/0.29
	70	HS, HI	0.98									70	0.37	EEI=A3	12	0.38/0.37
	70	HS, HI	0.98	NaHJ 70.128	536582	230, 50	В	108	86	36	1.07	70	0.36	EEI=A3	12	0.38
	70	HS, HI	0.98	NaHJ 70.158	169722	230/240, 50	В	108	86	42	1.23	70	0.36	EEI=A3	12	0.38/0.37
	70	HS, HI	0.98	NaHJ 70.128	538830	230/240, 50	В	108	86	36	1.07	70/75	0.36	EEI=A3	12	0.38/0.37
new	70	HS, HI	0.98	NaHJ 70.158	546817	240, 50	В	108	86	42	1.23	70	0.36	EEI=A3	12	0.37
	70	HS, HI	0.98	NaHJ 100/70.703	504131	230, 50	В	117	92	55	1.55	60	0.37	EEI=A3	12	0.38
	100	HS, HI	1.20									70	0.43	EEI=A3	12	0.55
	100	HS, HI	1.20	NaHJ 100.941	543349	230, 50	В	108	86	42	1.23	75	0.42	EEI=A3	12	0.55
	100	HS, HI	1.20	NaHJ 100.941	502799	230/240, 50	В	108	86	42	1.23	75/80	0.42	EEI=A3	12	0.55/0.53
	100	HS, HI	1.20	NaHJ 150/100.973	504135	230, 50	В	145	120	75	2.02	55	0.41	A2	12	0.55
	150	HS, HI	1.80									75	0.41	EEI=A3	20	0.77
	150	HS, HI	1.80	NaHJ 150.355	539270	220, 50	В	145	120	75	2.02	65	0.39	EEI=A3	20	0.80
	150	HS, HI	1.80	NaHJ 150.620	536593	230, 50	В	145	120	64	1.80	70	0.40	EEI=A3	20	0.77
	150	HS, HI	1.80	NaHJ 150.995	169721	230/240, 50	В	145	120	75	2.02	70	0.40	EEI=A3	20	0.77/0.74
	150	HS, HI	1,80	NaHJ 150.620	538831	230/240, 50	В	145	120	64	1.80	70/75	0.40	EEI=A3	20	0.77/0.74
	150	HS, HI	1.80	NaHJ 150.620	537763	240, 50	В	130	105	64	1.80	75	0.40	EEI=A3	20	0.74
	150		1.80	NaHJ 150.679	526616	220, 60	В	145	120	75	2.02	65	0.42	EEI=A3	16	0.80
	250	HS, HI		NaHJ 250.915	505054	230, 50	В	180	155		2.84	80	0.40	EEI=A3	32	1.26
	250	HS, HI	3.00	NaHJ 250.340	542349	230/240, 50	В	180	155	110	2.84	80	0.39	EEI=A3	32	1.26
	250	HS, HI	3.00	NaHJ 250.340	508723	240, 50	В	180	155	110	2.84	80	0.39	EEI=A3	32	1.26

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017


Compact Ballasts for HS and HI Lamps 35 to 150 W


Shape: 53 x 66 mm

For high pressure sodium lamps (HS), metal halide lamps (HI) and ceramic discharge lamps (C-HI) Vacuum-impregnated with polyester resin Push-in terminals: 0.5-1 mm² IDC terminals for leads HO5V-U 0.5 Protection class I Ballasts with screw terminals on request

Lamp			Ballast											Сара	citor
Output	Туре	Current	Туре	Ref. No.	Voltage AC	а	b	С	Weight	Δt	tw	Power factor	Energy efficiency*	СР	IN
W		А			V, Hz	mm	mm	mm	kg	K	°C	λ		μF	А
35	HS, HI	0.53	NaHJ 35.485	538807	230/240, 50	80	67	29	0.91	60	130	0.40	EEI=A3	6	0.22/0.21
70	HS, HI	0.98	NaHJ 70.128	538810	230, 50	80	67	37	1.06	70	130	0.36	EEI=A3	12	0.38
70	HS, HI	0.98	NaHJ 70.128	538823	230/240, 50	80	67	37	1.06	70/75	130	0.36	EEI=A3	12	0.38/0.37
70	HS, HI	0.98	NaHJ 70.653	538828	220, 60	80	67	37	1.06	60	130	0.42	EEI=A3	10	0.40
150	HS, HI	1.80	NaHJ 150.620	538834	230, 50	107	94	65	1.80	70	130	0.40	EEI=A3	20	0.77
150	HS, HI	1.80	NaHJ 150.625	538843	240, 50	107	94	65	1.80	75	130	0.40	EEI=A3	20	0.74
150	HS, HI	1.80	NaHJ 150.679	542557	220, 60	107	94	65	1.80	<i>75</i>	130	0.44	EEI=A3	16	0.80

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

With Thermal Cut-out

Thermal cut-out with automatic reset

Lamp			Ballast											Capo	citor
Output	Туре	Current	Туре	Ref. No.	Voltage AC	а	b	С	Weight	Δt	tw	Power	Energy	СР	IN
												factor	efficiency*		
W		А			V, Hz	mm	mm	mm	kg	K	°C	λ		μF	А
35	HS, HI	0.53	NaHJ 35.485	538258	230/240, 50	80	67	29	0.91	60	130	0.40	EEI=A3	6	0.22/0.21
70	HS, HI	0.98	NaHJ 70.128	538189	230/240, 50	80	67	37	1.06	70/75	130	0.36	EEI=A3	12	0.38/0.37
70	HS, HI	0.98	NaHJ 70.128	539223	230/240, 50	80	67	37	1.06	70/75	140	0.36	EEI=A3	12	0.38/0.37
70	HS, HI	0.98	NaHJ 70.653	538537	220, 60	80	67	37	1.06	60	130	0.42	EEI=A3	10	0.40
100	HS, HI	1.20	NaHJ 100.581	539081	230/240, 50	107	94	65	1.80	60	130	0.42	EEI=A3	12	0.55/0.53
V 150	HS, HI	1.80	NaHJ 150.159	548260	220, 50	107	94	65	1.80	75	130	0.41	EEI=A3	20	0.77
150	HS, HI	1.80	NaHJ 150.620	538262	230, 50	107	94	65	1.80	70	130	0.40	EEI=A3	20	0.77
150	HS, HI	1.80	NaHJ 150.620	539306	230, 50	107	94	65	1.80	70	140	0.40	EEI=A3	20	0.77
150	HS, HI	1.80	NaHJ 150.620	538264	240, 50	107	94	65	1.80	75	130	0.40	EEI=A3	20	0.74
150	HS, HI	1.80	NaHJ 150.620	539286	240, 50	107	94	65	1.80	75	140	0.40	EEI=A3	20	0.74
150	HS, HI	1.80	NaHJ 150.679	539311	220, 60	107	94	65	1.80	75	130	0.44	EEI=A3	16	0.80

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

1

2

3

4

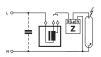
5

5

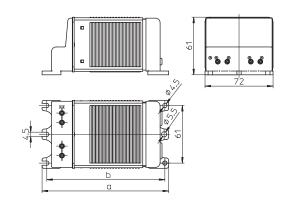
7

8

9

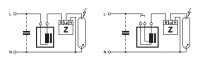

Ballasts with Thermal Cut-out for HS and HI Lamps 35 to 150 W, Protection Class II

Encapsulated ballast in compact plastic casing Shape: 61x72 mm

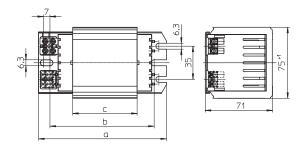

For high pressure sodium lamps (HS), metal halide lamps (HI) and ceramic discharge lamps (C-HI) With cable holder
Thermal cut-out with automatic reset
Screw terminals: 0.5-2.5 mm²

Protection class II

tw 130


Lamp			Ballast									Сарас	itor
Output	Туре	Current	Туре	Ref. No.	Voltage AC	а	Ь	Weight	Δt	Power factor	Energy efficiency*	СР	IN
W		А			V, Hz	mm	mm	kg	K	λ		μF	A
35	HS	0.53	NaHZ 50/35.797	539609	230, 50	134	125	1.60	45	0.40	EEI=A3	6	0.22
50	HS	0.76							70	0.37	EEI=A3	8	0.30
50	HS	0.76	NaHJZ 70/50.520	533395	230, 50	134	125	1.60	45	0.36	EEI=A3	8	0.30
70	HS, HI	0.98							65	0.36	EEI=A3	12	0.38
70	HS, HI	0.98	NaHJZ 100/70.519	533396	230, 50	161	152	2.10	45	0.36	EEI=A3	12	0.38
100	HS, HI	1.20							60	0.42	EEI=A3	12	0.55
100	HS, HI	1.20	NaHJZ 150/100.466	533398	230, 50	161	152	2.30	45	0.41	A2	12	0.85
150	HS, HI	1.80							70	0.39	EEI=A3	20	0.77

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017


Ballasts for HS and HI Lamps 150 to 400 W

Shape: 71 x 75 mm

For high pressure sodium lamps (HS), metal halide lamps (HI) and ceramic discharge lamps (C-HI) Vacuum-impregnated with polyester resin Screw terminals: 0.75-2.5 mm² Protection class I tw 130 Ballasts for pulse ignition system on request

Lamp			Ballast										Capaci	or
Output	Туре	Current	Туре	Ref. No.	Voltage AC	а	Ь	С	Weight	Δt	Power factor	Energy efficiency*	СР	IN
W		А			V, Hz	mm	mm	mm	kg	K	λ		μF	A
250	HS, HI	3.00	NaHJ 250.741	536147	220, 50	135	115	68	2.85	70	0.42	A2	32	1.35
250	HS, HI	3.00	NaHJ 250.741	536148	230, 50	135	115	68	2.85	75	0.40	A2	32	1.30
250	HS, HI	3.00	NaHJ 250.741	536149	240, 50	135	115	68	2.85	75	0.39	A2	32	1.25
250	HS, HI	3.00	NaHJ 250.742	536150	220, 60	135	115	68	2.85	70	0.42	A2	25	1.40
400	HS, HI	4.45	NaHJ 400.743	536142	220, 50	165	145	103	4.1	70	0.45	A2	45	2.10
400	HS, HI	4.45	NaHJ 400.743	535142	230, 50	165	145	103	4.1	75	0.44	A2	45	2.00
400	HS, HI	4.45	NaHJ 400.743	536143	240, 50	165	145	103	4.1	75	0.40	A2	45	1.85
400	HS, HI	4.45	NaHJ 400.744	536144	220, 60	165	145	103	4.1	70	0.44	A2	40	2.05

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

With Thermal Cut-out

Thermal cut-out with automatic reset

	Lamp			Ballast										Capaci	tor
	Output	Туре	Current	Туре	Ref. No.	Voltage AC	а	Ь	С	Weight	Δt	Power factor	Energy efficiency*	СР	I _N
	W		А			V, Hz	mm	mm	mm	kg	K	λ		μF	A
	150	HS, HI	1.80	NaHJ 150.216	543740	230, 50	135	115	68	2.85	45	0.40	A2	20	0.77
	250	HS, HI	3.00	NaHJ 250.741	539274	220, 50	135	115	68	2.85	70	0.42	A2	32	1.35
new	250	HS, HI	3.00	NaHJ 250.741	544210	230, 50	135	115	68	2.85	65	0.40	A2	32	1.30
	250	HS, HI	3.00	NaHJ 250.741	536151	230, 50	135	115	68	2.85	75	0.40	A2	32	1.30
	250	HS, HI	3.00	NaHJ 250.741	537726	230/240, 50	135	115	68	2.85	75	0.40	A2	32	1.30/1.25
	250	HS, HI	3.00	NaHJ 250.741	536152	240, 50	135	115	68	2.85	75	0.39	A2	32	1.25
new	400	HS, HI	4.45	NaHJ 400.743	548259	220, 50	165	145	103	4.1	70	0.44	A2	45	2.10
	400	HS, HI	4.45	NaHJ 400.743	536145	230, 50	165	145	103	4.1	75	0.44	A2	45	2.00
	400	HS, HI	4.45	NaHJ 400.743	538204	230, 50	165	145	103	4.1	65	0.41	A2	45	2.00
	400	HS, HI	4.45	NaHJ 400.743	539209	230/240, 50	165	145	103	4.1	75	0.41	A2	45	2.00/1.85
new	400	HS, HI	4.45	NaHJ 400.743	543986	240, 50	165	145	103	4.1	70	0.40	A2	45	1.85
	400	HS, HI	4.45	NaHJ 400.743	536146	240, 50	165	145	103	4.1	75	0.40	A2	45	1.85
	400	HS, HI	4.45	NaHJ 400.744	538620	220, 60	165	145	103	4.1	70	0.44	A2	40	2.05

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

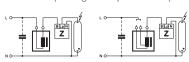
3

4

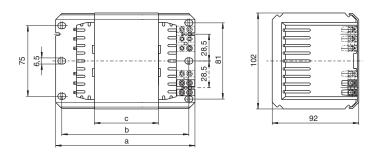
5

5

7


8

9


Ballasts for HS and HI Lamps 250 to 600 W

Shape: 92 x 102 mm

For high pressure sodium lamps (HS), metal halide lamps (HI) and ceramic discharge lamps (C-HI) Vacuum-impregnated with polyester resin Screw terminals: 0.75-2.5 mm² Protection class I tw 130 Ballasts for pulse ignition system on request

Lamp			Ballast										Сара	citor
Output	Туре	Current	Туре	Ref. No.	Voltage AC	а	Ь	С	Weight	Δt	Power factor	Energy efficiency*	C _P	I _N
W		А			V, Hz	mm	mm	mm	kg	K	λ		μF	A
250	HS, HI	3.00	NaHJ 250.003	179743	220, 50	133	120	44	3.53	70	0.41	EEI=A3	32	1.32
250	HS, HI	3.00	NaHJ 250.727	178771	230, 50	133	120	44	3.53	70	0.39	EEI=A3	32	1.26
250	HS, HI	3.00	NaHJ 250.727	500976	240, 50	133	120	44	3.53	70	0.39	EEI=A3	32	1.21
250	HS, HI	3.00	NaHJ 250.011	500401	220, 60	133	120	44	3.53	65	0.43	A2	25	1.35
400	HS, HI	4.45	NaHJ 400.006	179740	220, 50	148	135	68	5.20	70	0.44	A2	45	2.00
400	HS, HI	4.45	NaHJ 400.006	178790	230, 50	148	135	68	5.20	70	0.44	A2	45	1.95
400	HS, HI	4.45	NaHJ 400.737	500402	240, 50	148	135	68	5.20	75	0.43	A2	45	1.90
400	HS, HI	4.45	NaHJ 400.012	500403	220, 60	148	135	68	5.20	70	0.44	A2	40	2.00
400	HI	3.50	J 400.027	505782	230/240, 50	148	135	68	5.20	60	0.45	A2	35	1.64/1.59
600	HS	6.20	NaH 600.010	179742	220, 50	173	160	96	6.80	70	0.44	A2	65	2.90
600	HS	6.20	NaH 600.005	533484	230/240, 50	173	160	96	6.80	70	0.44	A2	65	2.90/2.85
600	HS	6.20	NaH 600.140	529560	220, 60	173	160	96	6.80	65	0.46	A2	55	3.00

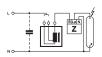
^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

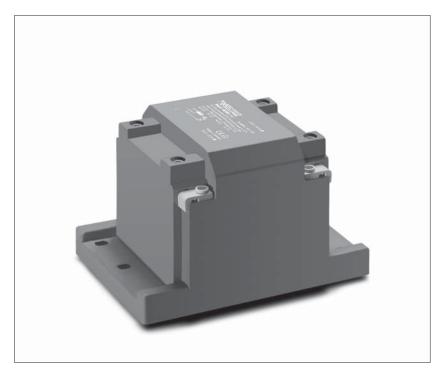
With Thermal Cut-out

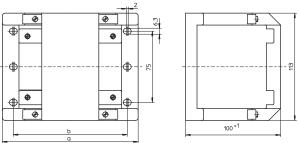
Thermal cut-out with automatic reset

Lamp			Ballast										Сара	citor
Output	Туре	Current	Туре	Ref. No.	Voltage AC	а	Ь	С	Weight	Δt	Power factor	Energy efficiency*	СР	IN
W		А			V, Hz	mm	mm	mm	kg	K	λ		μF	А
250	HS, HI	3.00	NaHJ 250.727	500969	230/240, 50	133	120	44	3.53	70	0.39	EEI=A3	32	1.26/1.21
250	HS, HI	3.00	NaHJ 250.011	508744	220, 60	133	120	44	3.46	65	0.43	A2	25	1.35
400	HS, HI	4.45	NaHJ 400.737	179424	230/240, 50	148	135	68	5.20	70/75	0.43	A2	45	1.95/1.90
400	НІ	3.50	J 400.027	509613	230/240, 50	148	135	68	5.20	60	0.45	A2	35	1.64/1.59
400	HS, HI	4.45	NaHJ 400.012	508741	220, 60	148	135	68	5.20	70	0.44	A2	40	2.00
600	HS	6.20	NaH 600.005	179454	230/240, 50	173	160	96	6.80	70	0.44	A2	65	2.90/2.85

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017


Encapsulated Ballasts with Thermal Cut-out for HS and HI Lamps 250 and 400 W


Shape: 100 x 113 mm


For high pressure sodium lamps (HS) and metal halide lamps (HI)
Encapsulated with PUR electrical resin, suitable for aggressive environments, e.g. humid rooms
Screw terminals: 0.75-2.5 mm²
Thermal cut-out with automatic reset

For luminaires of protection class II

(luminaire design to ensure 8 mm minimum clearance around terminals) tw 130

Lamp			Ballast									Сара	citor
Output	Туре	Current	Туре	Ref. No.	Voltage AC	а	b	Weight	Δt	Power factor	Energy efficiency*	C _P	I _N
W		А			V, Hz	mm	mm	kg	K	λ		μF	А
250	HS, HI	3.00	NaHJ 250G.533	507721	230/240, 50	143	120	4.90	55	0.39	A2	32	1.26/1.21
400	HS, HI	4.45	NaHJ 400G.191	508130	230/240, 50	158	135	5.25	70	0.43	A2	45	1.95/1.90

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

1

2

3

4

5

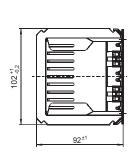
6

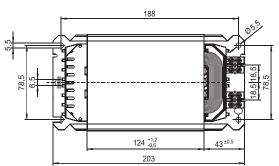
7

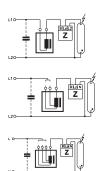
8

9

Ballasts for HS and HI Lamps 1000 W

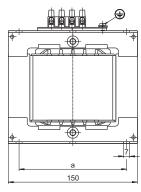

Shape: 92 x 102 mm

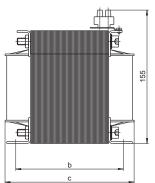

For high pressure sodium lamps (HS) and metal halide lamps (HI)
Vacuum-impregnated with polyester resin
Screw terminals: 0.75-2.5 mm²
Protection class I
tw 130
Ballasts for pulse ignition system on request


	Lamp			Ballast										Capacit	or
	Output	Туре	Current	Туре	Ref. No.	Voltage AC	а	b	С	Weight	Δt	Power factor	Energy efficiency*	C _P	IN
	W		А			V, Hz	mm	mm	mm	kg	K	λ		μF	А
	1000	HS	10.30	NaHJ 1000.089	534487	220, 50	203	188	124	8.90	80	0.47	A2	100	5.1
		НІ	9.50								70	0.51	A2	85	5.0
	1000	HS	10.30	NaHJ 1000.089	539212	220/230, 50	203	188	124	8.90	80	0.45	A2	100	5.1
		НІ	9.50								70	0.49	A2	85	5.0
	1000	HS	10.30	NaHJ 1000.089	528548	230, 50	203	188	124	8.90	80	0.45	A2	100	5.1
		НІ	9.50								70	0.49	A2	85	5.0
new	1000	HS	10.30	NaHJ 1000.089	544787	230/240, 50	203	188	124	8.90	85	0.45	A2	100	5.1
		НІ	9.50								70	0.46	A2	85	5.0
	1000	HS	10.30	NaHJ 1000.089	536140	240, 50	203	188	124	8.90	85	0.42	A2	100	4.8
		НІ	9.50								75	0.46	A2	85	4.9
	1000	HS	10.30	NaHJ 1000.089	528536	220, 60	203	188	124	8.90	75	0.46	A2	100	5.1
		НІ	9.50								60	0.50	A2	85	5.0

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

Ballasts for HI Lamps up to 2500 W


Shape: 150 x 155 mm


For metal halide lamps (HI)
Vacuum impregnated with polyester resin
Screw terminals: 0.75-4 mm²
For luminaires of protection class I
tw 130

For Short Arc Lamps

Lamp			Ballast										Capacito	or
Output	Туре	Current	Туре	Ref. No.	Voltage AC	а	b	С	Weight	Δt	Power factor	Energy efficiency*	C _P	I _N
W		A			V, Hz	mm	mm	mm	kg	K	λ		μF	А
2000	НІ	8.8	J 2000.44	531007	380/400, 50	125	125	150	13.7	75	0.62	A2	3 <i>7</i>	6
2000	HI	8.8	J 2000.35	531010	380/400/415,50	125	150	150	14.0	75	0.58	A2	3 <i>7</i>	6
2000	HI	10.3/11.3	JD 2000.33	531009	380/400, 50	125	150	175	1 <i>7</i> .5	80	0.53	A2	60	6
2000	НІ	10.3/11.3	JD 2000.36	531011	380/400/415, 50	125	150	175	17.5	80	0.50	A2	60	6
2000	НІ	10.3/11.3	JD 2000.58	531465	380, 60	125	150	150	14.0	70	0.53	A2	60	6
2000	НІ	12.2	JD 2000II.67	548721	380/400, 50	125	150	175	17.5	80	0.43	A2	85	6
2000	НІ	16.5	JD 20001.48	531448	220/230, 50	125	150	175	1 <i>7</i> .5	80	0.57	A2	125	10.5
2000	НІ	16.5	JD 20001.60	531467	230, 60	125	150	175	1 <i>7</i> .5	80	0.57	A2	125	10

new

For HI	lamps	(Short Arc	Lamps) 1200	and 2500) W									
1200	HI	13.8	J 1200.37	531013	208, 60	125	150	150	14.0	-	0.40	A2	150	6
					230/245, 50							A2		
2500	НІ	25.6	J 2500.38	531014	208, 60	125	150	175	17.7	_	0.44	A2	260	12.3
					230/245, 50							A2		

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

VSSLOH SCHWABE

2

3

4

5

6

7

Q

0

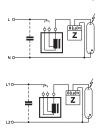
Encapsulated Ballasts for HS Lamps 1000 W and HI Lamps 1000 and 2000 W

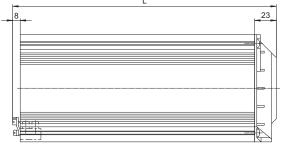
Shape: 108 x 114 mm

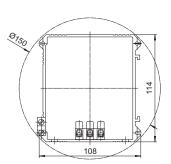
For high-pressure sodium vapour lamps (HS) and metal halide lamps (HI)

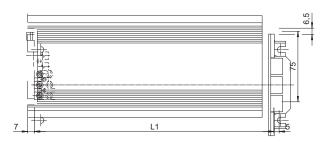
Corrosion-proof due to fully encapsulation of the ballast in an aluminium casing

Specifically designed for installation in pylons


Diverse mounting options


Screw terminals: 0.75-10 mm²

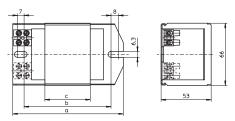

For luminaires of protection class I tw 130


With connection for protective earth conductor

Lamp			Ballast									Capacitor	r
Output	Туре	Current	Туре	Ref. No.	Voltage AC	L	L1	Weight	Δt	Power factor	Energy efficiency*	СР	IN
W		А			V, Hz	mm	mm	kg	K	λ		μF	А
1000	HS	10.3	NaH 1000G.46	531018	230/240, 50	216	185	10.3	65	0.44	A2	100	5.1
1000	HI	9.5	J 1000G.41	531017	230/240, 50	216	185	10.2	70	0.48	A2	85	5.1
2000	HI	10.3	J 2000G.40	531024	380/400, 50	313	290	19 <i>.7</i>	70	0.50	A2	60	6
2000	HI	8.8	J 2000G.42	531021	360/380/400, 50	261	235	13.8	90	0.62	A2	37	6

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017


Ballasts for HM and HI Lamps 50 to 400 W


Shape: 53 x 66 mm

For mercury vapour lamps (HM) and metal halide lamps (HI) with ignition voltage 1 kV Vacuum-impregnated with polyester resin Screw terminals: 0.5-2.5 mm² Protection class I tw 130

Power factor Current Ref. No. Voltage AC Weight Energy efficiency* Туре 50 НМ 0.61 167100 86 28 0.91 0.44 Q 50.501 220, 50 108 FFI=A3 0.28 167213 230, 50 0.91 0.44 50 НМ 0.61 Q 50.550 108 86 28 FFI=A3 0.42 0.61 Q 50.508 240, 50 86 28 0.91 50 НМ 167125 108 FFI=A3 0.26 0.44 Q 50.535 220, 60 0.91 0.28 167185 108 FFI=A3 108 50 0.61 Q 80/50.596 167311 230, 50 28 0.91 55 0.43 EEI=A3 0.27 НМ 86 0.51 80 НМ 0.80 EEI=A3 0.41 50 НМ 0.61 Q 80/50.592 167306 220,60 108 86 28 0.91 0.44 EEI=A3 6 0.28 EEI=A3 80 0.80 Q 80.587 167302 80 НМ 0.80 220, 50 108 86 28 0.91 0.52 EEI=A3 8 0.43 80 НМ 0.80 167304 0.41 Q 80.510 167132 240, 50 EEI=A3 0.40 80 167299 167326 80 Q 125/80.611 230, 50 42 1.23 0.49 EEI=A3 0.41 125 НМ 1.15 70 0.54 EEI=A3 10 0.60 80 НМ 0.80 Q 125/80.511 167136 240, 50 108 86 1.39 0.48 EEI=A3 8 0.40 125 НМ 1.15 70 0.52 EEI=A3 10 0.58 Q 125.549 169947 EEI=A3 125 НМ 1.15 220, 50 108 86 36 1.07 70 10 0.63 125 НМ Q 125.568 167263 230. 50 108 86 36 1.07 0.54 EEI=A3 0.60 1.15 125 НМ 1.15 Q 125.512 167140 240, 50 108 86 48 1.39 0.51 EEI=A3 10 0.58 220, 60 125 НМ Q 125.598 502818 108 86 36 1.07 60 EEI=A3 0.65 250 НМ 2.13 Q 250.513 167144* 220.50 145 120 75 2.10 75 0.58 EEI=A3 18 1.26 250 НМ 2.13 Q 250.528 167367** 145 75 2.10 75 EEI=A3 18 1.20 230, 50 120 0.56 НМ 2.13 Q 250.703 507256** 240, 50 145 120 75 2.10 75 EEI=A3 18 1.15 250 0.53 250 НМ 2.13 Q 250.606 533705 * * 220, 60 145 120 1.80 70 0.58 Α2 1.30 64 15 3.25 Q 400.616 528236** 95 80 EEI=A3 400 НМ 220, 50 160 135 2.50 0.60 25 2.00 400 3.25 Q 400.561 167250** 180 110 Α2 НМ 220, 50 155 2.88 0.60 25 2.00 400 167330** 180 EEI=A3 НМ 3 25 1.90 Q 400.612 230, 50 155 110 2.88 0.56 25 167374** EEI=A3 400 3.25 Q 400.669 180 110 1.85 НМ 240, 50 155 2.88 0.54 25 2.88 400 3.25 Q 400.613 167335 * * НМ 220.60 180 155 110 65 0.60 FFI=A3 25 200 508245 * * HM 3.25 Q 400.613 220,60 180 155 95 2.50 75 0.60 EEI=A3 25 2.00

Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

1

2

3

4

5

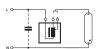
5

7

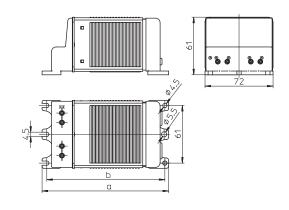
8

9

^{**} Suitable for metal halide lamps (HI) with ignition voltage 1 kV in combination with pulse ignitor PZI 1000/1 K (see page 154)

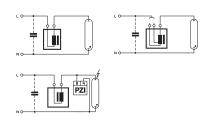

Ballasts with Thermal Cut-out for HM Lamps 50 to 125 W, Protection Class II

Encapsulated ballast in compact plastic casing Shape: 61x72 mm

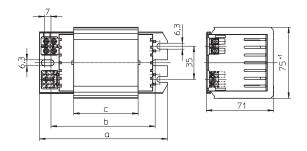

For mercury vapour lamps (HM) With cable holder Thermal cut-out with automatic reset Screw terminals: 0.5 – 2.5 mm²

Protection class II

tw 130


Lamp			Ballast									Сарас	itor
Output	Туре	Current	Туре	Ref. No.	Voltage AC	а	b	Weight	Δt	Power factor	Energy efficiency*	C _P	IN
W		А			V, Hz	mm	mm	kg	K	λ		μF	А
50	НМ	0.61	QZ 80/50.551	533399	230, 50	134	125	1.2	50	0.43	EEI=A3	7	0.27
80	НМ	0.80							65	0.51	EEI=A3	8	0.41
80	НМ	0.80	QZ 125/80.553	533400	230, 50	134	125	1.6	45	0.50	EEI=A3	8	0.41
125	НМ	1.15							60	0.53	EEI=A3	10	0.60

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017


Ballasts for HM and HI Lamps 250 and 400 W

Shape: 71 x 75 mm

For mercury vapour lamps (HM) and metal halide lamps (HI) with ignition voltage 1 kV Vacuum-impregnated with polyester resin Screw terminals: 0.75-2.5 mm² Protection class I tw 130

Lamp			Ballast										Capaci	tor
Output	Туре	Current	Туре	Ref. No.	Voltage AC	а	b	С	Weight	Δt	Power factor	Energy efficiency*	СР	IN
W		А			V, Hz	mm	mm	mm	kg	K	λ		μF	А
250	НМ	2.13	Q 250.800	536260**	230/240, 50	135	115	68	2.85	55	0.53	EEI=A3	18	1.3
400	НМ	3.25	Q 400.715	537869**	220, 50	135	115	68	2.85	70	0.59	A2	25	2.0
400	НМ	3.25	Q 400.801	536258**	230, 50	135	115	68	2.85	75	0.58	EEI=A3	25	2.0
400	НМ	3.25	Q 400.801	538034**	230, 50	135	115	68	2.85	65	0.58	EEI=A3	25	2.0
400	НМ	3.25	Q 400.801	537703**	230/240, 50	135	115	68	2.85	75	0.58	EEI=A3	25	2.0/1.85
400	НМ	3.25	Q 400.732	537873**	220, 60	135	115	68	2.85	70	0.59	A2	25	2.0

- Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017
- ** Suitable for metal halide lamps (HI) with ignition voltage 1 kV in combination with pulse ignitor PZI 1000/1 K (see page 154)

With Thermal Cut-out

Thermal cut-out with automatic reset

Lamp			Ballast										Capaci	tor
Output	Туре	Current	Туре	Ref. No.	Voltage AC	а	b	С	Weight	Δt	Power factor	Energy efficiency*	CP	IN
W		А			V, Hz	mm	mm	mm	kg	K	λ		μF	А
250	НМ	2.13	Q 250.800	536261 * *	230/240, 50	135	115	68	2.85	55	0.53	EEI=A3	18	1.3
400	НМ	3.25	Q 400.801	536259**	230, 50	135	115	68	2.85	75	0.58	EEI=A3	25	2.0

- * Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017
- ** Suitable for metal halide lamps (HI) with ignition voltage 1 kV in combination with pulse ignitor PZI 1000/1 K (see page 154)

1

2

3

4

5

6

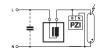
7

8

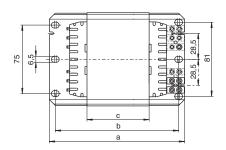
0

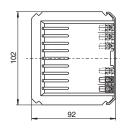
9

Ballasts for HM and HI Lamps 250 to 1000 W


Shape: 92 x 102 mm

For mercury vapour lamps (HM) and metal halide lamps (HI) with ignition voltage 1 kV Vacuum-impregnated with polyester resin Screw terminals: 0.75-2.5 mm² Protection class I


Protection class I tw 130



Lamp			Ballast										Сара	citor
Output	Туре	Current	Туре	Ref. No.	Voltage AC	а	Ь	С	Weight	Δt	Power factor	Energy efficiency*	СР	IN
W		А			V, Hz	mm	mm	mm	kg	K	λ		μF	А
250	НМ	2.13	Q 250.417	504467**	230/240, 50	133	120	44	3.53	50	0.52	EEI=A3	18	1.20
400	НМ	3.25	Q 400.001	504474**	230/240, 50	133	120	44	3.53	65	0.56	EEI=A3	25	1.80
700	НМ	5.40	Q 700.035	528521	230/240, 50	173	160	96	6.90	60	0.56	EEI=A3	40	3.40
1000	НМ	7.50	Q 1000.097	537103**	220, 50	173	160	96	6.90	75	0.61	EEI=A3	60	4.80
1000	НМ	7.50	Q 1000.096	538540**	230, 50	173	160	96	6.90	65	0.60	EEI=A3	60	4.80
1000	НМ	7.50	Q 1000.096	528761 * *	230, 50	173	160	96	6.90	65	0.60	EEI=A3	60	4.80
1000	НМ	7.50	Q 1000.145	528886**	240, 50	173	160	96	6.90	75	0.58	EEI=A3	60	4.60
1000	НМ	7.50	Q 1000.311	526715**	220, 60	173	160	96	6.90	70	0.61	EEI=A3	50	5.00

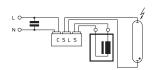
^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

With Thermal Cut-out

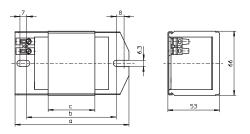
Thermal cut-out with automatic reset

Lamp			Ballast										Сарас	citor
Output	Туре	Current	Туре	Ref. No.	Voltage AC	а	b	С	Weight	Δt	Power factor	Energy efficiency*	СР	I _N
W		А			V, Hz	mm	mm	mm	kg	K	λ		μF	А
250	НМ	2.13	Q 250.417	508746**	230/240, 50	133	120	44	3.53	50	0.52	EEI=A3	18	1.20
400	НМ	3.25	Q 400.001	505002**	230/240, 50	133	120	44	3.53	65	0.56	EEI=A3	25	1.80

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017


^{**} Suitable for metal halide lamps (HI) with ignition voltage 1 kV in combination with pulse ignitor PZI 1000/1 K (see page 154)

^{**} Suitable for metal halide lamps (HI) with ignition voltage 1 kV in combination with pulse ignitor PZI 1000/1 K (see page 154)


Ballasts for SDW-T/-TF Lamps 35, 50 and 100 W

Shape: 53 x 66 mm

These ballasts are only intended for operation with high-pressure sodium lamps SDW-T/SDW-TF (Philips)
An additional control unit is necessary Vacuum-impregnated with polyester resin Push-in terminals: 0.5–1.5 mm²
Protection class I tw 130

Lamp			Ballast										Сара	citor
Output	Туре	Current	Туре	Ref. No.	Voltage AC	а	b	С	Weight	Δt	Power factor	Energy efficiency*	CP	IN
W		А			V, Hz	mm	mm	mm	kg	K	λ		μF	А
35	SDW-T/-TF	0.48	NaH 35II.538	161692	230, 50	108	86	28	0.91	50	0.40	EEI=A3	6	0.22
50	SDW-T/-TF	0.76	NaH 50II.539	161682	230, 50	108	86	36	1.07	55	0.40	EEI=A3	9	0.30
100	SDW-T/-TF	1.35	NaH 100II.918	161688	230, 50	108	86	48	1.39	75	0.40	EEI=A3	12	0.55

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

With Thermal Cut-out

Thermal cut-out with automatic reset

Lamp			Ballast										Сарас	citor
Output	Туре	Current	Туре	Ref. No.	Voltage AC	а	b	С	Weight	Δt	Power factor	Energy efficiency*	СР	IN
W		А			V, Hz	mm	mm	mm	kg	K	λ		μF	А
50	SDW-T/-TF	0.76	NaH 50II.539	520998	230, 50	108	86	36	1.07	55	0.40	EEI=A3	9	0.30
100	SDW-T/-TF	1.35	NaH 10011.918	520935	230, 50	108	86	48	1.39	75	0.40	EEI=A3	12	0.55

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

4

5

6

7

8

9

Compact Power Reduction Kits for HS Lamps 50 to 150 W

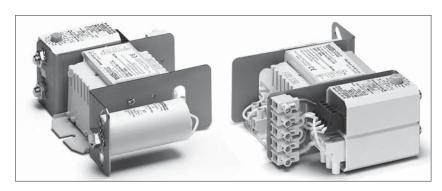
Ballast shape: 53 x 66 mm

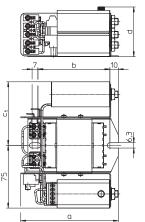
For high pressure sodium lamps (HS)

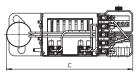
Compact power reduction kit with ballast with or
without patented, intelligent thermal cut-out with automatic reset (which evaluates the temperature and
current of the ballast), ignitor, power switch and
compensation capacitor

With luminaire terminal block:

screw terminal 0.75-2.5 mm²


With earth terminal


Permissible load capacity: 20-100 pF


Lead length to the lamp: max. $1.5\ \mathrm{m}$

tw 130

Further outputs and voltages on request With digital timer ignitor on request

As individual components no longer need to be wired, there is a significant reduction in assembly time and costs.

	Lamp			Power reduction kit												
	Output	Туре	Current	Туре	Ref. No.	Voltage	Mains	Temperature	а	b	С	c1	d	Weight	Power	Energy
						AC	current	protection							factor	efficiency
						V, Hz	А		mm	mm	mm	mm	mm	kg	λ	
	Power red	ductio	n witho	ut control phase – Intellig	gent power	switch PR	12 K L	(Light Cont	rol)							
	70/40%	HS	0.98	PRKUNaH 70/40%.525	543384	220, 50	0.38	no	117	86	151	76	60	1.5	> 0.90	EEI=A3
	100/40%	HS	1.20	PRKUNaH 100/40%.522	543388	220, 50	0.56	no	123	92	151	76	60	1.7	> 0.90	EEI=A3
	150/40%	HS	1.80	PRKUNaH 150/40%.142	543385	220, 50	0.77	no	151	120	154	79	60	2.3	> 0.90	EEI=A3
N	50/40%	HS	0.76	PRKUNaH 50/40%.021	544760	230, 50	0.30	yes	117	86	151	76	56	1.5	> 0.90	EEI=A3
	70/40%	HS	0.98	PRKUNaH 70/40%.525	543742	230, 50	0.38	yes	117	86	151	76	60	1.5	> 0.90	EEI=A3
	100/40%	HS	1.20	PRKUNaH 100/40%.522	543743	230, 50	0.55	yes	123	92	151	76	60	1.7	> 0.90	EEI=A3
	150/40%	HS	1.80	PRKUNaH 150/40%.142	543744	230, 50	0.77	yes	151	120	154	79	60	2.3	> 0.90	EEI=A3
	Power red	ductio	n witho	ut control phase – Powe	r switch PR	12 KD wit	h select	able switchi	ng tir	ne						
	70/40%	HS	0.98	PRKUNaH 70/40%.525	539328	220, 50	0.38	no	117	86	151	76	60	1.5	> 0.90	EEI=A3
	100/40%	HS	1.20	PRKUNaH 100/40%.522	539330	220, 50	0.56	no	123	92	151	76	60	1.7	> 0.90	EEI=A3
	150/40%	HS	1.80	PRKUNaH 150/40%.142	539332	220, 50	0.77	no	151	120	154	79	60	2.3	> 0.90	EEI=A3
	70/40%	HS	0.98	PRKUNaH 70/40%.525	538690	230, 50	0.38	yes	117	86	151	76	60	1.5	> 0.90	EEI=A3
	100/40%	HS	1.20	PRKUNaH 100/40%.522	538691	230, 50	0.56	yes	123	92	151	76	60	1.7	> 0.90	EEI=A3
	150/40%	HS	1.80	PRKUNaH 150/40%.142	538692	230, 50	0.77	yes	151	120	154	79	60	2.3	> 0.90	EEI=A3
	70/40%	HS	0.98	PRKUNaH 70/40%.525	538700	220, 60	0.38	no	117	86	151	76	60	1.5	> 0.90	EEI=A3
	100/40%	HS	1.20	PRKUNaH 100/40%.522	538701	220, 60	0.56	no	123	92	151	76	60	1.7	> 0.90	EEI=A3
	150/40%	HS	1.80	PRKUNaH 150/40%.142	538702	220, 60	0.77	no	151	120	154	79	60	2.3	> 0.90	EEI=A3
·	Power red	ductio	n with o	ontrol phase – Power sv	vitch PU 12	K										
	70/40%	HS	0.98	PRKUNaH 70/40%.525	539329	220, 50	0.38	no	117	86	151	76	56	1.5	> 0.90	EEI=A3
	100/40%	HS	1.20	PRKUNaH 100/40%.522	539331	220, 50	0.56	no	123	92	151	76	56	1.7	> 0.90	EEI=A3
	150/40%	HS	1.80	PRKUNaH 150/40%.142	539333	220, 50	0.77	no	151	120	154	79	56	2.3	> 0.90	EEI=A3
	70/40%	HS	0.98	PRKUNaH 70/40%.525	538695	230, 50	0.38	yes	117	86	151	76	56	1.5	> 0.90	EEI=A3
Ì	100/40%	HS	1.20	PRKUNaH 100/40%.522	538696	230, 50	0.56	yes	123	92	151	76	56	1.7	> 0.90	EEI=A3
	150/40%	HS	1.80	PRKUNaH 150/40%.142	538697	230, 50	0.77	yes	151	120	154	79	56	2.3	> 0.90	EEI=A3
	70/40%	HS	0.98	PRKUNaH 70/40%.525	538705	220, 60	0.38	no	117	86	151	76	56	1.5	> 0.90	EEI=A3
	100/40%	HS	1.20	PRKUNaH 100/40%.522	538706	220, 60	0.56	no	123	92	151	76	56	1.7	> 0.90	EEI=A3
	150/40%	HS	1.80	PRKUNaH 150/40%.142	538707	220, 60	0.77	no	151	120	154	79	56	2.3	> 0.90	EEI=A3

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

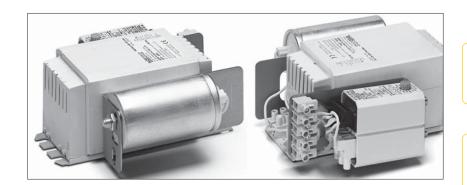
Compact Power Reduction Kits for HS Lamps 250 and 400 W

Ballast shape: 71 x 75 mm

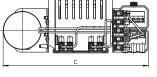
For high pressure sodium lamps (HS) Compact power reduction kit with ballast with or without thermal cut-out with automatic reset, superimposed ignitor, power switch and compensation capacitor

With luminaire terminal block:

screw terminal 0.75-2.5 mm²


With earth terminal

Permissible load capacity: 20–100 pF Lead length to the lamp: max. 1.5 m $\,$


tw 130

Further outputs and voltages on request With digital timer ignitor on request

www.vossloh-schwabe.com

As individual components no longer need to be wired, there is a significant reduction in assembly time and costs.

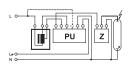
Lamp			Power reduction kit												
Output	Туре	Current	Туре	Ref. No.	Voltage	Mains	Temperature	а	Ь	С	cl	d	Weight	Power	Energy
					AC	current	protection							factor	efficiency*
\wedge		А			V, Hz	А		mm	mm	mm	mm	mm	kg	λ	
Power re	ductio	n with	out control phase – Inte	lligent po	wer switc	h PR 12	K LC (Light	Contro	ol)						
250/40%	HS	3.00	PRKUNaH 250/40%.936	543386	220, 50	1.26	no	141	110	171	91	71	3.3	> 0.90	EEI=A3
400/40%	HS	4.45	PRKUNaH 400/40%.906	543389	220, 50	1.95	no	171	140	171	91	71	5.3	> 0.90	A2
250/40%	HS	3.00	PRKUNaH 250/40%.936	543745	230, 50	1.26	yes	141	110	171	91	71	3.3	> 0.90	EEI=A3
400/40%	HS	4.45	PRKUNaH 400/40%.906	543746	230, 50	1.95	yes	171	140	171	91	71	5.3	> 0.90	A2
Power re	ductio	on with	out control phase – Pov	ver switch	PR 12 KD	with se	electable sw	itchin	g time	;					
250/40%	HS	3.00	PRKUNaH 250/40%.758	546585	220, 50	1.26	no	171	140	171	91	71	5.3	> 0.90	EEI=A3
250/40%	HS	3.00	PRKUNaH 250/40%.936	539334	220, 50	1.26	no	141	110	171	91	71	3.3	> 0.90	EEI=A3
400/40%	HS	4.45	PRKUNaH 400/40%.906	539335	220, 50	1.95	no	171	140	171	91	71	5.3	> 0.90	A2
250/40%	HS	3.00	PRKUNaH 250/40%.936	538693	230, 50	1.26	yes	141	110	171	91	71	3.3	> 0.90	EEI=A3
400/40%	HS	4.45	PRKUNaH 400/40%.906	538694	230, 50	1.95	yes	171	140	171	91	71	5.3	> 0.90	A2
250/40%	HS	3.00	PRKUNaH 250/40%.983	538703	220, 60	1.26	no	141	110	165	86	71	3.3	> 0.90	EEI=A3
400/40%	HS	4.45	PRKUNaH 400/40%.937	538704	220, 60	1.95	no	171	140	171	91	71	5.3	> 0.90	A2
ower re	ductio	n with	control phase – Power	switch PU	12 K										
250/40%	HS	3.00	PRKUNaH 250/40%.936	539336	220, 50	1.26	no	141	110	171	91	71	3.3	> 0.90	EEI=A3
400/40%	HS	4.45	PRKUNaH 400/40%.906	539337	220, 50	1.95	no	171	140	171	91	71	5.3	> 0.90	A2
250/40%	HS	3.00	PRKUNaH 250/40%.936	538698	230, 50	1.26	yes	141	110	171	91	71	3.3	> 0.90	EEI=A3
100/40%	HS	4.45	PRKUNaH 400/40%.906	538699	230, 50	1.95	yes	171	140	171	91	71	5.3	> 0.90	A2
250/40%	HS	3.00	PRKUNaH 250/40%.983	538708	220, 60	1.26	no	141	110	165	86	71	3.3	> 0.90	EEI=A3
400/40%	HS	4.45	PRKUNaH 400/40%.937	538709	220, 60	1.95	no	171	140	171	91	71	5.3	> 0.90	A2

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

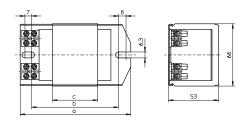
VOSSLOH

137

new


8

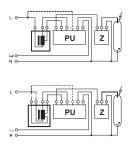
9


Ballasts for Power Reduction of HS Lamps 70 to 250 W

Shape: 53 x 66 mm

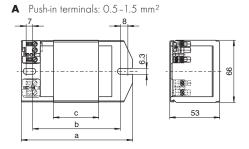
For high pressure sodium lamps (HS) Vacuum-impregnated with polyester resin Screw terminals: 0.5 - 2.5 mm² Protection class I tw 130

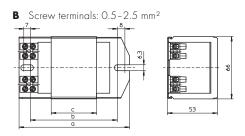
Lamp		Ballast											
Output	Current	Туре	Ref. No.	Voltage AC	а	Ь	С	Weight	Δt	Power factor	Energy efficiency*	СР	IN
W	А			V, Hz	mm	mm	mm	kg	K	λ		μF	А
70 (42)	0.98	UNaH 70/40%.501	534128	220, 50	108	86	42	1.23	65	0.39	EEI=A3	12	0.40
70 (42)	0.98	UNaH 70/40%.525	535348	230, 50	108	86	42	1.23	70	0.38	EEI=A3	12	0.38
70 (42)	0.98	UNaH 70/40%.691	161460	220, 60	108	86	48	1.39	60	0.42	EEI=A3	10	0.40
100 (60)	1.20	UNaH 100/40%.452	533947	220, 50	117	92	55	1.52	65	0.43	EEI=A3	12	0.55
100 (60)	1.20	UNaH 100/40%.522	535347	230, 50	117	92	55	1.52	70	0.42	EEI=A3	12	0.55
100 (60)	1.20	NaHJ 100/70.709	161471	220, 60	145	120	55	1.55	60/50	0.44	EEI=A3	10	0.57
150 (90)	1.80	UNaH 150/40%.453	533948	220, 50	145	120	75	2.03	75	0.42	EEI=A3	20	0.80
150 (90)	1.80	UNaH 150/40%.142	535333	230, 50	145	120	75	2.03	75	0.40	EEI=A3	20	0.77
150 (90)	1.80	UNaH 150/40%.717	161475	220, 60	145	120	75	2.03	70	0.44	EEI=A3	20	0.77
250 (150)	3.00	UNaH 250/40%.454	533949	220, 50	180	155	110	2.88	80	0.42	EEI=A3	32	1.32
250 (150)	3.00	UNaH 250/40%.983	169892	220, 60	145	120	75	2.03	75	0.40	EEI=A3	32	1.32


* Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

new

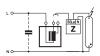
Ballasts with Thermal Cut-out for Power Reduction of HS Lamps 50 to 150 W


Shape: 53 x 66 mm

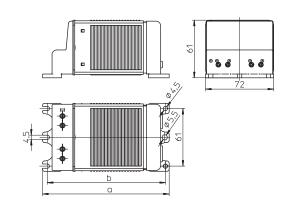

For high pressure sodium lamps (HS) Vacuum-impregnated with polyester resin Thermal cut-out with automatic reset Protection class I tw 130

new

Output	Current	-												
Solpoi	000111	Туре	Ref. No.	Voltage AC	а	b	С	Drawing	Weight	Δt	Power factor	Energy	C _P	IN
W	A			V, Hz	mm	mm	mm		kg	K	λ	efficiency*	μF	А
With push-in	n termin	als: 0.5-1.5 mm²												
70 (42)	0.98	UNaH 70/40%.525	544728	230, 50	108	86	42	А	1.23	70	0.38	EEI=A3	12	0.38
100 (60)	1.20	UNaH 100/40%.522	544730	230, 50	117	92	55	А	1.55	70	0.42	EEI=A3	12	0.55
150 (90)	1.80	UNaH 150/40%.142	544729	230, 50	145	120	75	А	2.10	75	0.40	EEI=A3	20	0.77
150 (101)	1.80	UNaH 150/100.722	539050	230/240, 50	160	135	95	А	2.50	65/50	0.41	EEI=A3	20	0.77
150 (101)	1.80	UNaH 150/100.722	507627	230/240, 50	180	155	95	А	2.50	65/50	0.41	EEI=A3	20	0.77
With screw t	termina	ls: 0.5-2.5 mm²												
50 (33)	0.76	NaH 50/35.797	539515	230, 50	108	86	36	В	1.07	70/45	0.37	EEI=A3	6	0.22
70 (44)	0.98	NaHJ 70/50.695	503136	230, 50	108	86	48	В	1.34	70/50	0.37	EEI=A3	12	0.38
100 (64)	1.20	NaHJ 100/70.703	504131	230, 50	117	92	55	В	1.55	70/60	0.43	EEI=A3	12	0.55
150 (101)	1.80	NaHJ 150/100.973	504135	230, 50	145	120	75	В	2.10	75/55	0.41	EEI=A3	20	0.77
* Step 2: EEI =	= A3, mini	mum EU energy efficiency	requirements	as of 2012 Ste	ep 3: A2	2, minin	num El	J energy ef	ficiency re	equiremen	ts as of 2017		•	

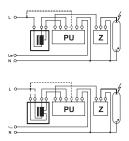

Ballasts with Thermal Cut-out for Power Reduction of HS Lamps 70 to 150 W, Protection Class II

Encapsulated ballast in compact plastic casing Shape: 61x72 mm

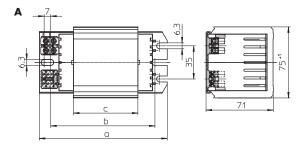

For high pressure sodium lamps (HS) With cable holder Thermal cut-out with automatic reset Screw terminals: 0.5 - 2.5 mm²

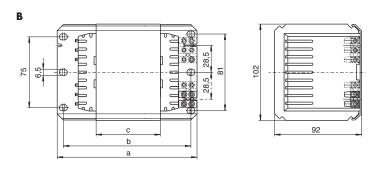
Protection class II

tw 130


Lamp			Ballast		Capacitor								
Output	Туре	Current	Туре	Ref. No.	Voltage AC	а	Ь	Weight	Δt	Power factor	Energy	СР	IN
W		А			V, Hz	mm	mm	kg	K	λ	efficiency*	μF	А
70 (44)	HS	0.98	NaHJZ 70/50.520	533395	230, 50	134	125	1.60	65/45	0.36	EEI=A3	12	0.38
100 (64)	HS	1.20	NaHJZ 100/70.519	533396	230, 50	161	152	2.10	60/45	0.42	EEI=A3	12	0.55
150 (101)	HS	1.80	NaHJZ 150/100.466	533398	230, 50	161	152	2.30	70/45	0.39	EEI=A3	20	0.77

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017


Ballasts for Power Reduction of HS Lamps 250 to 600 W


Shape: 71 x 75 mm Shape: 92 x 102 mm

For high pressure sodium lamps (HS) Vacuum-impregnated with polyester resin Screw terminals: 0.75 - 2.5 mm² Protection class I tw 130

Lamp			Ballast				Capacitor								
Output	Туре	Current	Туре	Ref. No.	Voltage	Drawing	а	Ь	С	Weight	Δt	Power	Energy	СР	IN
					AC							factor	efficiency*		
W		А			V, Hz		mm	mm	mm	kg	K	λ		μF	Α
250 (150)	HS	3.00	UNaH 250/40%.746	539283	220, 50	А	135	115	68	2.85	75	0.42	EEI=A3	32	1.35
250 (150)	HS	3.00	UNaH 250/40%.936	543747	230, 50	А	135	115	68	2.85	75	0.40	EEI=A3	32	1.30
250 (150)	HS	3.00	UNaH 250/40%.747	539517	220, 60	А	135	115	68	2.85	75	0.42	EEI=A3	25	1.40
400 (240)	HS	4.45	UNaH 400/40%.892	538592	220, 50	А	165	145	103	4.13	75	0.44	A2	45	2.10
400 (240)	HS	4.45	UNaH 400/40%.906	543748	230, 50	А	165	145	103	4.13	75	0.42	A2	45	2.00
400 (240)	HS	4.45	UNaH 400/40%.937	538715	220, 60	А	165	145	103	4.13	75	0.44	A2	40	2.05

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

With Thermal Cut-out

Thermal cut-out with automatic reset

Lamp			Ballast	Ballast											acitor
Output	Туре	Current	Туре	Ref. No.	Voltage AC	Drawing	а	b	С	Weight	Δt	Power	Energy	C _P	IN
												factor	efficiency*		
W		А			V, Hz		mm	mm	mm	kg	K	λ		μF	А
250 (150)	HS	3.00	UNaH 250/40%.936	538711	230, 50	А	135	115	68	2.85	75	0.40	EEI=A3	32	1.30
400 (240)	HS	4.45	UNaH 400/40%.906	538710	230, 50	А	165	145	103	4.13	75	0.42	A2	45	2.00
600 (360)	HS	6.20	UNaH 600/40%.060	539384	230/240, 50	В	1 <i>7</i> 3	160	108	6.80	75	0.44	A2	75	2.80

^{*} Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

2

3

4

5

5

7

R

9

SUPERIMPOSED, PULSE AND INSTANT RESTRIKE

ELECTRONIC IGNITORS

Superimposed ignitors

Superimposed ignitors work independently of ballasts and generate defined ignition pulses during every half-wave within the stipulated voltage ranges. As the mains frequency only plays a subordinate role, these systems work equally well at 50 Hz and 60 Hz.

Superimposed ignitors should be mounted near the lampholder. The clearance needed between the ignitor and the lamp is determined by the respective maximum load capacitance, which is specified for each ignitor in the technical details. The capacitive load of the cable is dependent on its physical properties and wiring layout; this value usually ranges between 70–100 pF per metre.

Pulse ignitors

As pulse ignitors use the winding of an inductive ballast to generate the requisite pulse voltage, such ballasts must be designed to withstand these high ignition voltages.

Instant restrike ignitors

Instant restrike ignitors are a special type of ignitor for high-pressure discharge lamps. In comparison to superimposed and pulse ignitors, instant restrike ignitors have a very specified field of application. However, safety-relevant lighting systems, e.g. in power plants, stadiums, but also in television studios, make instant re-ignition of hot high-pressure discharge lamps necessary.

On the following pages, Vossloh-Schwabe presents an extensive range of ignitors for all areas of application.

Ignitors and Accessories for Discharge Lamps

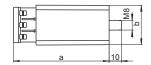
Electronic superimposed ignitors	144-152
Pulse ignitors	153-154
Instant restrike ignitors	155-156
Electronic power switches	152
Electronic superimposed ignitors with power switch	158
Switch units for electronic operating devices with 1–10 V interface	159
Start-up switches	160-16
Electronic discharge units	162
Technical details for discharge lamps	184-22
General technical details	533-540
Glossary	5/1 - 5/1

Electronic Superimposed Ignitors for HS Lamps up to 70 W

Standard version or with automatic switch-off
For high pressure sodium lamps (HS) and
ceramic discharge lamps C-HI-TT/ET with base E27
Phasing of the ignition voltage:
60-90 °el and 240-270 °el
Max. permitted casing temperature: 105 °C
Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I and II

Al casing

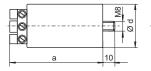
PC casing - K



PC casing - K D20

PC casing – with push-in terminals

Type Ref. No.		Voltage AC	Max.	Internal	Inherent	Ignition	Load	Switch-off time	Casing	Weight			
		50-60 Hz	lamp	loss	heating	voltage	capacity		d (Ø)	а	Ь	С	
		V	А	W	K	kV	pF	sec./Hz	mm	mm	mm	mm	9
Aluminium o	asing (Al) wit	h screw termir	nals: 0.75-	-4 mm²									
Z 70 S	140413	220-240	2	< 0.6	< 5	1.8-2.3	20-200	_	35	76	_	_	135
Plastic casin	g (PC) with sci	rew terminals:	0.75-4 m	m²									
Z 70 K	140481	220-240	2	< 0.6	< 5	1.8-2.3	20-200	_	_	78	34	27	125
Z 70 K D20	141580*	220-240	2	< 0.6	< 5	1.8-2.3	20-200	1216/50-60	_	80	34	30	145
Plastic casin	g (PC) with pu	ısh-in terminal:	s: 0.5-2.5	mm²									
Z 70 K	142320	220-240	2	< 0.6	< 5	1.8-2.3	20-200	_	_	81	34	27	125
Z 70 K D20	142330*	220-240	2	< 0.6	< 5	1.8-2.3	20-200	1216/50-60	_	83	34	30	145


^{*} With IPP technology

Electronic Superimposed Ignitors for HS Lamps 70 (DE) to 250 W and HI Lamps 35 to 250 W

Standard version or with automatic switch-off For high pressure sodium lamps (HS), metal halide lamps (HI) and ceramic discharge lamps (C-HI) Phasing of the ignition voltage: 60-90 °el and 240-270 °el Max. permitted casing temperature: 105 °C Fastening: male nipple with pre-assembled washer and nut For luminaires of protection class I and II

Al casing

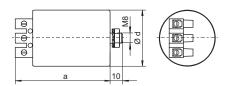
PC casing – K

PC casing - K D20

PC casing – with push-in terminals

Туре	Ref. No.	Voltage AC	Max.	Internal	Inherent	Ignition	Load	Switch-off time	Casin	~			Weight
туре	Rei. 140.				1.	1 0		Swiiciron iiile		ĭ	h	1	vveigili
		50-60 Hz	lamp current	loss	heating	voltage	capacity		q (\(\infty \)	а	b	C	
		V	А	W	K	kV	pF	sec./Hz	mm	mm	mm	mm	9
Aluminium co	ısing (Al) w	ith screw te	rminals: 0.75-	4 mm²									
Z 250 S	140425	220-240	3.5	< 1.8	< 20	4-5	20-100	_	35	76	_	_	140
Plastic casing	(PC) with s	crew termin	als: 0.75–4 m	m²									
Z 250 K	140489	220-240	3.5	< 1.8	< 20	4-5	20-100	_	_	78	34	27	130
Z 250 K D20	141581*	220-240	3.5	< 1.8	< 20	4-5	20-100	1216/50-60	_	80	34	30	145
Plastic casing	(PC) with p	ush-in term	inals: 0.5–2.5	mm²				•					
Z 250 K	142340	220-240	3.5	< 1.8	< 20	4-5	20-100	_	_	81	34	27	130
Z 250 K D20*	142350*	220-240	3.5	< 1.8	< 20	4-5	20-100	1216/50-60	_	83	34	30	145

^{*} With IPP technology


145

Electronic Superimposed Ignitors for HS Lamps 70 (DE) to 400 W and HI Lamps 35 to 400 W

Standard version or with automatic switch-off For high pressure sodium lamps (HS), metal halide lamps (HI) and ceramic discharge lamps (C-HI) Phasing of the ignition voltage: 60–90 °el and 240–270 °el Max. permitted casing temperature: 105 °C Screw terminals: 0.75–4 mm² Fastening: male nipple with pre-assembled washer and nut For luminaires of protection class I and II

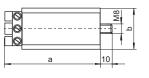
Al casing

Туре	Ref. No.	Voltage AC	Мах.	Internal	Inherent	Ignition	Load	Switch-off time	Casing				Weight
		50-60 Hz	lamp current	loss	heating	voltage	capacity		d (Ø)	а	Ь	С	
		V	А	W	K	kV	pF	sec./Hz	mm	mm	mm	mm	9
Aluminium ca	sing (Al)												
Z 400 S	140427	220-240	5	< 3	< 25	4-5	20-100	_	45	76	-	-	250
Z 400 S D20	141583*	220-240	5	< 3	< 25	4-5	20-100	1216/50-60	45	90	_	_	280

^{*} With IPP technology

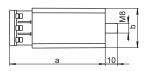
Electronic Superimposed Ignitors for HS Lamps 70 (DE) to 400 W and HI Lamps 35 to 400 W

Standard version or with automatic switch-off Compact shape For high pressure sodium lamps (HS), metal halide lamps (HI) and ceramic discharge lamps (C-HI) Ignition voltage: 4-5 kV Phasing of the ignition voltage: 60-90 °el and 240-270 °el Max. permitted casing temperature: 105 °C Fastening: male nipple with pre-assembled washer and nut


For luminaires of protection class I and II For luminaires of protection class I (140594, 147707)

Al casing

PC casing – K



PC casing - K D20

PC casing – with push-in terminals

Туре	Ref. No.	Voltage AC	Max.	Internal	Inherent	Ignition	Load	Switch-off time	Casin	9			Weight
		50-60 Hz	lamp current	loss	heating	voltage	capacity		d (Ø)	a	Ь	С	
		V	А	W	K	kV	pF	sec./Hz	mm	mm	mm	mm	9
Aluminium casing	(Al) with scr	ew terminal	s: 0.75–4 mm²	1									
Z 400 M	140594	220-240	5	< 3	< 35	4-5	20-50	_	35	76	_	_	140
Z 400 M VS-Power	147707**	220-240	5	< 3	< 35	4-5	20-50	_	35	76	-	-	140
Z 400 M S	140693	220-240	5	< 3	< 35	4-5	20-50	_	35	76	-	_	140
Plastic casing (PC)	with screw t	erminals: 0.	75–4 mm²					•					
Z 400 M K	140597	220-240	5	< 3	< 35	4-5	20-50	_	_	78	34	27	130
Z 400 M K VS-Power	142897**	220-240	5	< 3	< 35	4-5	20-50	_	_	78	34	27	130
Z 400 M K D20	141582*	220-240	5	< 3	< 35	4-5	20-50	1216/50-60	_	80	34	30	145

< 35

< 35

< 3

< 3

4-5

4-5

4-5

20-50

20-50

20-50

Recommended for outdoor lighting

Z 400 M K VS-Power 142361**

142360

142370*

220-240

220-240

220-240

With IPP technology

Z 400 M K

Z 400 M K D20

** Not suitable for C-HI lamps

130

130

145

34

34 30

81 34

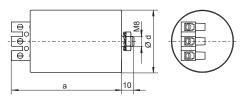
1216/50-60

Electronic Superimposed Ignitors for HS Lamps 600 and 750 W

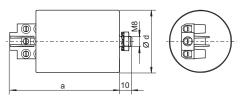
Standard version
For high pressure sodium lamps (HS)
Phasing of the ignition voltage:
60–90 °el and 240–270 °el
Max. permitted casing temperature: 105 °C
Screw terminals: 0.75–4 mm²
Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I and II

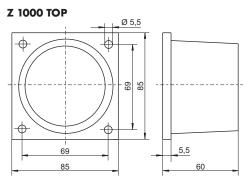
Al casing

Туре	Ref. No.	Voltage AC	Мах.	Internal	Inherent	Ignition	Load	Switch-off time	Casing				Weight
		50 - 60 Hz	lamp current	loss	heating	voltage	capacity		d (Ø)	а	Ь	С	
		V	А	W	K	kV	pF	sec./Hz	mm	mm	mm	mm	g
Aluminium	casing (Al)												
Z 750 S	146990	220 - 240	8	< 3	< 20	4-5	20 - 100	_	50	90	_	_	360


Electronic Superimposed Ignitors for HS and **HI Lamps** 250 to 1000 W

Standard version or with automatic switch-off For high pressure sodium lamps (HS) and metal halide lamps (HI) Phasing of the ignition voltage: 60-90 °el and 240-270 °el Max. permitted casing temperature: 105 °C Screw terminals: 0.75 - 2.5 mm² (Z 1000 S: 0.75-4 mm²) Fastening: male nipple with pre-assembled


For luminaires of protection class I and II


washer and nut

Al casing

Al casing - D20

6 8
85 - 60

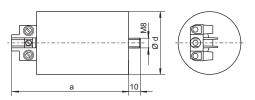
Туре	Ref. No.	Voltage AC	Мах.	Internal	Inherent	Ignition	Load	Switch-off time	Casing	9			Weight
		50-60 Hz	lamp current	loss	heating	voltage	capacity		d (Ø)	а	Ь	С	
		V	А	W	K	kV	pF	sec./Hz	mm	mm	mm	mm	g
Aluminium casi	ng (Al)												
Z 1000 S	140430	220-240	12	< 6	< 35	4-5	20-100	-	50	80	_	_	340
Z 1000 TOP	140607**	220-240	12	< 6	< 35	4-5	20-100	_	_	85	85	60	520
Z 1000 S D20	141584*	220-240	12	< 6	< 35	4-5	20-100	1216/50-60	50	89			340

With IPP technology

VSVOSSLOH SCHWABE

For flange-mounting with gasket for degree of protection IP55 $\,$

Electronic Superimposed Ignitors for HS and HI Lamps up to 1000 W


Standard version
For high pressure sodium lamps (HS)
and metal halide lamps (HI)

For long lead lengths

Max. permitted casing temperature: 105 °C Screw terminals: 0.75-2.5 mm² Fastening: male nipple with pre-assembled washer and nut

Al casing

For HS and HI lamps 150 to 1000 W

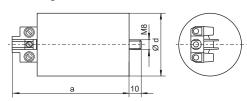
Phasing of the ignition voltage: $60-90\,^{\circ}\text{el}$ For luminaires of protection class I

Туре	Ref. No.	Voltage AC	Мах.	Internal	Inherent	Ignition	Load	Switch-off time	Casing				Weight
		50-60 Hz	lamp current	loss	heating	voltage	capacity		d (Ø)	а	Ь	С	
		V	А	W	K	kV	pF	sec./Hz	mm	mm	mm	mm	9
Aluminium ca	sing (Al)												
Z 1000 L	140471*	220-240	12	< 6	< 35	4-5	20-2000	_	50	97	_	_	340

^{*} Not suitable for HI lamps types NDL, WDL or for HS lamps types S, de-Luxe, Comfort or similar

For HS lamps 600 to 1000 W/400 V and HI lamps 1000 W/400 V

Phasing of the ignition voltage: 60-90 °el and 240-270 °el For luminaires of protection class I and II


Туре	Ref. No.	Voltage AC	Max.	Internal	Inherent	Ignition	Load	Switch-off time	Casing				Weight
		50-60 Hz	lamp current	loss	heating	voltage	capacity		d (Ø)	а	Ь	С	
		V	А	W	K	kV	рF	sec./Hz	mm	mm	mm	mm	g
Aluminium cas	ing (AI)												
Z 1000 S/400 V	140496	380-415	6	< 3.3	< 28	4-5	20-2000	_	45	100	-	-	295

Electronic Superimposed Ignitors for Projection Lamps up to 1200 W

Standard version
For high-pressure discharge lamps
Phasing of the ignition voltage:
60-90 °el and 240-270 °el
Max. permitted casing temperature: 105 °C
Screw terminals: 0.75-2.5 mm²
Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I

Al casing

Туре	Ref. No.	Voltage AC	Max.	Internal	Inherent	Ignition	Load	Switch-off time	Casing				Weight
		50-60 Hz	lamp current	loss	heating	voltage	capacity		d (Ø)	а	Ь	С	
		V	A	W	K	kV	pF	sec./Hz	mm	mm	mm	mm	g
Aluminium	casing (Al)												
Z 1200/2.5	140608*	220-240	15	< 7.5	< 40	2-2.5	20-200	_	50	87	_	_	330
Z 1200/9	140609**	220-240	15	< 10	< 40	7-8	20-50	_	50	135	_	_	650

^{*} For lamps, e.g. HSR, MSR, SN

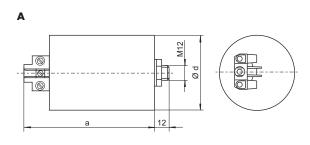
2

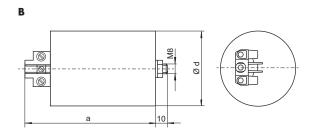
3

4

6

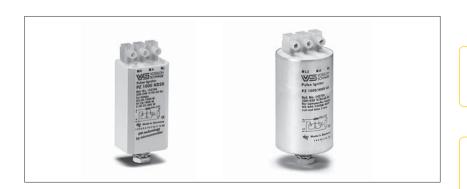
7

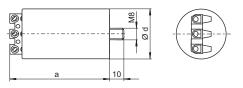

10


^{**} For lamps, e.g. HMI, HTI, CDI, RSI, CSR

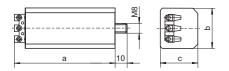
Electronic Superimposed Ignitors for HI Lamps up to 3500 W

Standard version
For metal halide lamps (HI)
Phasing of the ignition voltage:
60–90 °el and 240–270 °el
Max. permitted casing temperature: 105 °C
Screw terminals: 0.75–2.5 mm²
Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I and II




Туре	Ref. No.	Voltage AC	Мах.	Internal	Inherent	Ignition	Load	Switch-off	Drawing	Casing				Weight
		50-60 Hz	lamp current	loss	heating	voltage	capacity	time		d (Ø)	а	Ь	С	
		V	А	W	K	kV	рF	sec./Hz		mm	mm	mm	mm	9
Aluminium casir	ng (Al)													
Z 2000 S	140432	220-240	20	< 6	< 30	4-5	20-100	_	А	65	96	_	_	640
Z 2000 S/400 V	140497	380-415	12	< 5	< 32	4-5	20-2000	-	В	50	98	_	_	340
Z 3500 S/400 V	140499	380-415	20	< 7	< 35	4-5	20-100		В	65	96			650

Pulse Ignitors for HS and **HI Lamps** up to 1000 W


With automatic switch-off For high pressure sodium lamps (HS), metal halide lamps (HI) and ceramic discharge lamps (C-HI) Max. permitted casing temperature: 95 °C Screw terminals: 0.75-2.5 mm² Fastening: male nipple with pre-assembled washer and nut For luminaires of protection class I This pulse ignitor is only for use with ballasts that have a dedicated tapping, as this determines the size of the ignition voltage.

Al casing

PC casing

For HS lamps 50 to 1000 W, HI lamps 35 to 1000 W and C-HI lamps 35 to 400 W

Туре	Ref. No.	Voltage AC	Number of	Ignition	Load	Programmed	Casir	ng		Weight
		50-60 Hz	ignition pulses	voltage	capacity	switch-off time	а	b	С	
		V	per mains period	kV	pF	sec./Hz	mm	mm	mm	9
Plastic casing (P	C)									
PZ 1000 K D20	142784*	220-240 ±10%	≥ 2	1.8-2.3/4-5	20-1000	1216/50-60	74	34	27	100
MARILIND . I I										

With IPP technology

For HS lamps 600 to 1000 W/400 V and HI lamps 1000 W/400 V

Туре	Ref. No.	Voltage AC	Number of	Ignition	Load	Programmed	Casing				Weight
		50-60 Hz	ignition pulses	voltage	capacity	switch-off time	d (Ø)	а	Ь	С	
		V	per mains period	kV	pF	sec./Hz	mm	mm	mm	mm	g
Aluminium casing (Al)										
PZ 1000/400 V A5	142783*	380-420	≥ 1	4-5	20-800	300/50	40	80	_	_	155

^{*} Suitable ballasts (type: NaHJ...PZT) are available on request

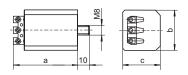
VS VOSSLOH SCHWABE

^{*} Suitable ballasts (type: NaHJ...PZT) are available on request

Pulse Ignitors for HS Lamps 50 to 1000 W

Standard version

For standard high pressure sodium lamps (HS)

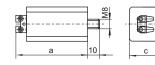

Max. permitted casing temperature: 95 °C

Screw terminals: $0.5-1.5 \ \text{mm}^2$

Fastening: male nipple with pre-assembled

washer and nut

For luminaires of protection class I


	Туре	Ref. No.	Voltage AC	Number of	Ignition	Load	Programmed	Casing	Casing		Weight	
			50-60 Hz	ignition pulses	voltage	capacity	switch-off time	d (Ø)	а	b	С	
			V	per mains period	kV	pF	sec.	mm	mm	mm	mm	9
Ī	Plastic casing (PC)											
	PZS 1000 K	140613	220-240	approx. 1/sec.	арргох. 4	20-4000	_	_	50	28	27	50

Not suitable for HS lamps types Plus, Super, XL, HO

Suitable ballasts (type: NaH...P) are available on request

Pulse Ignitors for HI Lamps 250 to 2000 W, Ignition Voltage up to 1 kV

Standard version For metal halide lamps (HI) with ignition voltage of 0.9 kV Max. permitted casing temperature: 95 °C Screw terminals: 0.5-2.5 mm² Fastening: male nipple with pre-assembled washer and nut For luminaires of protection class I

Туре	Ref. No.	Voltage AC	Number of	Ignition	Load	Programmed	Casing		g Weight	
		50-60 Hz	ignition pulses	voltage	capacity	switch-off time	а	b	С	
		V	per mains period	kV	pF	sec.	mm	mm	mm	9
Plastic casing (PC)										
PZI 1000/1 K	140617	220-240	≥ 1	0.7-0.9	max. 10000	_	57	28	27	50

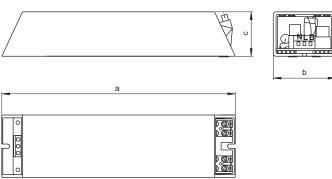
Suitable ballasts see page 131, 133 und 134

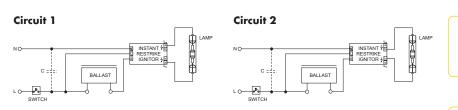
Instant Restrike Ignitors for High-pressure Discharge Lamps up to 600 W

For high pressure sodium lamps (HS), metal halide lamps (HI), ceramic discharge lamps (C-HI) and projection lamps in accordance with the lamp table shown below For installation as a symmetric ignition device (whereby the ignition voltage is split equally over both lamp electrodes)

For installation in luminaires of protection class I Max. permitted ambient temperature t_a: 60 °C Mains connection: screw terminal 3-poles, 0.75-2.5 mm²

Lamp connection: screw terminal 0.75– $2.5~\text{mm}^2$ for circuit 1 and 2


Fastening: 2 mounting slots for screws M4 Material: plastic casing made of ABS


CAUTION

Defective lamps must be replaced immediately

www.vossloh-schwabe.com

Туре	Ref. No.	Voltage AC	Мах.	Internal	Inherent	Ignition	Ignition	Load	Casing			Weight
		50-60 Hz	lamp current	loss	heating	voltage*	time	capacity	a	b	С	
		V	А	W	K	kV	sec.	pF	mm	mm	mm	g
HZ 600 K	147790	230 ±10%	8	< 4	< 10	20-35	арргох. 6	5-30	247	66	47	1000

^{*} Depending on the respective circuit; the ignition voltage is split equally over both lamp electrodes

Lamp table									
Circuit 1				Circuit 2					
Lamp type	Base	VS lampholder type	Catalogue page	Lamp type	Base	VS lampholder type			
CDM-TD 70 W	RX7s	306	180	HBO 50 W	SFa8-2	_			
HCI-TS 70 W	RX7s	306	180	MSR 125 HR	GZX9.5	_			
HI 70 W (DE)	RX7s	306	180	HBO 200 W	SFc10-4	_			
HS 70 W (DE)	RX7s	306	180	HBO 200 W	SFc10-4	_			
RCI-TS 70 W	RX7s	306	180	MSR 200 HR	GZX9.5	_			
HS 150 W (DE)	RX7s	306	180	HTI 250 W	FaX1.5	_			
HMI 200 W	X515	_		HMI 400 W/SE	GZZ9.5	_			
HMI 200 W/X	GZY9.5	_		HMP 400 W	FaX1.5	_			
MSI 200 W	GZY9.5	_		HTI 400 W	FaX1.5	_			
RSI 200 W	X515	_		RSI 400 W	GZX9.5	_			
HS 250 W (DE)	Fc2	025	181-182	HBO 500 W	SFcY13-5	_			
HS 400 W (DE)	Fc2	025	181-182	HMP 575 W	SFc10-4 / G22	/ in preparation			
MSR 400 HR	GZZ9.5	_		HMI 575 W	SFc10-4	_			
MSI 575 W	SFc10	_		RSI 575 W	G22	in preparation			
MSR 575 HR	G22	in preparation		HTI 600 W	FaX1.5	_			

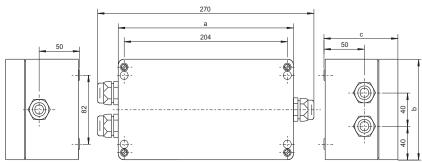
VOSSLOH

155

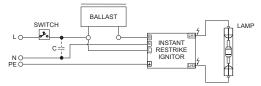
Instant Restrike Ignitors for High-pressure Discharge Lamps 1000 W/230 V and 2000 W/400 V

For high pressure sodium lamps (HS), metal halide lamps (HI), ceramic discharge lamps (C-HI) in accordance with the lamp table shown below For installation as a symmetric ignition device (whereby the ignition voltage is split equally over both lamp electrodes)

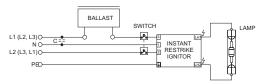
Degree of protection: IP65


For installation in luminaires of protection class I Max. permitted ambient temperature t_a : 60 °C Mains connection: screw terminal 3-poles, max. 4 mm²

Earth connection: screw terminal max. 4 mm²
Lamp connection: screw terminal max. 4 mm²
Fastening: 4 holes Ø 6.3 mm in the base of casing Material: casing made of fibreglass-reinforced polyester


CAUTION

Defective lamps must be replaced immediately



Circuit diagram HZ 1000 K/230V

Circuit diagram HZ 2000 K/400 V

Туре	е	Ref. No.	Voltage AC	Мах.	Internal	Inherent	Ignition	Ignition	Load	Casing			Weight
			50-60 Hz	lamp current	loss	heating	voltage*	time	capacity	а	b	С	
			V	А	W	K	kV	sec.	pF	mm	mm	mm	g
ΗZ	1000 K	147791	230 ±10%	12	< 5	< 10	36	арргох. б	5-50	218	120	92	3745
HZ	2000 K/400 V	147793	400 ±10%	12	< 5	< 10	36	арргох. б	5-30	218	120	92	3745

 $[\]ensuremath{^{\star}}$ The ignition voltage is split equally over both lamp electrodes

Lamp table HZ	Lamp table HZ 1000 K										
Lamp type	Lamp manufacturer	Base	VS lampholder type	Catalogue page	Lamp type	Base	VS lampholder type	Catalogue page			
CDM-TD 150 W	Philips	RX7s	306	180	HI 400 W (DE)	Fc2	025	181-182			
HCI-TS 150 W	Osram	RX7s	306	180	HS 400 W (DE)	Fc2	025	181-182			
HI 150 W (DE)		RX7s	306	180	HI 1000 W (DE)	Fc2	025	181-182			
HS 150 W (DE)		RX7s	306	180	HS 1000 W (DE)	Cable, K12s-7	211	183			
HI 250 W (DE)		Fc2	025	181-182	_	_	_	_			
HS 250 W (DE)		Fc2	025	181-182	_	_	_	_			

Lamp table HZ 2000 K/400 V										
Lamp type	Base	VS lampholder type	Catalogue page	Note						
HI 2000 W (DE)	Cable, K12s-7	211	183	not suitable for HRI-TS 2000 W/N/L, HQI-TS 2000 W/N/L						

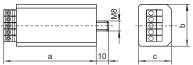
Electronic Power Switches for HS Lamps up to 600 W and HM Lamps up to 700 W

For high pressure sodium lamps (HS) and mercury vapour lamps (HM) For power reduction by using ballasts with multiple voltage tapping and superimposed ignitors

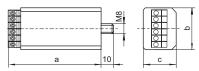
Casing: PC

Max. permitted casing temperature tc: 80 °C Screw terminals: 0.75-2.5 mm² Fastening: male nipple with pre-assembled washer and nut

For luminaires of protection class I and II Circuit diagrams for power reduction see pages 201-202.

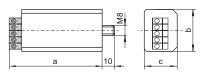

Advantages of PR 12 K LC

- intelligent, auto-adaptive concept
- eliminates the time-consuming task of continually adjusting the times of power-reduced operation to suit constantly changing day-night cycles
- removes the need for making adjustments due to daylight-saving times
- easy programming via dial
- no additional control line necessary


142150***

- optimal suitable for the supplementary integration into existing luminaires
- suitable for luminaires of protection class I and II

PU 12 K/PR 12 KD/PR 12 K LC



PU 120 K

PU 121 K

without control phase

76 34 31

Туре	Ref. No.	Voltage AC	Max. con	Max. contact		Integrated	Control phase	Casii		Weight	
			current	urrent h		delay	for power reduction	а	Ь	С	
		V, Hz	А	Α λ Κ		switching	(circuitry logic)	mm	mm	mm	g
Power redu	uction with cont	rol phase									
PU 12 K	140621	230, 50 / 220, 60	8/0.5	12/1	< 25	_	disconnect or connect	74	34	27	100
PU 120 K	140622*	230, 50 / 220, 60	8/0.5	12/1	< 10	327 sec.	disconnect	74	34	27	100
PU 121 K	140623*	230, 50 / 220, 60	8/0.5	12/1	< 25	327 sec.	connect	74	34	27	100
Power redu	uction without o	ontrol phase									
PR 12 K LC	142170**	220-230 ±10%, 50	8/0.5	12/1	< 12	selectable	without control phase	76	34	31	100
		220 ±10% 60									

selectable

* Fo	or full-lo	ad lan	np start
------	------------	--------	----------

PR 12 K D

12/1

8/0.5

220-230 ±10%, 50

220 ±10%, 60

^{**} Time of power-reduced operation selectable, starting point of switching-time changes automatically to suit constantly changing day-night cycles

^{***} Power reduction after a constant switching-time (delay switching); swichting-time selectable: 3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 hrs at 50 Hz

Electronic Superimposed Ignitors with Power Switch for HS Lamps 50 to 250 W

WE SERVICE STORY

VIN CONCRETE

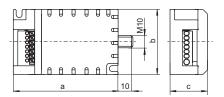
For ignition and power reduction of high pressure sodium lamps (HS)

Casing: PC

Control voltage: 230 V ±10%
Response/cut-out voltage: 170-198 V
Phasing of the ignition voltage:
60-90 °el and 240-270 °el

Max. permitted casing temperature t_c : 80 °C

Push-in terminals: $0.75 - 1.5 \text{ mm}^2$


 $\label{prop:prop:state} \textit{Fastening: male nipple with pre-assembled}$

washer and nut

For luminaires of protection class I and II

Applicable for positive switch logic allowing for terminal pin assignment of power switch

- Full load lamp start is guaranteed
- Switching to power reduced operation after delay time of approx. 5 min.

Туре	Ref. No.	Voltage AC	Max.	Number of	Internal	Inherent	Ignition	Load	Programmed	Casir	ng		Weight
			lamp	ignition pulses	loss	heating	voltage	capacity	switch-off time	а	Ь	С	
			current	per mains									
		V, Hz	А	period	W	K	kV	рF	sec./Hz	mm	mm	mm	9
HS lamps 50 a	nd 70 W												
ZPU 70 K D20	142098	230, 50/220, 60	2	4	< 2	< 15	1.8-2.3	20-200	1216/50-60	96	50	32	240
HS lamps 70 (DE) to 250	w											
ZPU 250 K D20	142099	230, 50/220, 60	3	6	< 2	< 15	4-5	20-50	1216/50-60	96	50	32	240

Circuit diagrams see page 202

Switch Units for Electronic Operating Devices with 1-10 V Interface

Vossloh-Schwabe's switch units are designed to enable one-step power reduction of lamps (FL, CFL, LED, HS, HI and C-HI) with the help of the respective electronic ballast or converter.

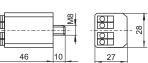
To this end, the switch units utilises the 1-10 V interface of the control gear unit. The switch unit is mainly intended for outdoor luminaires in systems with or without a control phase.

Shape: 56x28x27 mm

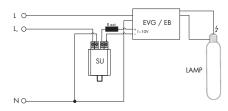
Casing: PC

Screw terminals: 0.75-2.5 mm²

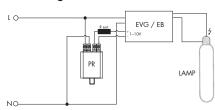
Max. permissible casing temperature tc: 80 °C Min. permissible ambient temperature ta: -30 °C Fastening: plastic male nipple with pre-assembled washer and nut


Power reduction SU 1-10 V K for lighting systems featuring an LST control phase

The switch unit employs a positive switching to reduce power, i.e. power is reduced when the control phase is switched off (LST = OV). The 1-10 V interface of the electronic ballast is addressed at the moment that power reduction is effected.


Power reduction PR 1-10 V K LC for lighting systems without a control phase

This switch unit can be used to effect power reduction in lighting systems that do not feature a control phase.


The 1-10 V interface is addressed on the basis of the fundamental operating principle used by Vossloh-Schwabe's PR 12 K LC power switch (details of which can be made available on request). This power switch is capable of determining the starting time of reduced-power operation over the measured operating time of a lighting system. As a result, it is no longer necessary to spend valuable time modifying the power-reduction unit to suit the continually changing day-night cycle; changing the clocks in line with daylight saving measures in the summer and winter is equally unnecessary. The 1-10 V interface of the electronic ballast is addressed as soon as the system is switched to reduced power.

Circuit diagram SU 1-10 V K

Circuit diagram PR 1-10 V K LC

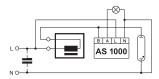
	Туре	Ref. No.	Control voltage LST	Externally (on site) connected resistor (R _{ext.})	Self-heating	Weight						
			V, 50/60 Hz	kΩ (min. 0.1 W)	K	g						
	For lighting systems with control phase											
۱	SU 1-10 V K	149992	220-240 V ±10%	1-70	< 10	50						
	For lighting systems without control phase											
۱	PR 1-10 V K LC	149993	_	1-70	< 10	50						

new

new

Start-up Switches for HS and HI Lamps 35 to 1000 W and HM Lamps 50 to 700 W

To bridge a phase of darkness during the starting-up period of high-pressure discharge lamps and also after a brief interruption of the power supply until the high-pressure discharge lamps are restarted


For mercury vapour lamps (HM), high-pressure sodium lamps (HS), metal halide lamps (HI) and ceramic discharge lamps (C-HI) For HS, HI and C-HI lamps only if used together with a superimposed ignitor Nominal voltage/frequency: 220-230 V ± 10%/50-60 Hz

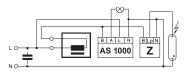
 $220-230 \text{ V} \pm 10\%/50-60 \text{ Hz}$ $240 \text{ V} \pm 10\%/50 \text{ Hz}$

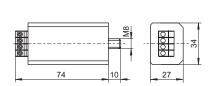
Max. permitted casing temperature t_c: 85 °C Screw terminals: 0.75-2.5 mm² Fastening: male nipple with pre-assembled washer and nut

Max. wattage of incandescent lamp: 1000 W Automatic switch-off at 60% of the discharge lamp's luminous flux During the ignition and start-up period, the start-up switch activates an incandescent lamp to provide a basic level of lighting. After a brief interruption in the supply voltage during the re-ignition of the discharge lamp, the integrated control electronics also bridges the phase of darkness by switching on the auxilliary lighting. The incandescent lamp is automatically switched off when the discharge lamp has achieved a sufficient luminous flux (approx. 60%).

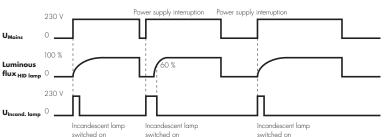
Circuit for HM lamps

AS 1000 K

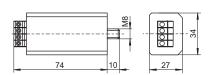

Casing: PC Weight: 100 g Internal loss: < 0.8 W Inherent heating: < 10 K Type: AS 1000 K **Ref. No.: 140627**


The time diagram shows some typical switching examples of a luminaire equipped with a high-

pressure discharge lamp, incandescent lamp and

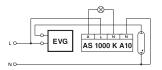

start-up switch AS 1000 K.

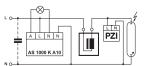
Circuit for HS and HI lamps

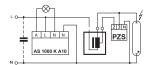

Ignitors and Accessories for Discharge Lamps

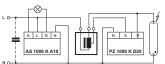
AS 1000 K A10

Specially for using with electronic ballasts or pulse ignitors for highpressure discharge lamps Casing: PC


Delayed switching: 655 sec. (50 Hz) For luminaires of protection class I and II $\,$ Max. contact current: 6 A at λ 0.5, 10 A at λ 1


Internal loss: < 1 W Inherent heating: < 12 K Weight: 100 g Type: AS 1000 K A10 Ref. No.: 141193

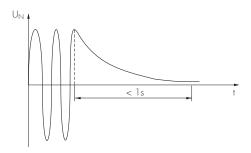




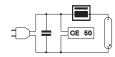
Circuit with electronic ballast

The time diagram shows some typical switching examples of a luminaire equipped with a highpressure discharge lamp, incandescent lamp and start-up switch AS 1000 K A10.

Electronic Discharge Units for Parallel Connected Capacitors 0.1 to 100 μF


On luminaires with parallel compensation and designed for plug connection to the mains supply, the plugs retain their charge for a relatively long time after disconnection from the power supply. The discharge resistors built into the compensation capacitor are designed for stationary lamps and when disconnected from the mains permit a voltage reduction to 50 V after 1 minute at the earliest.

According to European standard EN 60598-1, the compensation capacitor on mobile lamps must be discharged to 34 V within 1 second. Until now so-called discharge chokes built like conventional ballasts have been used for this purpose. These conventional discharge chokes are connected in parallel to the compensation capacitor and after disconnection from the power supply rapidly discharge the capacitor owing to their low ohmic resistance.


In their rated operating conditions, conventional discharge chokes exhibit a considerable inductive reactance which diminishes the effect of the compensation capacitor particularly if it has a low capacitance.

Furthermore, conventional discharge chokes cause considerable losses and feature high weight.

With the aid of the electronic discharge unit CE 50, it is possible to discharge a capacitor with a capacitance of up to 100 µF to 34 V within 1 second, i.e. within the time specified in EN 60598-1.

Thanks to its high reliability, low inherent losses, small dimensions and low weight, the CE 50 represents an inexpensive solution to the problem of capacitor discharge.

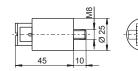
CE 50

All electronic, wear resistant switching element

Casing: aluminium

Nominal voltage: 34-264 V Nominal frequency: 50-60 Hz

Internal loss: < 0.5 W Inherent heating: < 6 K

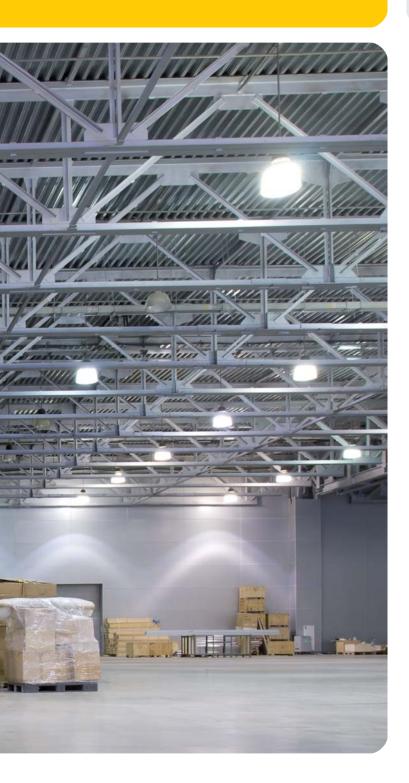

Max. permitted casing temperature: 95 °C

Push-in terminals: 1 mm²

Fastening: male nipple with pre-assembled washer

and nut Weight: 40 g Type: CE 50

Ref. No.: 140537



Ignitors and Accessories for Discharge Lamps

THERMOPLASTICS AND PORCELAIN

THE RIGHT MATERIAL MIX SPELLS A DECISIVE ADVANTAGE

The lampholders presented in this chapter are designed for high-pressure discharge lamps, for which high ignition voltages and high starting currents are characteristic. High temperatures can also occur with higher lamp outputs.

Vossloh-Schwabe therefore attaches great importance to ensuring casings, contacts and cables are made of high-grade materials.

Owing to the high ignition voltages, these lampholders are also governed by stricter requirements regarding creepage and air clearance distances.

When operating high-pressure discharge lamps with E27 and E40 Edison bases, care must be taken to ensure that the respective lampholders are approved for use with discharge lamps. Lampholders that are suitable in this respect are marked with " $5~\rm kV$ ".

Lampholders with E26 and E39 bases and UL-approved wiring can be found under **www.unvlt.com**.

Lampholders for Discharge Lamps

E27 lampholders	166-168
E40 lampholders	169-171
G8.5 lampholders	171
GX8.5 lampholders, accessories	172
GU8.5 lampholders	172
GU6.5 lampholders	173
PGJ5 lampholders	174
GX 10 lampholders	175
GY9.5 lampholders	175
G12, GX12-1, PG12-1, PG12-2 lampholders	176-177
RX7s lampholders	177-180
Fc2 lampholders	181–182
K12×30s lampholders	182
K12s-7 support	183
Technical details for discharge lamps General technical details	184-225 533-540

E27 Lampholders

For discharge lamps with base E27

E27 lampholders, for cover caps (see p. 433-435) Profiled shape, external thread 40x2.5 IEC 60399 Nominal rating: 4/250/5 kV

Push-in twin terminals: 0.5-2.5 mm²
Fixing holes for screws M3
Rear fixing holes for self-tapping screws

acc. to ISO 1481/7049-ST3.9-C/F Weight: 15/16.5 g, unit: 500 pcs.

Type: 64719

Ref. No.: 505721 PET GF, black, T210 Ref. **No.: 505720** LCP, black, T270

E27 lampholders, for cover caps (see p. 433-435) Profiled shape, plain

Nominal rating: 4/250/5 kV Push-in twin terminals: 0.5-2.5 mm² Fixing holes for screws M3 Rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST3.9-C/F

Weight: 15 g, unit: 500 pcs.

Type: 64770

Ref. No.: 505389 PET GF, black, T210 LCP, black, T270

E27 lampholders

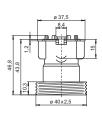
Casing: PPS, black, T230 Nominal rating: 4/500/5 kV Screw terminals: 0.5-2.5 mm² Spring loaded central contact Fixing holes for screws M4 and M5

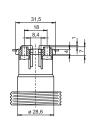
Weight: 35/35.4 g, unit: 250 pcs.

Type: 62150 **Ref. No.: 108718**

Type: 62151 with lamp safety catch

Ref. No.: 108719

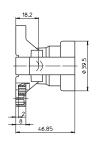

E27 lampholders

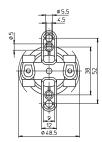

Casing: porcelain, white, T210
Nominal rating: 4/250/5 kV
Screw terminals: 0.5-2.5 mm²
Spring loaded central contact
Oblong holes for screws M4
Weight: 65/67.7 g, unit: 200 pcs.

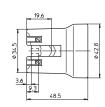
Type: 62600 **Ref. No.: 102635**

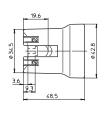
Type: 62601 with lamp safety catch

Ref. No.: 102637









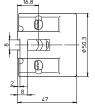
E27 lampholder

Casing: porcelain, white, T210 Nominal rating: 4/250/5 kV Screw terminals: $0.5-2.5 \text{ mm}^2$ Spring loaded central contact Threaded bushes for screws M3 Weight: 69.3 g, unit: 200 pcs.

Type: 62622 Ref. No.: 108416

E27 lampholders

Casing: porcelain, white, T210 Nominal rating: 4/250/5 kV Screw terminals: 0.5-2.5 mm² Spring loaded central contact


Oblong holes for screws M4, length max. 15 mm

Weight: 106.8/103.9 g, unit: 100 pcs.

Type: 62104 Ref. No.: 102615

Type: 62105 with lamp safety catch

Ref. No.: 102617

ø 50,3

E27 lampholders

Casing: porcelain, white, T210 Nominal rating: 4/250/5 kV Screw terminals: $0.5-2.5 \text{ mm}^2$ Spring loaded central contact Fixing bracket with slot for screws M5Weight: 113 g, unit: 100 pcs.

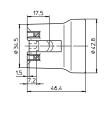
Type: 62110

Ref. No.: 106585

Type: 62111 with lamp safety catch

Ref. No.: 109568

Casing: porcelain, white, T270 Nominal rating: 4/250/5 kV Screw terminals: 0.5-2.5 mm² Spring loaded central contact Fixing oblong holes for screws M4 Weight: 60.6 g, unit: 200 pcs.

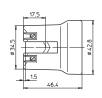

Type: 62050

Ref. No.: 102599

Type: 62010 with lamp safety catch (with spring)

Ref. No.: 102577

Type: 62009 with lamp safety catch (with crushing)

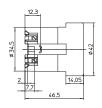

new Ref. No.: 544605

E27 lampholder

Casing: porcelain, white, T270 Nominal rating: 4/250/5 kV Screw terminals: $0.5-2.5 \text{ mm}^2$ Spring loaded central contact Fastening bushes for screws M3 Weight: 66.3 g, unit: 200 pcs.

Type: 62015

Ref. No.: 102582



E27 lampholder, one-piece
Material: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: 0.5-2.5 mm²
Spring loaded central contact
Fixing oblong holes for screws M4
Weight: 60.5 g, unit: 200 pcs.

Type: 62070

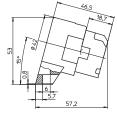
new Ref. No.: 543304

E27 lampholder
Material: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: 0.5-2.5 mm²
With lateral fixing flange,

tilt angle: 15°

Spring loaded central contact Fixing hole for screw M4 Weight: 67.6 g, unit: 200 pcs.

Type: 62415

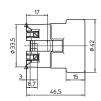

Ref. No.: 543414

E27 lampholder, for cover caps (see page 435)
Casing: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: 0.5-2.5 mm²
Spring loaded central contact

Fixing oblong holes for screws M4 Weight: 66.5 g, unit: 150 pcs.

Type: 62310

Ref. No.: 102624


15 46.9

E27 lampholder
For cover caps type 80010, 97735
and 97742 (see page 441)
Casing: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: 0.5-2.5 mm²
Spring loaded central contact
Fixing oblong holes for screw M4
Weight: 66.5 g, unit: 200 pcs.

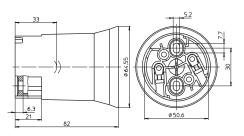
Type: 62370 **Ref. No.: 543303**

E40 Lampholders

For discharge lamps with base E40

Nominal rating: 18/500/5 kV Screw terminals: 1.5-4 mm² Spring loaded central contact

E40 lampholders


Casing: PPS, black, T240 Oblong holes for screws M5 Weight: 111.7/112.1 g, unit: 40 pcs.

Type: 12600/12601 Ref. No.: 400913

Ref. No.: 400914 with lamp safety catch

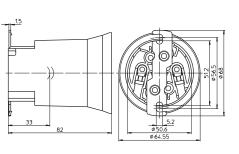
With steel thread Ref. No.: 533428

Ref. No.: 533429 with lamp safety catch

E40 lampholders

Casing: PPS, black, T240

Fixing bracket with slots for screws M5 Weight: 122.3/122.7 g, unit: 40 pcs.


Type: 12610/12611 Ref. No.: 400915

Ref. No.: 400916 with lamp safety catch

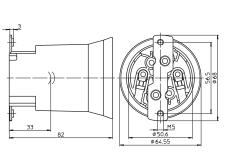
With steel thread

Ref. No.: 533430

Ref. No.: 533431 with lamp safety catch

E40 lampholders

Casing: PPS, black, T240


Fixing bracket with tapped fixing holes M5 Weight: 122.9/123.3 g, unit: 40 pcs.

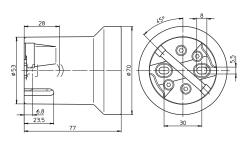
Type: 12614/12612 Ref. No.: 400917

Ref. No.: 400918 with lamp safety catch

With steel thread Ref. No.: 536220

Ref. No.: 533432 with lamp safety catch

E40 lampholders


Casing: porcelain, white, T270 Oblong holes for screws M5 Weight: 224/229.3 g, unit: 48 pcs.

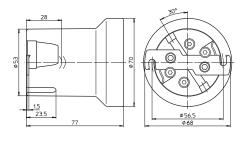
Type: 12800/12801 Ref. No.: 108208

Ref. No.: 107780 with lamp safety catch

With steel thread Ref. No.: 532602

Ref. No.: 532603 with lamp safety catch

E40 lampholders

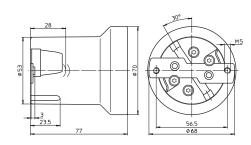

Casing: porcelain, white, T270 Fixing bracket with slots for screws M5 Weight: 252.3/243 g, unit: 48 pcs.

Type: 12810/12811 **Ref. No.: 108374**

Ref. No.: 108375 with lamp safety catch

With steel thread **Ref. No.: 532604**

Ref. No.: 532605 with lamp safety catch

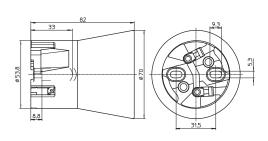

E40 lampholders

Casing: porcelain, white, T270

Fixing bracket with tapped fixing holes M5

With lamp safety catch Weight: 252.8 g, unit: 48 pcs.

Type: 12812 **Ref. No.: 108373**With steel thread **Ref. No.: 532606**

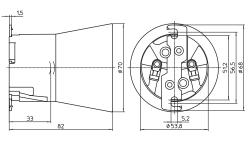


E40 lampholders

Casing: porcelain, white, T270 Oblong holes for screws M5 Weight: 220 g, unit: 48 pcs.

Type: 12500/12501 **Ref. No.: 533950**

Ref. No.: 533951 with lamp safety catch

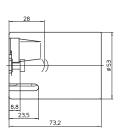

E40 lampholders

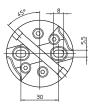
Casing: porcelain, white, T270 Fixing bracket with slots for screws M5

Weight: 240 g, unit: 48 pcs. Type: 12510/12511

Ref. No.: 533952

Ref. No.: 533953 with lamp safety catch

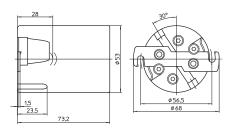



E40 lampholders

Only for lamps with base E40/E45 Casing: porcelain, white, T270 Oblong holes for screws M5 Weight: 206 g, unit: 50 pcs.

Type: 12900/12901 **Ref. No.: 528252**

Ref. No.: 528958 with lamp safety catch


E40 lampholders

Only for lamps with base E40/E45Casing: porcelain, white, T270 Fixing bracket with slots for screws M5

Weight: 217 g, unit: 50 pcs. Type: 12910/12911

Ref. No.: 528253

Ref. No.: 528254 with lamp safety catch

G8.5 Lampholders

For discharge lamps with base G8.5

Nominal rating: 2/500/5 kV Multipoint contacts: CuNiZn Fixing holes for screws M3

G8.5 lampholders

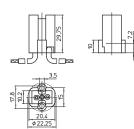
Push-in terminals for stranded conductors with ferrule bare end of cores \varnothing 1.4–1.8 mm Type: 33600 casing: LCP, black, T270

Weight: 5 g, unit: 1000 pcs. Ref. No.: 502394

Type: 33650 casing: ceramic, T300 Weight: 12.6 g, unit: 150 pcs.

Ref. No.: 526018

G8.5 lampholder


Casing: ceramic, T300

Welded leads: Cu tinned, stranded conductors 1 mm², Si-insulation max. \varnothing 3.6 mm, length: 300 mm

Weight: 26.4 g, unit: 100 pcs.

Type: 33671

Ref. No.: 535631

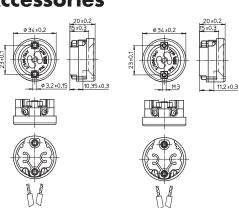
171

GX8.5 Lampholders, Accessories

For discharge lamps with base GX8.5

GX8.5 lampholders Casing: LCP, cover material: LCP, T270 Nominal rating: 2/500/5kV Push-in terminals for stranded conductors with ferrule bare end of cores \varnothing 1.8 mm

Weight: 11.9/12.6, unit: 50 pcs.


Type: 34650/34651

new Ref. No.: 547807 fixing holes for screws M3 new Ref. No.: 547808 threaded bushes M3

> Cover cap for GX8.5 lampholders type 346 For luminaires of protection class II Material: LCP, black Weight: 5.4 g, unit: 50 pcs.

Type: 97685

Ref. No.: 532521

GU8.5 Lampholders

For discharge lamps with base GU8.5

GU8.5 lampholder

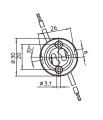
Casing: ceramic, cover plate: LCP T250, nominal rating: 2/250/5 kV Welded leads: Cu tinned, stranded conductors

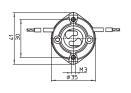
1 mm², Si-insulation, white, length: 300 mm Fixing holes for screws M3

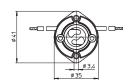
Weight: 38 g, unit: 25 pcs. Type:. 34700

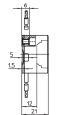
new Ref. No.: 544895

GU8.5 lampholders


Casing: ceramic, cover plate: LCP T250, nominal rating: 2/250/5 kV


Welded leads: Cu tinned, stranded conductors 1 mm², Si-insulation, white, length: 300 mm Identical mounting hole layout and lamp focus like for G12 lampholder type 42200/10 offer an effortless interchangeability of both lamp technologies.


Weight: 51 g, unit: 25 pcs. Type: 34720/34730

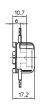

new Ref. No.: 544896

threaded bushes M3 new Ref. No.: 546161 fixing holes for screws M3

GU6.5 Lampholders

For discharge lamps with base GU6.5

Suitable for luminaries of protection class II
Casing: ceramic, cover: PPS, T250
Nominal rating: 2/250/5 kV
Leads: Cu nickel-plated, stranded conductors 0.75 mm²,
double PTFE-insulation, length: 250 mm


GU6.5 lampholders Weight: 13.8 g, unit: 100 pcs. Type: 34510 fixing holes for screws M3

Ref. No.: 533957

Type: 34511 threaded bushes for screws M3

Ref. No.: 534220

4

GU6.5 lampholder
Fixing holes for screws M3
Identical mounting hole layout and lamp focus
of the PGJ5 lampholder 34120 offer an effortless
interchangeability of both lamp technologies.

Weight: 15 g, unit: 100 pcs.

Type: 34520

Ref. No.: 539497

5

6

7

8

9

10

PGJ5 Lampholders

For discharge lamps with base PGJ5

Nominal rating: 2/300/2.5 kV Fixing holes for screws M3

PGJ5 lampholders with cover plate Casing: ceramic, cover plate: LCP, T270 Leads: Cu nickel-plated, stranded conductors 0.75 mm², PTFE-insulation, length: 250 mm

Weight: 9.2 g, unit: 100 pcs. Type: 34105/34106

Ref. No.: 534080 lateral lead exit Ref. No.: 534081 central lead exit

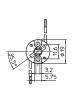
PGJ5 lampholders with cover plate Suitable for luminaires protection class II Casing: ceramic, cover plate: LCP, T270 Leads: Cu nickel-plated, stranded conductors 0.75 mm², double PTFE-insulation, length: 250 mm

Weight: 10.6 g, unit: 100 pcs. Type: 34110/34111

Ref. No.: 534016 lateral lead exit Ref. No.: 534017 central lead exit

PGJ5 lampholder with cover plate Suitable for luminaires protection class II Casing: ceramic, cover plate: LCP, T270 Leads: Cu nickel-plated, stranded conductors 0.75 mm², double PTFE-insulation, length: 250 mm

Identical mounting hole layout and lamp focus like for GU6.5 lampholder 34520 offer an effortless interchangeability of both lamp technologies. Weight: 11.5 g, unit: 100 pcs., type: 34120


Ref. No.: 534979

PGJ5 lampholders with cover plate Suitable for luminaires protection class II Casing: ceramic, cover plate: mica, T270 Leads: Cu nickel-plated, stranded conductors 0.75 mm², double PTFE-insulation, length: 250 mm

Weight: 10.8 g, unit: 100 pcs.

Type: 34150/34151

Ref. No.: 536428 lateral lead exit Ref. No.: 536429 central lead exit

GX10 Lampholders

For discharge lamps with base GX10

 $\ensuremath{\mathsf{GX10}}$ lampholder, for luminaires of protection class II Casing: PPS, black, T240, nominal rating: 2/250/5 kV Push-in twin terminals for stranded conductors with ferrule bare end of cores max. \varnothing 1.8 mm Fixing holes for screws M3

Weight: 9 g, unit: 100 pcs.. Type: 31400

Ref. No.: 509356

GX10 lampholder, for luminaires of protection class II Casing: steatite, cover plate: PPS T240, nominal rating: 2/500/5 kV Push-in terminals for stranded conductors with ferrule bare end of cores Ø 1.5-1.8 mm For leads with outer diameter: max. 3 mm Fixing holes for screws M3

Weight: 14 g, unit: 100 pcs.

Type: 31500

Ref. No.: 536469

GX10 lampholder, for luminaires of protection class II Casing: steatite, cover plate: PPS

T240, nominal rating: 2/500/5 kV

Welded leads: Cu nickel-plated, stranded conductors 0.75 mm², double PTFE-insulation, length: 250 mm

Fixing holes for screws M3Weight: 23.3 g, unit: 100 pcs.

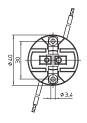
Type: 31530

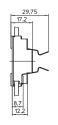
Ref. No.: 543267

GY9.5 Lampholders

For discharge lamps with base GY9.5

GY9.5 lampholder


Casing: ceramic, cover plate: PPS, black T240, nominal rating: 10/500/5 kV, contacts: Ni Leads: Cu tinned, stranded conductors


5 kV: 1 mm², Si-insulation max. \varnothing 3.6 mm, length: 300 mm and Cu tinned,

stranded conductors 0.75 mm², Si-insulation, length: 300 mm

Fixing holes for screws M3 Weight: 48 g, unit: 150 pcs.

Type: 37001 Ref. No.: 533663

G12, GX12-1, PG12-1, PG12-2 Lampholders

For discharge lamps with base G12, GX12 and PG12

G12 lampholders

Casing: ceramic, cover plate: LCP T250, nominal rating: 5/500/5 kV

Contacts: CrNi

Push-in terminals for leads with

ferrule bare end of cores max. Ø 1.8 mm

Weight: 30.7 g, unit: 25 pcs. Type: 42200/42210

Ref. No.: 535750 fixing holes \varnothing 4.2 mm **Ref. No.: 535751** threaded bushes M3

G12 lampholders Casing: ceramic

T250, nominal rating: 5/500/5 kV

Contacts: CrNi

Welded leads: Cu tinned, stranded conductors 1 mm²

Si-insulation, white, length: 300 mm Weight: 43/52 g, unit: 25 pcs.

Type: 42222/42242

Ref. No.: 535755 cover plate: LCP **Ref. No.: 543643** cover plate: ceramic

G12 lampholder Casing: LCP, black T250, nominal rating: 2/500/5 kV

Contacts: CrNi Push-in terminals for leads with

ferrule bare end of cores max. Ø 1.8 mm

For tinned lead ends: 0.5–1 mm² Fixing holes for screws M4 Weight: 13.6 g, unit: 250 pcs.

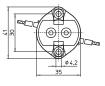
Type: 42000 **Ref. No.: 509213**

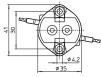
GX12-1 lampholder

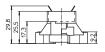
Casing: ceramic, cover plate: PPS, black T220, nominal rating: 2/500/5 kV, contacts: Ni Welded leads: Cu tinned, stranded conductors

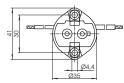
5 kV: 1 mm², Si-insulation, white, N: 0.75 mm², Si-insulation, brown,

length: 300 mm Fixing holes for screws M4 Weight: 58.5 g, unit: 25 pcs.


Type: 41900


Ref. No.: 507656





GX12-1 lampholder Casing: LCP, black

T250, nominal rating: 2/500/5 kV

Contacts: CrNi

Push-in terminals for leads with

ferrule on bare end of core max. Ø 1.8 mm or for tinned lead ends: 0.5-1 mm² Fixing holes for screws M4

Weight: 13.6 g, unit: 50 pcs.

Type: 42100

Ref. No.: 509214

PG12-1 lampholder Casing: PPS, black, T220

Nominal rating: 4/500/5 kV, contacts: CrNi

Push-in terminals for leads with

ferrule on bare end of core max. Ø 1.8 mm

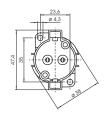
or for tinned lead ends: 0.5-1 mm² Fixing holes for screws M4

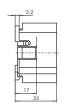
Weight: 20.2 g, unit: 100 pcs.

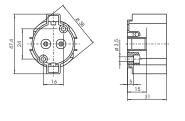
Type: 31981

Ref. No.: 505030

PG12-1 lampholder For cover caps (see p. 433-435) Casing: PPS, black, T220 Nominal rating: 4/500/5 kV, contacts: CrNi Push-in terminals for leads with ferrule on bare end of core max. Ø 1.8 mm or for tinned lead ends: $0.5-1 \, \text{mm}^2$ Fixing holes for screws M3


Weight: 23 g, unit: 100 pcs. Type: 31980


Ref. No.: 505029

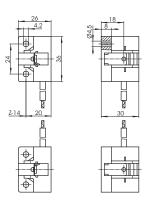


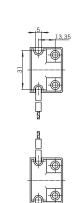
RX7s Lampholders

If the central hole on the bracket is used for fixing it has to be ensured by an additional support within the luminaire that the bracket cannot be deformed. If the lampholders are used for lamps with ignition voltage max. 20 kV the luminaire manufacturer is responsible for sufficient creepage distances and clearances.

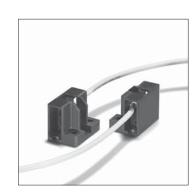
RX7s lampholders

Contact pin: Ni, nominal rating: 2/500/5 kV Lead: Cu tinned, stranded conductors 1 mm²,


Si-insulation max. \varnothing 3.6 mm, length: 300 mm


Fixing holes for screws M4 Weight: 23.3/20.1 g, unit: 25 pcs. Type: 31662/31672 PPS, black, T220 Ref. No.: 107065 lead exit right Ref. No.: 107066 lead exit left

Type: 31695/31696 LCP, black, T270 Ref. No.: 504416 lead exit right Ref. No.: 504669 lead exit left


Remark on lampholders type 323 and 343:

The luminaire design must ensure protection from electric shock as well as sufficient creepage distances and clearances from live parts on the back of lampholder.

Type 343: With doubled insulated leads suitable for luminaires of protection class II

RX7s lampholder

Casing: PPS, black, T220 Contact pin: Cu, silver bulb Nominal rating: 2/250/5 kV

Lead: Cu tinned, stranded conductors 1 mm², Si-insulation max. \varnothing 3.6 mm, length: 200 mm

With screw M4

Weight: 14 g, unit: 300 pcs.

Type: 34301

Ref. No.: 509117

RX7s lampholder Casing: PPS, black, T220 Contact pin: Cu, silver bulb

Nominal rating: 2/250/5 kV

Leads: Cu tinned, stranded conductors 1 mm², Si-insulation max. Ø 3.6 mm, length: 200 mm

Oblong holes for screws M4 Central hole for screw M4 Other bracket versions on request Weight: 43.8 g, unit: 200 pcs. Type: 34311 contact distance 114.2 mm

Ref. No.: 529841

RX7s lampholder

Casing: PPS, black, T220 Contact pin: Cu, silver bulb Nominal rating: 2/250/5 kV

Leads: Cu tinned, stranded conductors 1 mm², Si-insulation max. \varnothing 3.6 mm, length: 200 mm

Oblong holes for screws M4 Central tapped hole M4 Weight: 47.5 g, unit: 200 pcs. Type: 34326 contact distance: 132 mm

Ref. No.: 529845

Partly enclosed RX7s lampholder

Casing: ceramic, T350 Contact pin: Cu, silver bulb Nominal rating: 4/1000/5 kV

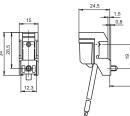
Lead: Cu tinned, stranded conductors 1 mm², Si-insulation max. Ø 3.6 mm, length: 200 mm

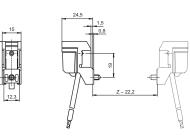
Fixing screw M4

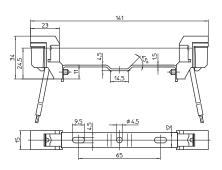
Weight: 26.2 g, unit: 300 pcs.

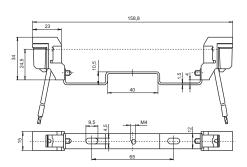
Type: 32301 Ref. No.: 100913

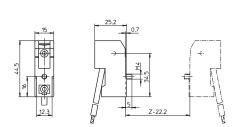
Partly enclosed RX7s lampholder Casing: ceramic, T350

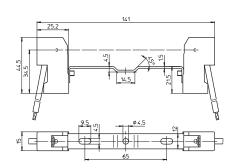

Contact pin: Cu, silver bulb Nominal rating: 4/1000/5 kV


Leads: Cu tinned, stranded conductors 1 mm², Si-insulation max. \varnothing 3.6 mm, length: 200 mm


Oblong holes for screws M4 Central hole for screw M4 Weight: 74.8 g, unit: 200 pcs.


Type: 32311 contact distance: 114.2 mm


Ref. No.: 100921



Partly enclosed RX7s lampholder

Casing: ceramic, T350 Contact pin: Cu, silver bulb Nominal rating: 4/1000/5 kV

Leads: Cu tinned, stranded conductors 1 mm², Si-insulation max. Ø 3.6 mm, length: 200 mm

Oblong holes for screws M4 Central tapped holes M4 Weight: 76 g, unit: 200 pcs.

Type: 32321 contact distance: 114.2 mm

Ref. No.: 100922

Partly enclosed RX7s lampholder Casing: ceramic, T350 Contact pin: Cu, silver bulb Nominal rating: 4/1000/5 kV

Leads: Cu tinned, stranded conductors 1 mm², Si-insulation max. Ø 3.6 mm, length: 200 mm

Oblong holes for screws M4 Central hole for screw M4 Weight: 74 g, unit: 200 pcs.

Type: 32341 contact distance: 114.2 mm

Ref. No.: 100932

Partly enclosed RX7s lampholder Casing: ceramic, T350

Contact pin: Cu, silver bulb Nominal rating: 4/1000/5 kV

Leads: Cu tinned, stranded conductors 1 mm²,

Si-insulation max. Ø 3.6 mm, length: 200 mm

Oblong holes for screws M4 Central hole for screw M5 Weight: 75.5 g, unit: 200 pcs.

Type: 32361 contact distance: 114.2 mm

Ref. No.: 100934

Partly enclosed RX7s lampholder

Casing: ceramic, T350 Contact pin: Cu, silver bulb Nominal rating: 4/1000/5 kV

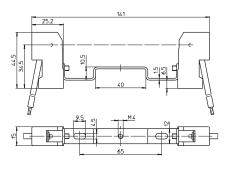
Leads: Cu tinned, stranded conductors 1 mm²,

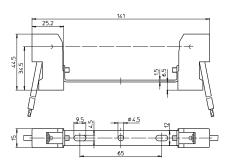
Si-insulation max. Ø 3.6 mm, length: 200 mm

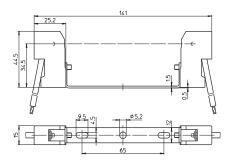
Oblong holes for screws M4 Central hole for screw M5 Weight: 76.4 g, unit: 200 pcs.

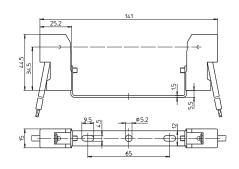
Type: 32381 contact distance: 114.2 mm

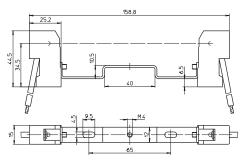
Ref. No.: 100937

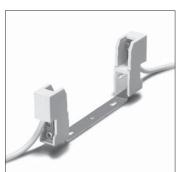

Partly enclosed RX7s lampholder

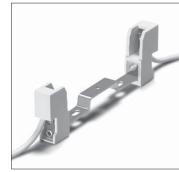

Casing: ceramic, T350 Contact pin: Cu, silver bulb Nominal rating: 4/1000/5 kV


Leads: Cu tinned, stranded conductors 1 mm², Si-insulation max. Ø 3.6 mm, length: 200 mm


Oblong holes for screws M4 Central tapped hole M4 Weight: 78.3 g, unit: 200 pcs. Type: 32326 contact distance: 132 mm


Ref. No.: 100925





Partly enclosed RX7s lampholder

Casing: ceramic, T350 Contact pin: Cu, silver bulb Nominal rating: 4/1000/5 kV

Leads: Cu tinned, stranded conductors 1 mm², Si-insulation max. Ø 3.6 mm, length: 200 mm

Oblong holes for screws M4 Central hole for screw M5 Weight: 77.6 g, unit: 200 pcs. Type: 32330 contact distance: 132 mm

Ref. No.: 100928

Partly enclosed RX7s lampholder

Casing: ceramic, T350 Contact pin: Cu, silver bulb Nominal rating: 4/1000/5 kV

Leads: Cu tinned, stranded conductors 1 mm²,

Si-insulation max. Ø 3.6 mm, length: 200 mm

Oblong holes for screws M4 Central hole for screw M5 Weight: 75.7 g, unit: 200 pcs. Type: 32336 contact distance: 132 mm

Ref. No.: 100931

Protection caps for RX7s lampholders For push-fit onto lampholders type 323 Protection against electrical shock on the rear side of the lampholder Lampholders with assembled protection cap on request

Weight: 0.7/0.6 g, unit: 1000 pcs.

Type: 97528

Ref. No.: 507592 LCP, natural **Ref. No.: 507593** PET, white

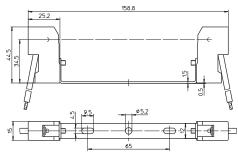
RX7s lampholder Casing: ceramic, T250 Contact pin: Ni

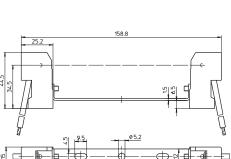
Nominal rating: 10/500/5 kV

Lead: Cu tinned, stranded conductors 1 mm², Si-insulation max. Ø 3.6 mm, length: 300 mm

Fixing holes for screws M4 Weight: 72 g, unit: 25 pcs.

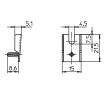
Type: 30602 Ref. No.: 100723

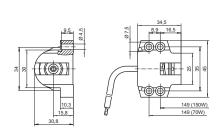

RX7s lampholder

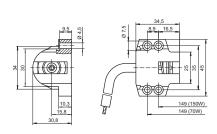

Casing: ceramic, T250, contact pin: Ni Nominal rating: 10/500/20 kV Lead: Cu tinned, stranded conductors 1 mm², Si-insulation with spun glass filler Ø 7 mm,

for ignition voltage: max. 20 kV,


length: 1000 mm Fixing holes for screws M4 Weight: 120 g, unit: 25 pcs.


Type: 30620 Ref. No.: 100741





Fc2 Lampholders

For discharge lamps with base Fc2

If the lampholders are used for lamps with ignition voltage max. 20 kV the luminaire manufacturer is responsible for sufficient creepage distances and clearances.

Fc2 lampholder Casing: ceramic, T250 Nominal rating: 10/500/5 kV

Contacts: Ni

Lead: Cu tinned, stranded conductors 1 mm 2 , Si-insulation max. Ø 3.6 mm, length: 300 mm

Fixing holes for screws M4 Weight: 100 g, unit: 200 pcs. Type: 02500

Ref. No.: 108937

Fc2 lampholder

Casing: ceramic, T250

Nominal rating: 10/250/5 kV, contacts: Ni Lead: Cu tinned, stranded conductors 1 mm², Si-insulation max. Ø 3.6 mm, length: 300 mm

Fixing screws M4, captive Weight: 102 g, unit: 25 pcs. Type: 02574 rigid fixing **Ref. No.: 100096**

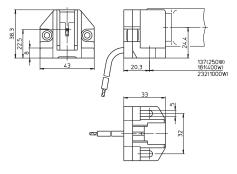
Fc2 lampholder

Casing: ceramic, T250

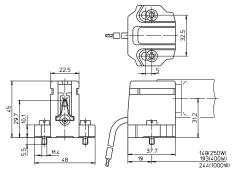
Nominal rating: 10/250/5 kV, contacts: Ni Lead: Cu tinned, stranded conductors 1 mm², Si-insulation max. Ø 3.6 mm, length: 300 mm

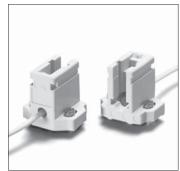
Fixing screws M4, captive Weight: 102 g, unit: 25 pcs. Type: 02575 adjustable fixing

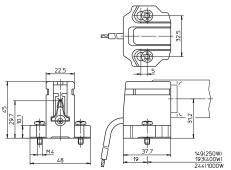
Ref. No.: 100098

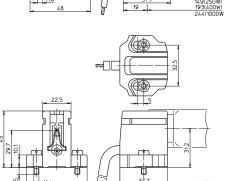

Fc2 lampholder

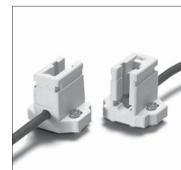
Casing: ceramic, T250


Nominal rating: 10/250/20 kV, contacts: Ni Lead: Cu tinned, stranded conductors 1 mm², Si-insulation with spun glass filler Ø 7 mm, for ignition voltage: max. 20 kV,


length: 500 mm Fixing screws M4, captive Weight: 120 g, unit: 25 pcs. Type: 02525 rigid fixing


Ref. No.: 100082





1

2

3

4

5

6

7

8

9

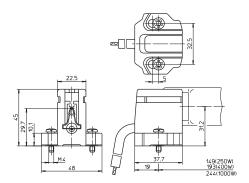
Lampholders for Discharge Lamps

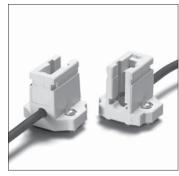
Fc2 lampholder

Casing: ceramic, T250

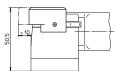
Nominal rating: 10/250/20 kV, contacts: Ni Lead: Cu tinned, stranded conductors 1 mm², Si-insulation with spun glass filler \varnothing 7 mm,

for ignition voltage: max. 20 kV,


length: 500 mm Fixing screws M4, captive Weight: 120 g, unit: 25 pcs. Type: 02543 adjustable fixing


Ref. No.: 100086

Lamp safety catch For push-fit onto the lampholders 100082, 100086, 100096 and 100098


Casing: ceramic Spring: stainless steel Weight: 21 g, unit: 50 pcs.

Type: 86037 Ref. No.: 103818

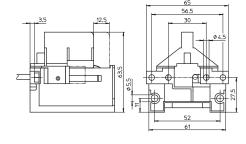
K12x30s Lampholders

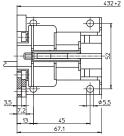
For discharge lamps with base K12x30s

K12x30s lampholders

Suitable for luminaires of protection class II

Casing: LCP, black, T150 Nominal rating: 4/500/3 kV Contacts: CuSn6, silver plated


Leads: Cu tinned, stranded conductors 1 mm²

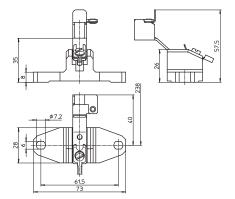

Si-insulation, doubled insulated Rear recess M4, wrench size 7

Rear and bottom fixing holes for screws M5 Weight: 75.9/61.5 g, unit: 100 pcs.

Type: 13010

Ref. No.: 532430 lead length: 705 mm Ref. No.: 532431 lead length: 155 mm

K12s-7 Support


For metal halide lamps 1000 and 2000 W Type Osram HQI TS and Radium HRI TS

The luminaire design must ensure protection from electric shock as well as sufficient creepage and clearance distances.

K12s-7 support
Cable connection on cable lug for lead
0.75-2.5 mm²
Casing: ceramic, T300

Support: stainless steel, heat-resistant Oblong holes for screws M5 Weight: 70 g, unit: 25 pcs.

Type: 21100 **Ref. No.: 107677**

2

3

4

5

6

7

8

9

Components for Discharge Lamps

lectronic ballasts	18:
Assembly instructions for mounting and installing	186-190
Circuit diagrams	19
electromagnetic ballasts	19
ower reduction	191 – 19:
Assembly instructions for mounting and installing	196-199
electromagnetic control gear units	193
Assembly instructions for mounting and installing	193-196
Circuit diagrams – Electromagnetic ballasts	200-203
ampholders for high-pressure sodium lamps	203-204
gnitors	204-20
Assembly instructions for mounting and installing	207-209
Power switches	210-21
iwitch units	212-21
amp table	214-224
inergy efficiency classification	25
General technical details	533-540
Glossary	541-54

If the electrical current through a discharge lamp is increased, a discharge channel with very high luminous efficiency is created in the discharge chamber. Luminous flux and light output increase substantially. The internal pressure of the discharge chamber rises and attains between 1 and 10 bar – these are so-called high-pressure discharge lamps or simply discharge lamps. The light output and colour rendition of high-pressure lamps vary considerably depending on the lamp family.

Discharge lamps can only be operated with ballasts. Ignitors are additionally required for sodium lamps and metal halide lamps. Furthermore, to compensate blind current when using magnetic ballasts, compensation capacitors must be fitted. The lampholders enable the lamp to be fixed in the luminaire and ensure simple exchange of lamps at the end of their service life.

As well as stabilising the lamp's operating point, ballasts also influence the lamp's output and luminous flux, the system's light output, the service life of the lamps as well as the colour temperature of the light.

The following chapters provide technical information regarding VS components for

High-pressure sodium lamps
 Metal halide lamps
 Metal halide lamps with a ceramic discharge tube
 Mercury vapour lamps
 Low-pressure sodium lamps
 (HS lamps)
 (C-HI lamps)
 (HM lamps)
 (LS lamps)

Electromagnetic or electronic ballasts can be used for high-pressure discharge lamps. Unlike with fluorescent lamps, lamp efficiency is not decisively altered by the use of electronic ballasts. In contrast, electronic ballasts lead to a reduction of the inherent losses and thus to an increase in system efficiency. In addition, electronic ballasts ensure gentle lamp operation, which increases the lamp's service life.

Independent electronic and electromagnetic ballasts have also been developed, which in the form of control gear units then provide special advantages during application.

Electronic Ballasts for HI and C-HI Lamps

Electronic ballasts are fitted with all the components required to operate discharge lamps.

Furthermore, they safely shut down lamps at the end of their service life to prevent high temperatures from being generated within the luminaires that could influence the service life of the luminaires and components.

By adding a strain-relief module, VS electronic built-in ballasts turn into independent operating devices that can, for instance, be used as a power unit and can also be installed in intermediate ceilings in this form.

MidNight - Multi-Step Dimming

The MidNight concept is based on independent dimmable ballasts that can be locally or remotely programmed to any desired dimming scenario.

The simplicity of MidNight makes it a most innovative solution for street lighting as there is no need to install complex systems.

The remote reconfiguration capabilities allow for various dimming scenarios before leaving the production site, or at any given time after installation at the site.

1

2

3

4

5

6

7

8

g

DALI

The EHXd-DALI provides advanced functionality and makes it the perfect fit for current and future indoor and street lighting applications.

Standardisation Ballasts fully comply with the new DALI IEC 62386 standard.

Extensive protocol (optional)

Advanced control and monitoring commands that comply with Part X.203 of the DALI standard.

Various DALI devices

Compliance with all standard DALI controllers and device as well as all Lonmark® DALI devices.

Super-low communication-noise mechanism

Years of working with various DALI nodes in the market have positioned the EHXd-DALI as a device that causes one of the lowest degrees of communication interference.

Up-to-date and debugged

Ballast firmware can be upgraded remotely (using the DALI terminals).

Assembly Instructions for Electronic Ballasts

Assembly instructions for mounting and installing electronic ballasts for high-pressure discharge lamps

Mandatory regulations

DIN VDE 0100	Erection of low voltage installations
EN 60598-1	Luminaires - part 1: general requirements and tests
EN 61347-1	Operating devices for lamps - part 1: general and safety requirements
EN 61347-2-12	Control gear for lamps; part 2-12: Particular requirements for d.c. or a.c. supplied electronic ballasts for discharge lamps (excluding fluorescent lamps)
EN 55015	Limits and methods of measurement of radio disturbance characteristics of electrical lighting and similar equipment
EN 61000-3-2	Electromagnetic Compatibility (EMC) – part 3: maximum values – main section part 2: maximum values for mains harmonics (device input current up to and including 16 A per conductor)
EN 61547	Installations for general lighting purposes - EMC immunity requirements

Descriptions of VS EBs for discharge lamps

The type designations for VS HID ballasts all follow the same pattern, as follows:

EHXc	70	.326
Electronic ballast for HID lamps	Wattage	Serial number

Mechanical mounting

Surface Firm, flat surface required to ensure good heat transfer. Avoid mounting on protruding surfaces.

Mounting location

Electronic ballasts must be protected against moisture and heat. Installation in outdoor luminaires:

water protection rate of > 4 (e.g. IP54 required).

Using M4 screws in the designated holes Fastening

Heat transfer If the ballast is destined for installation in a luminaire, sufficient heat transfer must be ensured between

> the electronic ballast and the luminaire casing. Electronic ballasts should be mounted with the greatest possible clearance to heat sources or lamps. During operation, the temperature measure at the

ballast's t_C point must not exceed the specified maximum value.

Supplement for independent electronic ballasts

Mounting position Any

Clearance Min. of 0.10 m from walls, ceilings and insulation

> Min. of 0.10 m from further electronic ballasts Min. of 0.25 m from sources of heat (lamp)

Surface Solid; EB must not be allowed to sink into insulation materials

Technical specifications

Туре	Operating voltage	Protective	Mean service	Power	Temperature	Possible no.	of VS devices/	automatic cut-ou	ıt type	
	range	conductor	life***	factor	protection*	B (10A)	B (16A)	C (10A)	C (16A)	
	AC: 220 V240 V	mA	hrs.	λ						
Standard EB					-					
EHXc 20.329	+6 -10%	≤ 0.5	50,000 (t _c 75 °C)	> 0.9	yes	11	18	18	30	
EHXc 35.325	±10%	≤ 0.5	32,000 (t _c 85 °C)	≥ 0.95	yes**	7	12	12	20	
(183033;183034)			40,000 (t _c 80 °C)							
			50,000 (t _c 75 °C)							
EHXc 35.325	±10%	≤ 0.5	32,000 (t _c 80 °C)	≥ 0.95	yes	7	12	12	20	
(183035)			40,000 (t _c 75 °C)							
			50,000 (t _c 70 °C)							
EHXc 35G.327	+6 -10%	≤ 0.5	30,000 (t _c 80 °C)	> 0.95	yes	7	12	12	20	
EHXc 35.339	±10%	≤ 0.5	50,000 (t _c 70 °C)	≥ 0.95	yes	7	12	12	20	
EHXe 35.356	±10%	≤ 0.5	30,000 (t _c 80 °C)	≥ 0.95	yes	7	12	12	20	
EHXc 235.316	+6 -10%	≤ 0.5	50,000 (t _c 70 °C)	> 0.98	yes	7	12	12	20	
EHXc 50.358	±10%	≤ 0.5	40,000 (t _c 80 °C)	> 0.95	yes**	7	12	12	20	
EHXc 50.359	±10%	≤ 0.5	30,000 (t _c 75 °C)	> 0.95	yes	7	12	12	20	
EHXc 70.326	±10%	≤ 0.5	32,000 (t _c 80 °C)	≥ 0.95	yes**	7	12	12	20	
(183036; 183037)			40,000 (t _c 75 °C)							
			50,000 (t _c 70 °C)							
EHXc 70.326	±10%	≤ 0.5	26,000 (t _c 75 °C)	≥ 0.95	yes	7	12	12	20	
(183038)			40,000 (t _c 65 °C)							
			50,000 (t _c 60 °C)							
EHXc 70.340	±10%	≤ 0.5	30,000 (t _c 80 °C)	> 0.95	yes	7	12	12	20	
			50,000 (t _c 70 °C)							
EHXe 70.357	±10%	≤ 0.5	30,000 (t _c 75 °C)	≥ 0.95	yes	7	12	12	20	
EHXc 270.317	+6 -10%	≤ 0.5	50,000 (t _c 70 °C)	> 0.98	yes	4	7	7	12	
EHXc 100.353	±10%	< 2	50,000 (t _c 70 °C)	> 0.95	yes	4	6	6	11	
EHXc 150G.334	+6 -10%	≤ 0,5	50,000 (t _c 75 °C)	> 0.98	yes	5	8	8	14	

The devices are fitted with a temperature switch to protect against impermissible overheating.

Once the device has cooled down, it is switched on again. It may prove necessary to briefly dis- and then reconnect the device to the mains voltage

The temperature protection inside the luminaire must be checked when using devices without a cap.

^{***} To achieve the mean service life, the max. temperature ($t_{c\ max}$) at the t_{c} point must not be exceeded; failure rate = 0.2% per 1000 hrs

Туре	Operating voltage	Protective	Mean service	Power	Temperature	Possible no. o	Possible no. of VS devices/automatic cut-out type				
	range	conductor	life***	factor	protection*	B (10A)	B (16A)	C (10A)	C (16A)		
	AC: 220 V240 V	mA	hrs.	λ							
Dimmable DALI	EB										
EHXd 50.360	50 ±10%		50,000 (t _c 80 °C)	≥ 0.98	yes	30	47	30	47		
EHXd 70.361	±10%	≤ 0.5	50,000 (t _c 80 °C)	≥ 0.98	yes	22	35	22	35		
EHXd 100.362	±10%	≤ 0.5	50,000 (t _c 75 °C)	≥ 0.98	yes	15 24		15	24		
EHXd 150.363	±10%	≤ 0.5	50,000 (t _c 75 °C)	≥ 0.98	yes	10 16		10	16		
EHXd 250.364	±10%	≤ 0.5	50,000 (t _c 65 °C)	≥ 0.98	yes	6	10	6	10		
Dimmable MidN	light EB										
EHXd 50.365 M	±10%	≤ 0.5	50,000 (t _c 80 °C)	≥ 0.98	yes	30	47	30	47		
EHXd 70.366 M	±10%	≤ 0.5	50,000 (t _c 80 °C)	≥ 0.98	yes	22	35	22	35		
EHXd 100.367 M	±10%	≤ 0.5	50,000 (t _c 75 °C)	≥ 0.98	yes	15	24	15	24		
EHXd 150.368 M	±10%	≤ 0.5	50,000 (t _c 75 °C)	≥ 0.98	yes	10	16	10	16		
EHXd 250.369 M	±10%	≤ 0.5	50,000 (t _c 65 °C)	≥ 0.98	yes	6	10	6	10		

^{*} The devices are fitted with a temperature switch to protect against impermissible overheating.

Product features

Shutdown of defective lamps

In the event of a lamp failing to ignite or of a lamp with an increased operating voltage (end of the lamp's service life), the electronic ballast will switch off after a defined period of time (< 20 minutes). The ballast will also shut down if the lamp fails to attain its specified rated output. The ballast can be reset by disconnecting and then reconnecting the mains voltage. The ballast must always be disconnected from the mains prior to changing a lamp.

EOL Effect

In high-pressure discharge lamps, the EOL effect manifests itself in a change of the lamp's voltage. These changes can, for instance, occur due to unsealed parts of the burner or the rectifier effect. An automatic EOL cut-out prevents safety risks at the end of the service life of high-pressure discharge lamps. EOL tests are conducted to check the behaviour of electronic ballasts at the end of a lamp's service life. The EOL cut-out stops the lamp base overheating at the end of a lamp's service life.

Short-circuit resistance

The ballast outputs (to the lamp) are short-circuit-proof. Short-circuits between the lamp connection and the casing (earth conductor) will destroy the ballast.

Temperature protection

To prevent excess temperatures, some ballasts are fitted with temperature protection. A ballast will restart after it has cooled down. It might be necessary to briefly interrupt the supply voltage. The table on page 187/188 contains a list of temperature-protected devices.

Transient mains peak protection

Values are in compliance with EN 61547 (interference immunity).

Electrical installation

Wiring

- The wiring between the mains, electronic ballast and lamp must comply with the respective circuit diagram. Note: the luminaire casing (metal) must be connected to the earth conductor.
- The electronic ballast must be earthed using a toothed washer or similar (protection class I, compliance with RFI/BCI standards).
- To ensure compliance with RFI suppression limits, mains conductors should not be wired parallel
 to lamp conductors and maximum clearance should be ensured.
- After the installation of electronic ballasts, luminaires must be tested to ensure compliance with maximum values laid down in EN 55015.

Once the device has cooled down, it is switched on again. It may prove necessary to briefly dis- and then reconnect the device to the mains voltage.

^{**} The temperature protection inside the luminaire must be checked when using devices without a cap

^{***}To achieve the mean service life, the max. temperature (t_c max.) at the t_c point must not be exceeded; failure rate = 0.2% per 1000 hrs

It is permissible to connect the protective conductor of the ballast by attaching the ballast to metal conductors that are connected to the protective conductor. In doing so, care must be taken to ensure the protective conductor is contacted in accordance with EN 60598. If, however, a ballast is fitted with a connection terminal for a protective conductor without through-wiring and if this is to be used to connect the protective conductor, this connection terminal may only be used for the ballast itself.

Push-in terminals

The used terminals can be connected using rigid or flexible conductors with a section of 0.75–2.5 mm² (K35 ballasts: 0.5–1.5 mm²). The stripped conductor length is 10–11 mm (K35 ballasts: 8.5–9.5 mm, K40/41 and M42/M45 ballasts: 5–6 mm) for terminal grid 3.5 mm. Conductors must not be tin-plated.

Error current

Impulse-resistant leak-current protection must be installed. Distribute the luminaires to phases L1, L2 and L3; install tri-phase FI switches. If permissible, install FI switches with 30 mA leak current; connect no more than 15 luminaires as FI switches can be triggered at half the leak current value.

Tri-phase connection of luminaires with EB

- Prior to operating newly installed lighting systems: check the mains voltage is appropriate
 to the electronic ballast's mains voltage range (AC, DC).
- The N-type conductor must be properly connected to all luminaires or ballasts.
- Conductors can only be connected or disconnected if the ballast is disconnected from the mains. Attention: N-type conductors must never be disconnected individually or as the first element.
- Insulation resistance test: from L to PE (L and N must not be connected)
- The neutral conductor must be reconnected after completion of the test.

Electromagnetic Compatibility (EMC)

Vossloh-Schwabe's electronic ballast range was developed in accordance with valid EMC standards (interference, interference immunity and mains harmonics) and specially designed to ensure safe compliance with the limiting values. It is assumed that any remarks regarding conductor wiring and conductor length in the instructions for installing electronic ballasts in luminaires or for independent ballasts will be observed.

Compensation

Luminaires with electronic ballasts do not need compensation (power factor ≥ 0.95).

Selection of automatic cut-outs

Dimensioning automatic cut-outs

High transient currents occur when an EB is switched on because the capacitors have to load. Lamp ignition occurs almost simultaneously. This also causes a simultaneous high demand for power. These high currents when the system is switched on put a strain on the automatic conductor cut-outs, which must be selected and dimensioned to suit.

Release reaction The release reaction of the automatic conductor cut-outs comply with VDE 0641, part 11, for B. C characteristics.

No. of electronic ballasts (see table on page 187/188)

The maximum number of VS ballasts applies to cases where the devices are switched on simultaneously. Specifications apply to single-pole fuses. The number of permissible ballasts must be reduced by 20% for multi-pole fuses. The considered circuit impedance equals 400 m Ω (approx. 20 m [2.5 mm²] of conductor from the power supply to the distributor and a further 15 m to the luminaire). Doubling circuit impedance to 800 m Ω increases the possible number of ballasts by 10%.

2

3

4

5

6

7

8

9

Additional information

Information on the installation of electronic ballasts for optimising EMC. To ensure good radio interference suppression and the greatest possible operating safety, the following points should be observed when installing electronic ballasts:

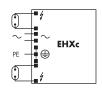
- Conductors between the EB and the lamp (HF conductors) must be kept short (reduction
 of electromagnetic interference).
- Mains and lamp conductors must be kept separate and if possible should not be laid
 in parallel to one another. The distance between HF and mains conductors should be as
 large as possible, ideally > 5 cm. (This prevents the induction of interference between
 the mains and lamp conductors.)
- The mains conductor within the luminaire must be kept short (to reduce the induction of interference).
- Devices must be properly earthed. EBs require secure contacts to the luminaire casing
 or must be earthed using a PE connection. This PE connection should be effected using an
 independent conductor to achieve better dissipation of the leak current. EMC improves
 at frequencies greater than 30 MHz.
- The mains conductor must not be laid too close to the EB or the lamp (this is especially
 important in the event of through-wiring).
- Mains and lamp conductors must not be crossed. Should this be impossible to avoid, conductors should be crossed at right angles to one another if at all possible.
- Should conductors be wired through metal parts, such conductors must always be additionally shielded (e.g. with an insulating sleeve or grommet).

Temperature

Reference point temperature to

The safe operation of electronic ballasts is dependent on the maximum permissible temperature not being exceeded at the measuring point. Vossloh-Schwabe has determined a casing temperature measuring point – $t_{c\ max.}$ – on all EB casings. To avoid shortening the service life or diminishing operating safety, the stipulated maximum temperature must not be exceeded at this t_{c} point. This point is determined by testing the converter during normal, IEC-standardised operation at the specified ambient temperature (t_{a}), which is also indicated on the type plate. As both the design-related ambient temperature and the ballast's inherent heat, as determined by the installed load, are subject to great variation, the casing temperature should be tested at the t_{c} point under real installation conditions.

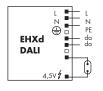
Ambient temperature ta

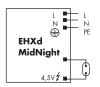

The ambient temperature - as specified on every EB - denotes the permissible temperature range within the luminaire.

Reliability and service life

If the max, temperature at the $t_{\rm c}$ reference point (as specified on the type plate and the technical documentation of the ballast) is not exceeded, the defined service life can be expected to be achieved, assuming a switching cycle of 165 minutes on and 15 minutes off. See table on page 187/188 for service life details.

Circuit diagrams for metal halide lamps (HI) and high-pressure sodium lamps (HS) with electronic ballasts (EB)




35.339, 50.359, 70.340

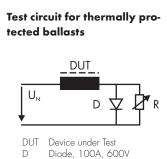
20.329, 35G.327, 35.325, 35.356, 50.358, 70.326, 70.357, 150G.334

235.316, 270.317

100.353 50.360, 70.361, 100.362, 150,363, 250,364

50.365 M, 70.366 M, 100.367 M, 150.368 M, 250.369 M

Electromagnetic Ballasts for Discharge Lamps


Electromagnetic ballasts for HI and HS Lamps

As the lamp manufacturer's reference values regarding lamp current and voltage are generally identical for metal halide (HI) and high-pressure sodium lamps (HS) of the same lamp wattage and the impedance values required for the ballast are also identical, the same ballasts can frequently be used for both lamp types. It should be remembered that HI lamps react sensitively to impedance deviations from the rated value with appreciable colour changes. Vossloh-Schwabe ballasts therefore comply with the lamp's narrower tolerances. Moreover, ballasts remain below the maximum peak DC value for HI lamps. This value is not specified for HS lamps; instead, the maximum stated start-up current must not be exceeded.

In order to keep the temperature of the luminaires and the electrical values of the lamps within tolerable limits, the impedance of the ballasts must remain constant over the entire service life. A so-called service life test (test of thermal durability) provides proof of this requirement having been met.

HI and HS lamps constitute a special case in terms of thermal testing. In rare cases, a safety risk can occur at the end of the service life of lamps fitted with external bulbs. The safety risk is caused by the so-called lamp rectifier effect, which can lead to overheating of ballasts, ignitors, lampholders and conductors and can therefore destroy the luminaire. Against this background, the luminaire standard EN 60598-1 "luminaires; part 1: general requirements and tests" has been supplemented by tests concerning this safety risk. As a result, since 1 September 2002, it has been illegal to market luminaires that do not comply with the new regulations. This means luminaires need to be fitted with thermal protection that prevents a luminaire from overheating in the event of this malfunction.

In this respect, it is recommended to use VS ballasts with temperature switches that have already been tested using this circuit.

Resistor, 0...200 (1/2 lamp output) U_N 110% of rated

supply voltage

Electromagnetic ballasts for HM lamps

Even in the event of major mains fluctuations (92–106% of the rated voltage), the ballast must not fall short of the no-load voltage specified by the lamp manufacturer nor exceed a fixed short-circuit current. The start-up current must be high enough to ensure that at least 90% of the lamp's operating voltage is achieved within 15 minutes.

Power reduction with HS and HM lamps

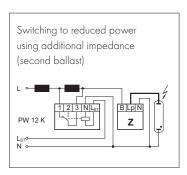
The lamp wattage can be reduced by operating the ballast at a higher impedance value, higher than the rated value. The lamp manufacturer's specifications must be observed in doing so to avoid shortening the lamp's service life. The lamps should be started at the ballast's rated impedance and only switched down to reduced operation after a period of at least five minutes.

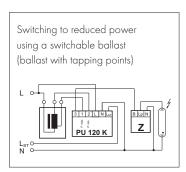
The impedance value can be altered by using an additional ballast (high-effort option) or by using a switchable ballast (low-cost option). These ballast models can be switched using either a modern, time-controlled electronic power reduction switch, which is equipped with an additional control conductor (230 V), or a power reduction switch with a constant incentive rate setting (no control conductor).

The construction of power reduction switches with control conductors differs according to the selected increase in impedance.

Power reduction with switchable ballasts

Ballast type	Tested with	Mains voltage	System output 100%	Reduced system	output	Reduced luminous flux		
			W	W	%	% (approx. values)		
U-NaHJ 70/40%	HS 70	230, 50	83	50	60	55		
U-NaH 100/40%	HS 100	230, 50	114	67	58	55		
U-NaH 150/40%	HS 150	230, 50	160	98	61	55		
U-NaH 250/40%	HS 250	230, 50	271	150	55	50		
U-NaH 400/250.805	HS 400	230, 50	421	253	60	50		
Q 80/50.596	HM 80	230, 50	90	55	61	55		
Q 125/80.611	HM 125 230, 50		134	89	65	55		
U-Q 250/150.438	HM 250	230, 50	274	164	60	55		
U-Q 400/250.437	HM 400	230, 50	422	267	65	55		


Example: Osram lamp, type NAV, HQL


Start-up switches

As high-pressure lamps operate with a start-up phase, the lamp's full luminous flux will only be reached after completion of this start-up period. In the event of disconnection from the mains, this start-up phase is dependent on the lamp's temperature. If an additional source of light is desired or required for this start-up period for safety-relevant applications, it is possible to switch on an auxiliary lamp with the help of a start-up switch. There are two types of start-up switches:

- AS 1000 K for superimposed ignition systems. This switch monitors the lamp's operating voltage. If this is below a defined value (approx. 60% of the lamp's luminous flux), an auxiliary lamp is switched on.
- AS 1000 K A10 for pulse ignition systems and electronic ballasts.
 This model switches the auxiliary lamp off after a defined period of time (10 minutes), after which the high-pressure lamp will have reached the desired illumination level.

Lamp family	''	Typical restart time								
		(mains interruption at lamp operating temperature)								
HS	3 min.	5 min.								
HI / C-HI	3 min.	10 min.								
НМ	4-5 min.	4–5 min.								
LS	10 min.	5 min.								

Control Gear Units for High-pressure Discharge Lamps

With electromagnetic ballasts

Control gear units with electromagnetic ballasts for high-pressure sodium lamps (HS), metal halide lamps (HI) and metal halide lamps with a ceramic discharge tube (C-HI) are fitted with all the components needed to ensure safe normal operation. Apart from a ballast, control gear units also contain a digital timer ignitor with IPP++ technology (Intelligent-Pulse-Pause-Mode), a compensation capacitor and a temperature switch with automatic reset. As all these components form a matched system, they create optimum operating conditions for lamps and small models. These compact control gear units remove the need for separate installation and wiring of individual components, thus considerably reducing assembly time.

Mandatory regulations

DIN VDE 0100	Erection of low voltage installations
EN 60598-1	Luminaires - part 1: general requirements and tests
EN 61347-1	Operating devices for lamps - part 1: general and safety requirements
EN 61347-2-1	Control gear for lamps; part 2-1: special requirements for ignitors (other than glow starters)
EN 61347-2-9	Control gear for lamps; part 2-9: special requirements for ballasts for discharge lamps (except fluorescent lamps)
EN 60923	Ballasts for discharge lamps - performance requirements
EN 60927	Operating devices for lamps; ignitors (glow starters); performance requirement
EN 61048	Operating devices for lamps - capacitors for fluorescent lamp circuits and other discharge lamp circuits; general and safety requirements
EN 61049	Operating devices for lamps - capacitors for fluorescent lamp circuits and other discharge lamp circuits; performance requirements
EN 55015	Limits and methods of measurement of radio disturbance characteristics of electrical lighting and similar equipment
EN 61000-3-2	Electromagnetic Compatibility (EMC) – part 3: maximum values – main section part 2: maximum values for mains harmonics (device input current up to and including 16 A per conductor)
EN 61547	Installations for general lighting purposes - EMC immunity requirements

1

2

3

4

5

6

7

8

9

Technical specifications

Operating voltage range

Control gear units can be operated at the specified mains voltage within a tolerance range

of \pm 10% for HS/HI lamps and \pm 3% for C-HI lamps.

Leak current $\leq 0.1 \text{ mA}$

Compensation/power factor

Parallel-compensated control gear units with a power factor of λ < 0.9 (λ < 0.85 for 100 W)

Degree of protection

IP40, IP65

IP54 for aluminium casing

Protection class Independent, protection class II control gear units (plastic casing)

Independent, protection class I control gear units (aluminium casing)

Max. ambient temperature

See ta value on the type plate of the control gear unit

Lead length to lamp

Max. 10 m

"F" designation Suitable for mounting on surfaces of normal flammability

Mechanical mounting

Mounting position

Any position using the mounting tabs

Clearance Min. of 0.20 m from walls, ceilings and insulation

Min. of 0.20 m from further control gear units Min. of 0.25 m from sources of heat (lamp)

Surface Solid; control gear unit must not be allowed to sink into insulation materials

Electromagnetic compatibility (EMC)

Interference

Interference voltage measurements only have to be taken at the connection terminals for luminaires with electromagnetic control gear units as these systems operate with lamp voltages of under 100 Hz. These low-frequency interference voltages are generally not critical with high-pressure discharge lamps with electromagnetic control gear units.

Interference immunity

Thanks to the robust design and choice of materials, electromagnetic control gear units provide a high degree of interference immunity and are not impaired by normal mains power interference.

Mains Harmonics

After every zero crossing of the lamp current, discharge lamps experience a re-ignition peak as the lamps go out for a brief (imperceptible) moment. These re-ignition peaks of discharge lamps generate mains harmonics that are smoothed by the ballast's impedance. VS electromagnetic control gear units all comply with the stipulated maximum values.

Selection of automatic cut-outs for VS control gear units

Dimensioning automatic cut-outs

When a control gear unit is switched on, high transient current peaks occur due to the smoothing capacitor having to load. The lamps are ignited almost simultaneously, which also causes energy consumption peaks. These high system switch-on currents put a strain on the automatic conductor cut-outs, which must be selected and dimensioned to suit.

Release reaction The release reaction of the automatic conductor cut-outs comply with VDE 0641, part 11, for B and C characteristics.

No. of control gear units

The following values are meant as guidelines only and may vary depending on the respective lighting system. The specified maximum number applies to the number of devices that can be switched on simultaneously. Specifications apply to single-pole fuses; using multi-pole fuses reduces the maximum number by 20%. The considered circuit impedance equals 400 m Ω (approx. 20 m [2.5 mm²] of conductor from the power supply to the distributor and a further 15 m to the luminaire). Doubling circuit impedance to 800 m Ω increases the possible number of control gear units by 10%.

Type of control gear unit	Type of autom	Type of automatic cut-out									
	B (10 A)	B (16 A)	C (10 A)	C (16 A)							
VNaHJ 35PZT	7	12	12	20							
VNaHJ 70PZT	7	12	12	20							
VNaHJ 100PZT	6	10	10	16							
VNaHJ 150PZT	5	8	8	14							
VNaHJ 250PZT	3	5	5	7							
VNaHJ 400PZT	2	4	3	5							

Safety functions

Shutdown of defective lamps

In the event of a lamp failing to ignite the control gear unit will automatically shut down after a preset safety period. The programmed switch off time prevents flickering at the end of the lamp's service life. The control gear unit can be reset after shut down and lamp changing by disconnecting and then reconnecting the mains voltage.

Temperature protection

To protect against impermissible excess temperatures, the devices are fitted with a temperature fuse.

Protection against installation and wiring errors

The integrated IPP++ function will prevent the power unit from making any attempt to start the lamp in the event of an installation or wiring error and also if the neutral conductor is dislodged within the existing mains voltage network (three-phase supply network). Should the nominal supply voltage be connected, the power unit will begin starting the lamp immediately.

Reliability and service life

The control gear units can be expected to provide a service life of 50,000 operating hours provided that the assembly instructions are observed and the maximum tw value of the ballast is not exceeded. Failure rate: < 0.1%/1,000 hrs

2

3

4

5

6

7

8

9

Electrical installation

Connection terminals

Terminals can be contacted with rigid or flexible conductors

Rigid conductors: max. 2.5 mm²
 Flexible conductors: max. 2.5 mm²

Stripped lead length: 10-11 mmConductors must not be tin-plated

Connection leads

Admissible diameter 7-9 mm

The suitability of luminaire conductors and cables for use within luminaires with ignition devices must be checked in accordance with luminaire standard EN 60598-1 10.2.2. In general, all silicone and standard PVC cables meet these requirements.

Wiring

The wiring between the supply mains, control gear unit and lamp must be in accordance with the circuit diagram shown on the type plate.

Note: luminaire casing (metal) must be connected to the protective earth conductor.

Assembly Instructions for Electromagnetic Ballasts

For mounting and installing electromagnetic ballasts for high-pressure discharge lamps

Mandatory regulations

DIN VDE 0100	Erection of low voltage installations
EN 60598-1	Luminaires - part 1: general requirements and tests
EN 61347-1	Operating devices for lamps - part 1: general and safety requirements
EN 61347-2-9	Operating devices for lamps; part 2-9: special requirements for ballasts for discharge lamps (except fluorescent lamps)
EN 60923	Ballasts for discharge lamps - performance requirements
EN 55015	Maximum values and methods of measurement for RFI suppression in electrical lighting installations and similar electrical appliances
EN 61000-3-2	Electromagnetic Compatibility (EMC) – part 3: maximum values – main section part 2: maximum values for mains harmonics (device input current up to and including 16 A per conductor)
EN 61547	Installations for general lighting purposes - EMC immunity requirements

Technical specifications

Operating voltage range

The ballasts can be operated at the specified mains voltage within a tolerance range of $\pm 10\%$ for HS/HI and HM lamps and $\pm 3\%$ for C-HI lamps.

Leak current ≤ 0.1 mA

Compensation/power factor

Inductive ballasts: $\lambda \le 0.5$

Parallel-compensated ballasts: $\lambda \ge 0.85$

Mechanical mounting

Mounting position

Anν

Mounting location

Ballasts are designed for installation in luminaires or comparable devices.

Independent ballasts do not need to be installed in a casing.

Fastening Preferably using M4 to M6 screws, depending on the size of the ballast.

Encapsulated ballasts may only be used with flat-headed screws (M5), underlaid with a

washer (DIN 9021). (Tightening torque \approx 2 Nm)

Temperature The winding temperature tw must be checked during operation and must not exceed the

specified maximum value. It must be tested by using the standardised method of measuring resistance. The Δt marking on the type plate is a measure of the ballast's inherent heating and thus of its power loss. The lower this value is the lower the power loss of the ballast. This value is determined using standardised measuring regulations and constitutes a benchmark for comparing ballasts of the same design for selection purposes.

Electromagnetic compatibility (EMC)

Interference Voltage measurements have to be taken at the connection terminals for

luminaires with electromagnetic ballasts as these are systems that operate with lamp voltages of under 100 Hz. These low-frequency interference voltages are generally not critical with

high-pressure discharge lamps with electromagnetic ballasts.

Interference immunity

Thanks to the robust design and choice of materials, electromagnetic ballasts provide a high degree of interference immunity and are not impaired by normal mains power interference.

 $Mains\ Harmonics\ After\ every\ zero\ crossing\ of\ the\ lamp\ current,\ discharge\ lamps\ experience\ a\ re-ignition\ peak$

as the lamps go out for a brief (imperceptible) moment. These re-ignition peaks of discharge lamps generate mains harmonics that are smoothed by the ballast's impedance. VS electromagnetic ballasts all comply with the stipulated maximum values.

magnetic ballasis all comply with the stipulated maximum values.

Selection of automatic cut-outs for VS electromagnetic ballasts

Dimensioning automatic cut-outs

When a ballast is switched on, high transient current peaks occur due to parasite capacitances that can accumulate with the number of luminaires. These high system switch-on currents put a strain on the automatic conductor cut-outs. For this reason, only surge-current-proof automatic cut-outs should be used for lighting systems.

i

2

3

4

5

6

7

8

9

Release reaction The release reaction of the automatic conductor cut-outs comply with VDE 0641, part 11, for B and C characteristics.

No. of ballasts

The following values are meant as guidelines only and may vary depending on the respective lighting system. The maximum number of VS ballasts applies to cases where the devices are switched on simultaneously. Specifications apply to single-pole fuses. The number of permissible ballasts must be reduced by 20% for multi-pole fuses. The considered circuit impedance equals $400~\text{m}\Omega$ (approx. 20~m of $[2.5~\text{m}^2]$ conductor from the power supply to the distributor and a further 15~m to the luminaire). Doubling circuit impedance to $800~\text{m}\Omega$ increases the possible number of ballasts by 10%. The values quoted in the following tables are guidelines and can be affected by system-specific factors.

Possible number of ballasts connected to automatic cut-outs with or without compensation

Lamp	lata	СР	Max. nu	ımber	of ballasts	s conn	ected to a	automo	atic cut-ou	ıts – w	ithout cor	npenso	ation / wi	th com	npensatio	n						
			C1		C1		C1		C2		C2		l B1		ј в1		В1	6	B2	20	В	25
W	V	μF	without	with	without	with	without	with	without	with	without	with	without	with	without	with	without	with	without	with	without	with
Mercu	Jry va	pour	lamps	(HM)																		
50	230	7	10	19	13	25	15	31	18	39	23	49	8	10	11	12	13	15	16	18	20	23
80	230	8	6	12	7	15	9	19	11	24	14	30	6	6	8	7	10	9	12	11	15	14
125	230	10	4	7	5	9	7	12	7	15	9	19	4	4	5	5	7	6	9	7	10	9
250	230	18	2	4	3	5	3	6	3	7	4	9	2	2	3	2	3	3	4	3	5	4
400	230	25	1	2	1	3	2	4	2	5	2	6	1	1	1	1	2	22	3	2	3	2
700	230	40	_	1	_	1	1	2	1	2	1	3	1	_	1	_	1	1	1	1	2	1
1000	230	60	_	1	_	1	_	1	1	2	1	2	-	_	-	_	1	_	1	1	1	1
Metal	halid	e lam	ps (HI)																			
35	230	6	11	22	14	29	18	36	23	45	29	50	9	11	12	14	15	18	18	23	23	27
70	230	12	7	12	9	15	11	18	14	23	17	29	5	8	6	10	8	13	9	16	12	20
100	230	12	6	10	7	13	9	16	11	20	14	25	4	7	5	9	6	11	8	14	10	17
150	230	20	4	7	5	9	6	11	7	14	9	17	2	5	3	6	4	8	5	10	6	12
250	230	32	2	5	2	6	3	7	4	9	5	11	1	3	1	4	2	5	3	6	4	8
400	230	35	2	3	2	4	3	5	4	7	5	8	1	2	1	3	2	4	2	5	3	6
1000	230	85	-	1	_	1	1	1	1	3	1	3	_	-	_	-	_	1	1	1	1	2
2000	380	60	_	1	_	1	_	2	-	2	-	3	-	_	-	_	_	1	-	1	-	2
2000	380	37	-	_	_	_	_	1	-	1	-	2	-	_	-	_	_	_	-	1	_	1
3500	380	100	_	_	_	_	_	_	_	_	-	_	-	_	-	_	_	_	-	_	_	_
High	pressu	re so	dium v	apou	r lamps	(HS)																
35	230	6	11	22	14	29	18	36	23	45	29	50	9	11	12	14	15	18	18	23	23	27
50	230	10	9	16	11	20	14	24	18	31	22	38	6	11	8	14	10	17	13	22	16	27
70	230	12	7	12	9	15	11	18	14	23	17	29	5	8	6	10	8	13	10	16	12	20
100	230	12	6	10	7	13	9	16	11	20	14	25	4	7	5	9	6	11	8	14	10	17
150	230	20	4	7	5	9	6	11	7	14	9	17	2	5	3	6	4	8	5	10	7	12
250	230	36	2	5	2	6	3	7	4	9	5	11	1	3	1	4	2	5	3	6	4	8
400	230	45	1	3	1	3	2	4	3	5	4	7	1	2	1	2	1	3	2	4	2	5
600	230	60	1	2	1	2	1	2	2	3	2	4	-	1	-	1	1	2	2	2	2	3
1000	230	100	1	1	1	1	1	1	1	2	2	3	-	-	_	-	_	1	1	1	1	2

Safety functions

The VS range includes ballasts with an integrated temperature switch that safely disconnects the lamp from the power supply if the lamp should develop the rectifier effect towards the end of its service life. The cut-out behaviour of the temperature switch is influenced by the luminaire construction. The luminaire manufacturer is responsible for checking the factory settings of the temperature switch in accordance with EN 60598-1 Section 12.5. VS can adjust the temperature switch to the appropriate cut-out temperature to suit requirements.

Reliability and service life

Provided the maximum winding temperature is not exceeded, the ballasts can be expected to yield a service life of 100,000 operating hours. Failure rate < 0.025 %/1,000 hrs

Electrical installation

Push-in terminals $\,$ Terminals can be contacted with rigid conductors up to a maximum of 1.5 mm².

Screw terminals

- Terminals can be contacted with rigid or flexible conductors with ferrules on bare end
 of core
- Conductor cross-sections are determined by the terminals and can vary according to type 0.5–1.5 mm² / 0.75–2.5 mm² / 1.5–2.5 mm²
- Stripped lead length: 8 9 mm
- Conductors must not be tin-plated
- Max. tightening torque 0.5 Nm

Wiring

The wiring between the power supply, ballast and lamp must be in accordance with the respective circuit diagram (see pages 200-201).

Components

High-pressure discharge lamps must only be fitted with components that are rated to withstand the respective ignition voltage.

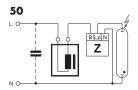
1

7

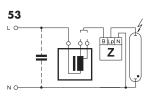
3

4

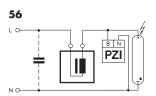
5

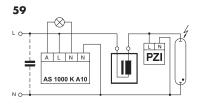

6

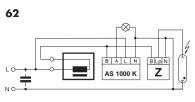
7

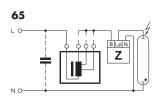

8

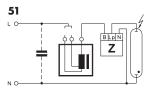
9

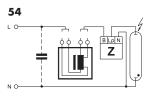

Circuit diagrams for high-pressure sodium lamps (HS) and metal halide lamps (HI)

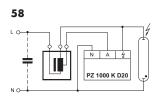

Superimposed ignition of HS and HI lamps

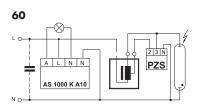

Superimposed ignition of HS and HI lamps (ballasts with two alternative power tapping points)

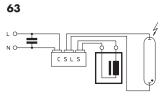

Pulse ignition of HI lamps, ignition voltage 0.9 kV

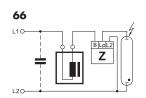

Start-up switch for HI lamps, ignition voltage 0.9 kV $\,$

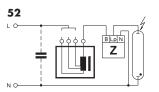

Start-up switch for HS and HI lamps

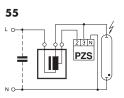

Superimposed ignition of HS and HI lamps with three alternative power tapping points

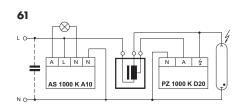

Superimposed ignition of HS and HI lamps (ballasts with two alternative voltage tapping points)

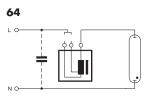

Superimposed ignition of HS and HI lamps (ballasts with two alternative voltage and power tapping points)


Pulse ignition for HS and HI lamps

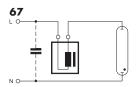

Start-up switch for standard HS lamps


SDW-T lamps

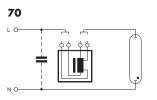

Superimposed ignition of HS and HI lamps with polyphase power systems


Superimposed ignition of HS and HI lamps (ballasts with three alternative voltage tapping points)

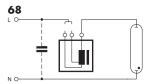
Pulse ignition of standard HS lamps

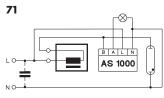


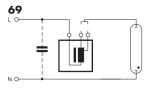
Start-up switch for HS and HI lamp



HS lamps with internal ignitor (ballasts with two alternative voltage tapping points)

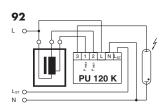

Circuit diagrams for mercury vapour lamps (HM)


HM lamps

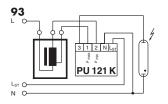

HM lamps (ballasts with two alternative voltage and power tapping points apiece)

HM lamps (ballasts with two alternative voltage tapping points)

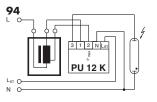
Start-up switch for HM lamps with auxiliary lamp

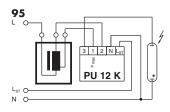


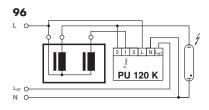
HM lamps (ballasts with two alternative power tapping points)

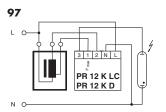


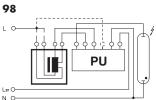
Power reduction of mercury vapour lamps (HM lamps)

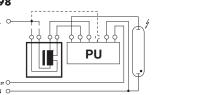

LST connectable to L1, L2 and L3


Disconnected control phase $(L_{ST} = 0 V)$ with ballasts with two tapping points

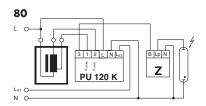

Connected control phase ($L_{ST} = 230 \text{ V}$) with ballasts with two tapping points

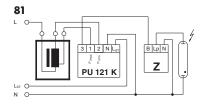

Disconnected control phase $(L_{ST} = O V)$ with ballasts with two tapping points


Connected control phase ($L_{ST} = 230 \text{ V}$) with ballasts with two tapping points

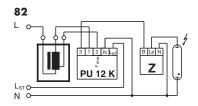

Disconnected control phase ($L_{ST} = O V$) with two ballasts connected in parallel

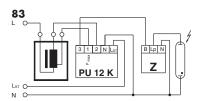
Electronic power reduction without control phase

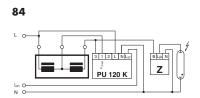

Ballasts with two tapping points and two voltage tapping points ($L_{ST} = 0 \text{ V or } L_{ST} > 0 \text{ V}$)

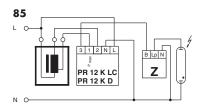

VSSLOH SCHWABE

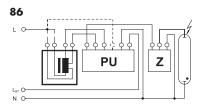
Power reduction of high-pressure sodium lamps (HS lamps) – superimposed ignition system

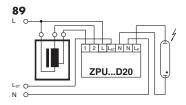

LST connectable to L1, L2 or L3


Disconnected control phase (L_{ST} = 0 V) with ballasts with two tapping point


Connected control phase (L_{ST} = 230 V) with ballasts with two tapping points


Disconnected control phase ($L_{ST} = 0 \text{ V}$) with ballasts with two tapping points


Connected control phase ($L_{ST} = 230 \text{ V}$) with ballasts with two tapping points


Disconnected control phase ($L_{ST} = 0 \text{ V}$) with main ballast and additional inductance

Electronic power reduction without control phase

Ballast with two tapping points and two voltage tapping points (LST = 0 V or LST > 0 V)

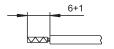
Disconnected control phase ($L_{ST} = 0 \text{ V}$) with ballasts with two tapping points

Lampholders for High-pressure Discharge Lamps

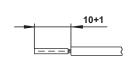
Metal halide and high-pressure sodium lamps feature extremely different bases, which include RX7s, Fc2, G8.5, GX8.5, GU8.5, GX10, G12, GX12, PG12, PGJ5, GU6.5, E27 and E40, depending on whether the lamp is single- or double-ended. All lampholders are subject to the same typical conditions found with discharge lamps: high ignition voltages and temperatures. The high start-up currents deserve particular attention in lampholder design. This is also reflected by the insulation materials, which are usually solid ceramics or heat-resistant plastic (e.g. PPS - polyphenylene sulphide). Depending on the lamp's requirements (voltage, current, temperature, etc.), silver, nickel and copper alloys with thick nickel coatings are used as conductors. The luminaire regulation EN 60598-1 (VDE 0711 part 1), defines the safety requirements with regard to ignition voltages in connection with creepage and air clearance distances. Special care must be taken to ensure that lampholders are approved for discharge lamps when using high-pressure lamps with E27 and E40 Edison bases. Lampholders that are suitable for this purpose are marked with a maximum value of "5 kV" and comply with the increased creepage and air clearance distances specified by the lampholder requirements in EN 60238 (VDE 0616 part 1). The lampholder regulations governing special lampholders, EN 60838-1 (VDE 0616 part 5), apply analogously to all other base systems. The high ignition voltage pulses also place special demands on the conductors. In practice, silicone-insulated conductors with an outer diameter of 3.6 mm have proved to be suitable for discharge lamps. Silicone-insulated conductors with a glass-silk lining with a diameter of 7 mm should be used for lamps with an instant hot restart (20 kV) function.

When connecting lampholders to push-in terminals of ballasts, the diameter of the conductor and the length of the stripped cables must be taken into account to ensure correct operation of the installed components. To this end, Vossloh-Schwabe can make additional versions available with compacted cable ends as further op-

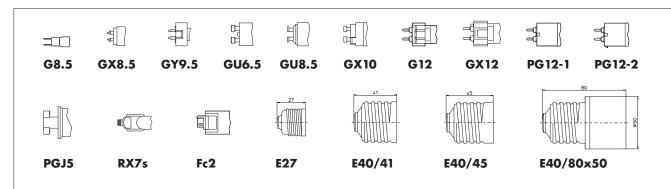
When using compacted cable ends, the reduction of the cable diameter at the end of the cable must be taken into account, which means that the respective ballast push-in terminal has to be capable of taking the next-smaller cable diameter (see table with examples).


When using screw terminals to connect a ballast, it is recommended to use a ferrules on the bare end of core.

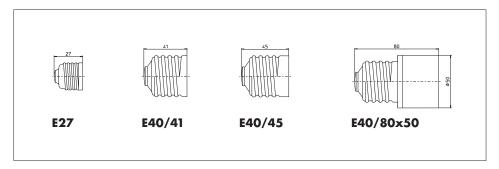
Cable cross-section	Push-in terminal range on the ballast when using compacted cable ends mm ²
0.75	≥ 0.5
1	≥ 0.75


VS lampholders for the UL market and UL approved leads are available for all common lamp types.

Further information can be found at www.unvlt.com.


Ferrule on bare end of core

Compacted cable ends



Bases for the most commonly used HI and HS lamps

Bases for the most commonly used HM lamps

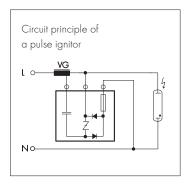
Edison bases are predominantly used for mercury vapour lamps (HM)

Ignitors

Ignition voltages for high-pressure sodium lamps (HS) and metal halide lamps (HI)

The ignition voltage of HS and HI lamps is determined by the respective lamp technology as well as the creepage and air clearance distances of the base-lampholder system. High-pressure sodium lamps of 35, 50 and 70 W with an E27 base are ignited with a voltage of between 1.8 and 2.3 kV. All other high-pressure lamps of the sodium and metal halide families require an ignition voltage of between 4 and 5 kV (except for special lamps and lamps with base PGJ5).

Superimposed ignitors


Superimposed ignitors work independently of ballasts and generate defined ignition pulses within the voltage ranges of $220-240 \text{ V} \pm 10\%$ and $380-415 \text{ V} \pm 10\%$. As the mains frequency only plays a minor role, these systems work equally well at 50 Hz and 60 Hz. In accordance with the lamp manufacturer's specifications, pulses or clusters of pulses of defined width and height are generated in every half wave. Although lamp current flows through superimposed ignitors, they only cause low losses in relation to the system's power consumption. The maximum ambient temperature can be calculated by subtracting the ignitor's self-heating, which is caused by the inherent losses, from the specified maximum casing temperature (tc).

Superimposed ignitors should be mounted near the lampholder. The clearance needed between the ignitor and the lamp is determined by the respective maximum load capacitance, which is specified for each ignitor in the technical specifications. The capacitive load of the cable is dependent on its physical properties and wiring layout; this value usually ranges between $70~\rm pF$ and $100~\rm pF$ per metre. The casing temperature must not fall below $-30~\rm ^{\circ}C$ and must not exceed the maximum value specified on the device.

Circuit principle of a superimposed ignitor

Pulse ignitors

Pulse ignitors use the winding of an inductive ballast to generate the pulse voltage needed to ignite high-pressure discharge lamps. For that reason, ballasts must be designed to withstand these high ignition voltages. In this respect, special attention is paid to the insulation as well as the creepage and air clearance distances. As pulse ignition systems generate high-energy pulses, they are also suitable in the event of longer conductor distances between ignitor and lamp. State-of-the-art ignitors feature electronic circuitry. Depending on their design and the technical requirements, the simplest solution is to connect pulse ignitors in parallel with the lamp. Further models make partial use of the winding of a ballast, which will either feature multiple tapping points for voltage selection or special tapping points for pulse operation.

VS ignitors provide the following advantages:

- fully electronic construction
- compact design
- large nominal voltage range
- · large output range
- low self-heating
- minimal power loss
- low noise
- long service life
- high electrical safety due to high-quality components (e.g. approved capacitors)
- highly heat-resistant (max. permissible casing temperature t_c: 105°C for superimposed ignitors and 95°C for pulse ignitors)
- highly fire-resistant potting compound (certified according to EN 60926 and UL 94-VO)
- environmentally compatible potting compound (waste key No. 57110)

2

3

4

5

6

7

8

9

10

Product range

Vossloh-Schwabe's product range covers superimposed and pulse ignitors in standard models and with automatic cut-outs. Superimposed ignitors with automatic cut-outs are available with various cut-out times and ignition voltage pulse mechanisms (A and D). In this respect, D-series ignitors featuring the intelligent pulse-pause mode (IPP) are the best solution in terms of ignition reliability and switching off defective lamps.

Electronic ignitors with integrated cut-outs capture data on ignition behaviour during the ignition process. These data, e.g. regarding ignition frequency or failure, serve to identify ageing lamps and to ensure the ignition process is reliably switched off after a defined period of time at the end of the lamp's service life or in the event of defective lamps. This reduces the negative consequences associated with defective lamps.

Superimposed and Pulse Ignitors with Automatic Cut-out

Ignitors with IPP technology and extended cut-out - D series

After connection to mains voltage, D series ignitors generate ignition voltage pulses that are controlled and if necessary switched off by the ignitor in accordance with the lamp's operating state, lamp recognition and the safe burning time. If the safe burning time is not attained after three consecutive ignition attempts, pulse generation will cease.

Appropriately programmed microprocessors enable these performance features of ignitors with IPP technology (Intelligent Pulse-Pause Mode) and extended cut-outs.

Z ... D20/ PZ ... D20

for HS, HI and C-HI lamps

programmed cut-out time: 1,216 seconds

Ignitors with IPP technology and extended cut-outs are available up to an output of 1,000 W.

VOSSLOH

Programmed cut-out function of VS ignitors

Time

Ignitors with automatic cut-out - A series

After connection to mains voltage, A series ignitors supply a continuous stream of ignition voltage pulses until the lamp has ignited or the predefined cut-out time (sum of all ignition periods) has been reached if the lamp fails to ignite.

PZ ... A5 for HSI lamps

programmed cut-out time: ca. 300 seconds

Pulse ignition systems - overview of technical specifications

For HS, HI and C-HI lamps - PZ 1000 K D20

for high-pressure sodium lamps (HS) 50–1000 W, metal halide lamps (HI) 35–1000 W and for ceramic discharge tube lamps (C-HI) 35–400 W

Ignition voltage: 1.8-2.3 kV or 4-5 kV No. of pulses: 2 per mains period Load capacitance: 20-1000 pF

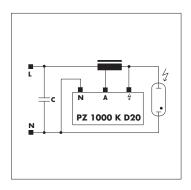
Ignitors with automatic cut-out and IPP technology

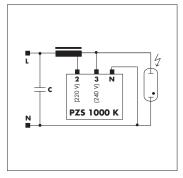
Suitable ballast types: NaHJ ... PZT with special winding tapping point, whose position is determined by the magnitude of the ignition voltage

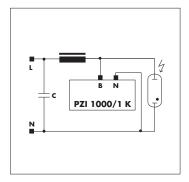
For HS lamps - PZS 1000 K

for standard high-pressure sodium lamps (HS) 50-1000 W Not suitable for discharge lamp models SUPER, PLUS, XL, etc.

Ignition voltage: approx. 4 kV No. of pulses: 1 per second Load capacitance: 20-4000 pF


Suitable ballast types:


NaH ... P with winding tapping point


(20 V voltage difference)

For HI lamps - PZI 1000/1 K

for metal halide lamps (HI) with an ignition voltage up to 0.9 kV No. of pulses: 1 per mains period Load capacitance: max. 10,000 pF Suitable ballast models: Q...

Assembly Instructions for Ignitors

For mounting and installing ignitors

Mandatory regulations

DIN VDE 0100	Erection of low voltage installations
EN 60598-1	Luminaires - part 1: general requirements and tests
EN 61347-1	Operating devices for lamps - part 1: general and safety requirements
EN 61347-2-1	Control gear for lamps; part 2-1: special requirements for ignitors (other than glow starters)
EN 60927	Control gear for lamps; ignitors (other than glow starters); performance requirements
EN 55015	Maximum values and methods of measurement for RFI suppression in electrical lighting installations and similar electrical appliances
EN 61000-3-2	Electromagnetic Compatibility (EMC) – part 3: maximum values – main section part 2: maximum values for mains harmonics (device input current up to and including 16 A per conductor)
EN 61547	Installations for general lighting purposes - EMC immunity requirements

Technical specifications

Operating voltage range

Ignitors can be operated at the specified mains voltage within a tolerance range of $\pm\,10\%$.

Max. casing temperature $t_{\text{\tiny C}}$

A maximum casing temperature t_c of $105\,^{\circ}\text{C}$ or $95\,^{\circ}\text{C}$ is specified for superimposed ignitors and pulse ignitors, respectively. Tests carried out during operation must ensure this maximum value is not exceeded. Selecting an ignitor for higher lamp currents can reduce self-heating and thus also the temperature at the t_c measuring point. Details regarding self-heating can be found in the following table. The temperature structure in the luminaires is negatively influenced by ageing lamps.

Minimum ambient temperature ta

The minimum ambient temperature ta for all superimposed and pulse ignitors is -30 °C. Ignitors for use in applications with special requirements to the ambient temperature (for example -40 °C) are available on request.

i

2

3

4

5

6

7

8

9

Superimposed ignitors – Technical specifications

Voltage	Ignitor type	Max.	Power	Inherent	Ignition	Max.	Max.	Connection	terminals	Casing	Dimensions
		lamp	loss	heating	voltage	load capacity pF	conductor	(mm ²)		material	(dia. x L or
		current					length between				L x W x H)
							ignitor and				length without
							lamp*				threaded stud
V/Hz		А	W	K	kV		m	Screw	Push-in		mm
220-240/	Z 70 S	2	< 0.6	< 5	1.8-2.3	200	2	0.75-4	_	Al	Ø35 x 76
50-60	Z 70 K	2	< 0.6	< 5	1.8-2.3	200	2	0.75-4	_	PC	78 x 34 x 27
								_	0.5-2.5		81 x 34 x 27
	Z 70 K D20	2	< 0.6	< 5	1.8-2.3	200	2	0.75-4	_	PC	80 x 34 x 30
								_	0.5-2.5		83 x 34 x 30
	Z 250 S	3.5	< 1.8	< 20	4.0-5.0	100	1	0.75-4	_	Al	Ø35 x 76
	Z 250 K	3.5	< 1.8	< 20	4.0-5.0	100	1	0.75-4	_	PC	78 x 34 x 27
								_	0.5-2.5		81 x 34 x 27
	Z 250 K D20	3.5	< 1.8	< 20	4.0-5.0	100	1	0.75-4	_	PC	80 x 34 x 30
								_	0.5-2.5		83 x 34 x 30
	Z 400 S	5	< 3.0	< 25	4.0-5.0	100	1	0.75-4	_	Al	Ø45 x 76
	Z 400 M	5	< 3.0	< 35	4.0-5.0	50	0.5	0.75-4	_	Al	Ø35 x 76
	Z 400 M VS-Power										
	Z 400 M S										
	Z 400 M K	5	< 3,0	< 35	4,0-5,0	50	0,5	0,75-4	_	PC	78 x 34 x 27
								_	0.5-2.5		81 x 34 x 27
	Z 400 M K VS-Power	. 5	< 3,0	< 35	4,0-5,0	50	0,5	0,75-4	_	PC	78 x 34 x 27
								_	0.5-2.5		81 x 34 x 27
	Z 400 S D20	5	< 3.0	< 25	4.0-5.0	100	1	0.75-4	_	Al	Ø45 x 90
	Z 400 M K D20	5	< 3.0	< 35	4.0-5.0	50	0.5	0.75-4	_	PC	80 x 34 x 30
								_	0.5-2.5		83 x 34 x 30
	Z 750 S	8	< 3.0	< 20	4.0-5.0	100	1	0.75-2.5	_	Al	Ø50 x 90
	Z 1000 S	12	< 6.0	< 35	4.0-5.0	100	1	0.75-2.5	_	Al	Ø50 x 80
	Z 1000 TOP										85 x 85 x 60
	Z 1000 S D20	12	< 6.0	< 35	4.0-5.0	100	1	0.75-2.5	_	Al	Ø50 x 89
	Z 1000 L	12	< 6.0	< 35	4.0-5.0	2000	20	0.75-2.5	_	Al	Ø50 x 97
	Z 1200/2,5	15	< 7.5	< 40	2.0-2.5	200	2	0.75-2.5	_	Al	Ø50 x 87
	Z 1200/9	15	< 10.0	< 40	7.0-8.0	50	0.5	0.75-2.5	_	Al	Ø50 x 135
	Z 2000 S	20	< 6.0	< 30	4.0-5.0	100	1	0.75-2.5	_	Al	Ø65 x 96
380-420/	Z 1000 S/400V	6	< 3.3	< 28	4.0-5.0	2000	20	0.75-2.5	_	Al	Ø45 x 100
50-60	Z 2000 S/400V	12	< 5.0	< 32	4.0-5.0	2000	20	0.75-2.5	_	Al	Ø50 x 98
	Z 3500 S/400V	20	< 7.0	< 35	4.0-5.0	100	1	0.75-2.5	_	Al	Ø65 x 96

^{*} With a conductor of, for instance, 100 pF per m (3x2.5 mm²)

Pulse ignitors – Technical specifications

Nominal voltage/	Pulse ignitor type	Casing	Ignition	Мах.	Max. conductor	Connection	Casing	Dimensions
frequency		temperature	voltage	load	length between	screw	material	(dia. x L or L x W x H)
		t _c		capacity	ignitor and lamp*	terminals		length without threaded stud
V/Hz		°C	kV	pF	m	mm ²		mm
220-240/50-60	PZS 1000 K	95	арргох. 4	4000	40	0.5 - 1.5	PC	50 x 28 x 27
220-240/50-60	PZ 1000 K D20	95	1.8-2.3/	1000	10	0.75-2.5	PC	74 x 34 x 27
			4.0-5.0					
220-240/50-60	PZI 1000/1 K	95	0.7-0.9	10000	100	0.5-2.5	PC	57 x 28 x 27
380-420/50-60	PZ 1000/400 V A5	95	4.0-5.0	800	8	0.75-2.5	Al	Ø40 x 80

^{*} With a conductor of, for instance, 100 pF per m (3x2.5 mm²) – wiring must be taken into consideration

Mechanical mounting

Mounting position Any

Mounting location

Ignitors are designed for installation in luminaires or comparable constructions. Ignitors must be protected against radiation of direct lamp heat by appropriate installation.

Clearance from lamp

The clearance needed between ignitor and lamp is determined by the load capacitance of the conductors and by the type of ignitor pulses. The table on page 208 gives details of the clearance needed for a typical 3-phase lead with a cross-section of 2.5 mm² per conductor.

Casing materials Unmarked in the type description: aluminium; marked "K": polycarbonate

Fastening Via threaded stud M8x10 (Z 2000 S, Z 3500 S/400 V: M12x12)

Dimensions The table on page 208 provides details of ignitor dimensions.

Electromagnetic compatibility (EMC)

Interference Ignitors only generate interference due to the high ignition voltages during lamp ignition. This is classified as click

interference and is not evaluated in lighting technology. However, as this interference occurs continuously in the event

of old lamps that fail to ignite, operators of lighting systems are legally obliged to exchange such lamps.

Interference immunity

Owing to their design and the materials used, VS ignitors are characterised by high interference immunity and comply with the specified maximum values.

Mains harmonics Are not observed during lamp ignition. VS ignitors meet the requirements.

Reliability and service life

The service life of an ignitor is dependent on strict compliance with the casing temperature t_c during operation. As the ignitors are only subjected to loads during high-voltage lamp ignition, a service life of 10 years can be expected provided the t_c values are not exceeded. Failure rate: < 0.04%/1,000 hrs

Electrical installation

Connection terminals

Ignitors feature screw or push-in terminals. For screw terminals a maximum torque value of 0.8 Nm must not be exceeded when connecting the conductor. Push-in terminals are for rigid conductors with a cross section of 0.5-2.5 mm² or respective flexible conductors with ferrule bare end of cores. Stripped lead ends of 8-9 mm are required. Tinned lead ends are not permitted. The permissible conductor cross-sections can be seen in the table on page 208.

Wiring The ignitors must be wired between ballast and lamp in accordance with the circuit diagrams on pages 200-202.

The load capacitances of the wiring must also be taken into account. Distances to lamps should be kept as short as possible.

7

3

4

5

6

7

8

9

Power switches for street lighting

In view of the drive to cut public spending on energy and also in the light of environmental policies to protect resources, reducing the power consumption of high-pressure discharge lamps is becoming increasingly important.

Power reduction is possible on high-pressure sodium vapour and mercury vapour lamps and is realised with the aid of electronic actuators or by switching the inductance in the luminaire itself with the aid of power switches.

Provided that the lamp still emits an acceptable minimum of light output and uniformity, these lamps can be used to reduce the lighting level of outdoor lighting systems during off-peak traffic periods (e.g. in accordance with DIN 5044 for street lighting). In conjunction with the appropriate ballasts, the VS power switches constitute a perfect all-round solution for power switching purposes. This VS system has been approved by leading lamp manufacturers.

Power switch PR 12 K LC - Power reduction without control line

The new VS PR 12 K LC power switch is capable of setting the period of power-reduced operation based on the measured burning time of a lighting system. This eliminates the time-consuming task of continually adjusting the times of power-reduced operation to suit constantly changing day-night cycles; it also removes the need for making adjustments due to daylight-saving times and is thus suitable for use worldwide (regionally independent).

Function

The intelligent PR 12 K LC power switch does not require a control line to reduce lamp output; it uses the tapping of the ballast. Thanks to an integrated microprocessor, the PR 12 K LC power switch can measure the burning time of the luminaire. This value is then compared to data stored on the chip and used to set the time at which the luminaire will switch over to power-reduced operation. The luminaire will be operated at reduced power for a minimum of six hours (reduced by approx. 40% of the lamp's nominal rating at 50% of luminous flux). This period of power reduction can be extended to a

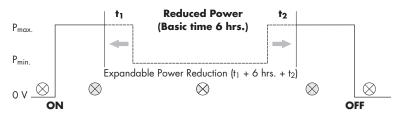
Setting periods of power-reduced operation

The power switch is delivered in its default setting - i.e. the dial is set to 'Test (Code 0)'. After the luminaire has been installed, the desired power reduction time must be set using the dial on the power switch. The power-reduction period can be set to a minimum of six hours and can be extended by up to two hours in both directions (i.e. earlier or later). This results in a maximum power-reduction period of 10 hours.

The dial enables the following settings:

Dia	l settings	tη	Basic power	t ₂	Total power			
Position	Timings	Hours	reduction period (hrs)	Hours	reduction time (hrs)			
0	Test	Factor	Factory setting: 5 seconds on full load, followed by power reduc					
1	0/0	0	6	0	6			
2	0/1	0	6	1	7			
3	0/2	0	6	2	8			
4	0.5/0	0.5	6	0	6.5			
5	0.5/1	0.5	6	1	7.5			
6	0.5/2	0.5	6	2	8.5			
7	1/0	1	6	0	7			
8	1/1	1	6	1	8			
9	1/2	1	6	2	9			
А	1.5/0	1.5	6	0	7.5			
В	1.5/1	1.5	6	1	8.5			
С	1.5/2	1.5	6	2	9.5			
D	2/0	2	6	0	8			
Е	2/1	2	6	1	9			
F	2/2	2	6	2	10			

⁶h မွာ Made in Germany


Voltage range 210-275 V

^{**} Voltage range 250-315 V

Determining operating/power reduction periods

- The dial is set to the desired period of power reduction, e.g. to position 1 (0/0), which corresponds to a
 power-reduction period of six hours.
- In the first night, the luminaire is activated by the twilight switch (e.g. at 20:30 hours) and will operate at its nominal rating. After four hours (default setting), the luminaire will be switched down by 40% of the lamp output by the power switch and will then remain in power-reduced operation until the twilight switch turns the system off (e.g. at 06:30 hours).
- During this time, the power switch will measure the entire burning time of the lamp (10 hours in our example).
- The power switch then compares the measured burning period with values stored on the microprocessor.
 The integrated comparative values of the power switch form the basis for the starting point of power-reduced operation for the following night. The "new" starting time will then be stored by the power switch until the following night.
- In the second night, the lighting system controlled by the twilight switch and thus dependent on the day/night cycle of the respective region and the time of year will be activated (and deactivated) at a slightly different time as compared to the first night (either earlier or later, depending on the season)
- With the dial set to position 1, the power switch will thus activate the six-hour period of power-reduced operation after two hours, as per our example, and will then revert to nominal operation before the twilight switch finally sends the signal to switch the lighting system off.
- During the night, the power switch will again measure the entire burning time, compare this value with the stored values and then reset the starting time for power-reduced operation.
- The period of power-reduced operation can be adjusted by changing the dial setting. This period can be extended in both directions (i.e. earlier or later) as detailed in the table on page 210.
- If the dial is, for instance, set to 9 (1/2) this will produce a total period of power-reduced operation of 9 hours (1+6+2). As a result, power-reduced operation will begin one hour earlier than the value determined the night before would ordinarily prescribe and will then extend the minimum period of power-reduced operation by two hours.
- If, in very rare cases, the total burning period of the lighting system should remain under six hours per night,
 the power switch will activate power-reduced operation after 15 minutes of nominal operation and stay in
 power-reduced mode until the lighting system is switched off. Switching diagram for power reduced operation.

Switching diagram for power reduced operation

Deactivating reduced-power operation for the night

The functional scope of the PR 12 K LC power switch has been extended with an extra function that permits the operator to deactivate reduced-power operation of the lighting system for a single night. The function can be useful for local festivities or events (e.g. town fêtes) during which it would not be appropriate to operate the local street lighting system at reduced power for safety reasons.

The power switch can be easily programmed to operate the lighting system at normal (i.e. 100%) power for the immediately following night cycle. The power switch is programmed by briefly switching the lighting system on for a period of min. 60 and max. 90 seconds during the day of the event and then switching it off again. The intelligent power switch recognises this command and sets the usual reduced-power operation to zero. The power switch can be successively programmed in this manner as many days in a row as necessary. For every night the lighting system is to be operated at normal (100%) power, the lighting system will have to be switched on for a period of min. 60 and max. 90 seconds during the day. The lighting system will be operated at normal (100%) power in the respective night following day-time activation of the extra function.

i

2

3

4

5

6

7

8

9

The power switch does not need to be reprogrammed to return to power-reduced operation of the lighting system. The power switch will automatically return to its original (power-reducing) program if the lighting system is not switched on during the day for a period of min. 60 and max. 90 seconds.

Before testing the extra function, it is important to ensure that the power switch has been in operation for at least one night cycle. Only then will the "learning cycle" start that is required to perform the basic function. After that, the extra function can be activated as described above.

Luminaire testing

The 'Test (Code 0)' dial setting on the power switch is used for luminaire testing during production as well as for direct function tests for "subsequent" installation in the lighting system. After the luminaire is switched on, the lamp is first operated at its nominal rating. After only five seconds, the system will be switched over to power-reduced operation, which will produce a visible change even though the lamp will not yet have attained its full output.

Maintenance work on the lighting system

Maintenance work that requires the lighting system to be switched on for a period of less than two hours will not influence the settings of power switch PR 12 K LC.

Should the lighting system need to be switched on for more than two hours during maintenance work, the PR 12 K LC power switch will activate power-reduced operation after 15 minutes of nominal operation in the following night and will then start to re-measure the total burning time of the lighting system. To determine the starting time of power-reduced operation for subsequent nights, the power switch will again use the stored comparative values.

Switch Units

For power reduction using electronic ballasts with a 1–10 V interface

Suitable for a broad range of lamps

Vossloh-Schwabe's switch units are designed to enable one-step power reduction of lamps (FL, CFL, LED, HS, HI and C-HI) with the help of the respective electronic ballast or converter. To this end, the switch units utilises the 1-10 V interface of the control gear unit. The switch unit is mainly intended for outdoor luminaires in systems with or without a control phase.

Discharge lamps may only be operated at reduced power if they have been expressly approved for this purpose by the manufacturer. In addition, the unit can also be used to dim tubular and compact fluorescent lamps as well as LEDs.

The 1-10 V interface is addressed via an external circuit at the output of the switch unit using a suitably dimensioned resistor. The type of resistor and circuitry are selected by the luminaire manufacturer to suit the desired degree of power reduction.

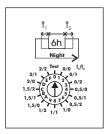
The switch unit satisfies the provisions of DIN EN 61347 and is suitable for use in outdoor luminaires of protection classes I and II.

Function PR 1-10 V K LC

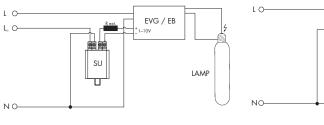
The intelligent PR 1-10 V K LC switch unit does not require a control line to reduce lamp output.

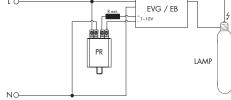
Thanks to an integrated microprocessor, the PR 1-10~V~K~LC switch unit can measure the burning time of the luminaire. This value is then compared to data stored on the chip and used to set the time at which the luminaire will switch over to power-reduced operation.

The luminaire will be operated at reduced power for a minimum of six hours (reduced by approx. 40% of the lamp's nominal rating at 50% of luminous flux). This period of power reduction can be extended to a maximum of 10 hours.


Setting periods of power-reduced operation for PR 1–10 V K $\scriptstyle\rm LC$

The PR 1-10 V K LC switch unit is delivered in its default setting – i.e. the dial is set to 'Test (Code 0)'. After the luminaire has been installed, the desired power reduction time must be set using the dial on the switch unit. The power-reduction period can be set to a minimum of six hours and can be extended by up to two hours in both directions (i.e. earlier or later). This results in a maximum power-reduction period of 10 hours.


The dial enables the following settings:


Dial Settings		t ₁	Basic power	t ₂	Total power				
Position	Timings	Hours	reduction period (hrs)	Hours	reduction time (hrs)				
0	Test	Factory setti	Factory setting: 5 seconds on full load, followed by power reduction						
1	0/0	0	6	0	6				
2	0/1	0	6	1	7				
3	0/2	0	6	2	8				
4	0.5/0	0.5	6	0	6.5				
5	0.5/1	0.5	6	1	7.5				
6	0.5/2	0.5	6	2	8.5				
7	1/0	1	6	0	7				
8	1/1	1	6	1	8				
9	1/2	1	6	2	9				
A	1.5/0	1.5	6	0	7.5				
В	1.5/1	1.5	6	1	8.5				
С	1.5/2	1.5	6	2	9.5				
D	2/0	2	6	0	8				
Е	2/1	2	6	1	9				
F	2/2	2	6	2	10				

Circuit diagrams for switch units

SU 1-10 V K PR 1-10 V K LC

10

VSSLOH SCHWABE i

2

3

4

5

6

7

8

Lamp Table for Discharge Lamps

High-pressure sodium lamps (HS lamps)

Manufacture	r Designation	Base	Lamp	Superimposed igniti	on system	Pulse ignition system		Instant restri	ke ignition system	Control	EB
			current	Ignitor	Ballast	Ignitor	Ballast	Ignitor	Ballast	gear unit	
Lamp outp	out 35 W										
Philips	SDW-T	PG12-1	0.48	ignitor/	NaH 35II	_	_	_	-	-	_
				stabiliser							
Sylvania	SHP-SCO/E	E27	0.53	Z 70	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	-		_
Lamp outp	out 50 W							-			
GE	LU	E27	0.76	Z 70	NaH 50	PZ 1000KD20	-	-	-	-	EHXd 50
GE	LUXO	E27	0.76	Z 70	NaH 50	PZ 1000KD20	-	_	-	_	EHXd 50
GE	LUSBY	E27	0.76	Z 70	NaH 50	PZ 1000KD20	_	-	_	-	EHXd 50
lwasaki	NH/HV/	E27	0.76	Z 70	NaH 50	PZ 1000KD20	-	_	-	-	EHXd 50
Narva	NA	E27	0.76	Z 70	NaH 50	PZ 1000KD20	-	-	-	-	EHXd 50
Narva	NAD	E27	0.76	Z 70	NaH 50	PZ 1000KD20	-	_	-	-	EHXd 50
Osram	NAV-E/E	E27	0.76	Z 70	NaH 50	PZ 1000KD20	-	-	-	-	EHXd 50
Osram	NAV-E4Y	E27	0.76	Z 70	NaH 50	PZ 1000KD20	-	-	-	-	EHXd 50
Osram	NAV-TSuper 4Y	E27	0.76	Z 70	NaH 50	PZ 1000KD20	_	-	_	-	EHXd 50
Philips	SDW-T	PG12-1	0.78	ignitor/	NaH 50II	_	_	_	_	-	_
				stabiliser							
Philips	SONHg free	E27	0.76	Z 70	NaH 50	PZ 1000KD20	-	-	-	-	EHXd 50
Philips	SONPro	E27	0.76	Z 70	NaH 50	PZ 1000KD20	_	-	-	-	EHXd 50
Philips	SON-TPlus	E27	0.76	Z 70	NaH 50	PZ 1000KD20	-	-	-	-	EHXd 50
Radium	RNP	E27	0.76	Z 70	NaH 50	PZ 1000KD20	-	-	-	-	EHXd 50
Sylvania	SHP-S	E27	0.76	Z 70	NaH 50	PZ 1000KD20	_	-	_	-	EHXd 50
Sylvania	SHP-TS	E27	0.76	Z 70	NaH 50	PZ 1000KD20	-	_	_	_	EHXd 50
Lamp outp	out 70 W										
BLV	HST-SE	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
GE	LU	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
GE	LURFL	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	-	VNaHJ 70	EHXd 70
GE	LUSBY	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXd 70
GE	LUXO	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
lwasaki	NH/HV/	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXd 70
Narva	NA.	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Narva	NAD	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXd 70
Osram	NAV-E/E	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Osram	NAV-E4Y	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Osram	NAV-T	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Osram	NAV-T4Y	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXd 70
Osram	NAV-TSuper 4Y	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Osram	NAV-TSSuper 4Y	RX7s	0.98	Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXd 70
Philips	SONHg free	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Philips	SONPro	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXd 70
Philips	SON-TPlus	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Philips	SON-TPro	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Radium	RNP-E	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXd 70
Radium	RNP-T	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	
Radium	RNP-TS	RX7s	0.98	Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXd 70
Sylvania	SHP	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Sylvania	SHP-T	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Sylvania	SHP-TS	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Sylvania	SHP/CO-E	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Sylvania	SHP-S	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	-	VNaHJ 70	EHXd 70
Lamp outp	out 100 W						-				
BLV	HST-SE	E40	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	
GE	LU	E40	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 10
GE	LUSBY	E40	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 10
GE	LUXO	E40	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 10
lwasaki	NHF	E40	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 10
lwasaki	NHTF	E40	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 10
Narva	NA.	E40	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 10
Narva	NAD	E40	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 10
Osram	NAV-E	E40	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	-	VNaHJ 100	EHXd 10
Osram	NAV-ESuper 4Y	E40	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	EHXd 10
		_									

Lamp Table for Discharge Lamps

High-pressure sodium lamps (HS lamps)

Manufacturer	Designation	Base	Lamp	Superimposed ignition	on system	Pulse ignition system		Instant restri	ke ignition system	Control	EB
			current	Ignitor	Ballast	Ignitor	Ballast	Ignitor	Ballast	gear unit	
amp outp	ut 100 W										
Osram	NAV-TSuper 4Y	E40	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	EHXd 10
Philips	SDW-T	PG 12-1	1.30	ignitor/ stabiliser	NaH 100II	_	_	_	_	-	_
hilips	SONPlus	E40	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHI 100	EHXd 10
hilips	SONPro	E40	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	
hilips	SON-THg free	E40	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	
hilips	SON-TPlus	E40	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_		
Philips	SON-TPro	E40	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHI 100	
Radium	RNP-E	E40	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHI 100	
Radium	RNP-T	E40	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	
Sylvania	SHP-S	E40	1.20	Z 250, Z 400	NaHI 100	PZ 1000KD20	NaHJ 100PZT	_	_		
Sylvania	SHP-T	E40	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_		
Sylvania	SHP-TS	E40	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	
amp outp		2.10	11.20	2 200, 2 100	111011111100	12 100011320	Truing Tool 21			11 tang 100	El Ind Te
BLV	HST-DE	Fc2	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 600K	NaHJ 150	VNaHJ 150	EHXd 15
BLV	HST-DE	RX7s	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 600K	NaHJ 150		
BLV	HST-SE	E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	
GE .	LU	E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_		
ЭE	LUSBY	E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	
ЭE ЭЕ	LUXO	E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_		
wasaki	NH	E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT		_		
wasaki	NHT	E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT			VNaHJ 150	
Varva	NA	E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_			
Varva	NAD	E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT				
Osram (NAV-E	E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_			
	NAV-E4Y	E40	1.80	·				_	-		
Osram Osram		E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	-		
Osram	NAV-ESuper 4Y			Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	-	_ ·	
Osram O	NAV-T	E40 E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	-	<u> </u>	
Osram	NAV-T4Y	_	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	-	VNaHJ 150	
Osram O	NAV-TSuper 4Y	E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-		
Osram	NAV-TSSuper 4Y	RX7s	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 600K	NaHJ 150		
Philips	SONHg free	E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	
Philips	SONPlus	E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_		
Philips	SONPro	E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	_ ·	
Philips	SONComfort Pro	E40	1.82	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_		VNaHJ 150	
Philips	SON-THg free	E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	
hilips	SON-TPlus	E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	_	VNaHJ 150	
hilips	SON-TPro	E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	-	VNaHJ 150	
hilips	SON-TComfort Pro	E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	
Radium	RNP-E	E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	-	VNaHJ 150	
Radium	RNP-T	E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-		
Radium	RNP-TS	RX7s	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 600K	NaHJ 150	VNaHJ 150	
Sylvania	SHP-S	E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	
Sylvania	SHP-T	E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	
Sylvania	SHP-TS	E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	JEHXd 1.5
amp outp		DV7	0.00	7.050 7.100	NI III OCO	D7 1000VC 00	N	117 / 001/	N. 111050	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	FLIVELS
BLV	HST-DE	RX7s	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 600K	NaHJ 250	VNaHJ 250	
3LV	HST-SE	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	
GE DE	LU	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	
GE	LUSBY	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	
ЭE 	LUTD	RX7s	2.95	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 600K	NaHJ 250	VNaHJ 250	
ЭE	LUXO	E40	2.95	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	
wasaki	NH	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	
wasaki	NHT	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	
Varva	NA	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 2
Varva	NAD	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 25
Osram	NAV-E	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 2
Osram	NAV-E4Y	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 2
Osram	NAV-ESuper 4Y	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	_	VNaHJ 250	EHXd 25
Osram	NAV-T	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	-	VNaHJ 250	FHXd 2

Lamp Table for Discharge Lamps

High-pressure sodium lamps (HS lamps)

Manufacturer	Designation	Base	Lamp	Superimposed ignition	on system	Pulse ignition system		Instant restri	ke ignition system	Control	EB
			current	Ignitor	Ballast	Ignitor	Ballast	Ignitor	Ballast	gear unit	
Lamp outp	ut 250 W										
Osram	NAV-T4Y	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 25
Osram	NAV-TSuper 4Y	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 25
Osram	NAV-TS	RX7s	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 600K	NaHJ 250	VNaHJ 250	EHXd 25
Philips	SONHg free	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	_	VNaHJ 250	EHXd 25
Philips	SONPlus	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	_	VNaHJ 250	EHXd 25
Philips	SONPro	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 25
Philips	SONComfort Pro	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	EHXd 25
Philips	SON-THg free	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	EHXd 25
Philips	SON-TPlus	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	EHXd 25
Philips	SON-TPro	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	EHXd 25
Philips	SON-TComfort Pro	E40	3.00	Z 250, Z 400	NaHI 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	EHXd 25
Radium	RNP-E	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	
Radium	RNP-T	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	
Sylvania	SHP	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	
Sylvania	SHP-T	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT		_	VNaHJ 250	
Sylvania	SHP-S	E40	2.95	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT			VNaHJ 250	
Sylvania	SHP-TS	E40	2.95		NaHJ 250			_	_	VNaHJ 250	
	-	E40	12.93	Z 250, Z 400	INAUL 230	PZ 1000KD20	NaHJ 250PZT	-	-	I VINGITI ZOU	јепла 20
Lamp outp		DV7.	1.40	7 400 7 1000	NI-111 400	D7 1000KD00	N 400P7T	117 400K	NI-111 400	VN I-111 400	
BLV	HST-DE	RX7s	4.40	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	HZ 600K	NaHJ 400	VNaHJ 400	
BLV	HST-SE	E40	4.40	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	_	VNaHJ 400	
GE	LU	E40	4.60	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	
GE	LUPSL	E40	4.30	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	_	VNaHJ 400	-
GE	LUSBY	E40	4.45	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	_	VNaHJ 400	-
GE	LUTD	RX7s	4.40	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	HZ 600K	NaHJ 400	VNaHJ 400	_
GE	LUXO	E40	4.50	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Iwasaki	NH	E40	4.60	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	-
lwasaki	NHT	E40	4.60	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	_	VNaHJ 400	_
Narva	NA	E40	4.45	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_
Narva	NAD	E40	4.45	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_
Narva	NAS	E40	4.45	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_
Osram	NAV-E	E40	4.45	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_
Osram	NAV-E4Y	E40	4.45	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_
Osram	NAV-ESuper 4Y	E40	4.40	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	
Osram	NAV-T	E40	4.40	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	
Osram	NAV-T4Y	E40	4.40	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	
Osram	NAV-TSuper 4Y	E40	4.40	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT			VNaHJ 400	
Osram	NAV-TS	RX7s	4.40	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	HZ 600K	NaHJ 400	VNaHJ 400	
Osram	Plantastar	E40	4.40	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	112 000K	11011) 400	VNaHJ 400	
								_	_		
Philips	SONHg free	E40	4.50	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	-	VNaHJ 400	
Philips	SONPlus	E40	4.50	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	
Philips	SONPro	E40	4.45	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	
Philips	SONComfort Pro	E40	4.60	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	
Philips	SON-TAgro	E40	4.13	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	
Philips	SON-T Green Power	E40	4.23	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	
Philips	SON-THg free	E40	4.60	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	
Philips	SON-TPlus	E40	4.50	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	
Philips	SON-TPro	E40	4.60	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Philips	SON-TComfort Pro	E40	4.45	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Radium	RNP-E	E40	4.60	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Radium	RNP-T	E40	4.60	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Sylvania	SHP	E40	4.60	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	_
Sylvania	SHP-S	E40	4.50	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	-	VNaHJ 400	
Sylvania	SHP-TS	E40	4.50	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	
Sylvania	SHP-TSGro-Lux	E40	4.00	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	
Lamp outp	-		1	, _ 1000	,,		, ,				
GE	LUPSL	E40	6.00	Z 750	NaH 600	P7 1000KD20	NaH 600P7T			VNaH 600	
		E40				PZ 1000KD20	NaH 600PZT	_	_		_
GE CF	LUXO		6.00	Z 750	NaH 600	PZ 1000KD20	NaH 600PZT		_	VNaH 600	_
GE	LU 400V/600W PSL	E40	3.60	Z 1000/400V	NaH 600/400V			-	-	-	-
Narva	NA	E40	6.20	Z 750	NaH 600	PZ 1000KD20	NaH 600PZT	-	-	VNaH 600	-
Narva	NAS	E40	6.20	Z 750	NaH 600	PZ 1000KD20	NaH 600PZT	-	-	VNaH 600	-

High-pressure sodium lamps (HS lamps)

Manufacturer	Designation	Base	Lamp	Superimposed ignition	on system	Pulse ignition system		Instant restri	ke ignition system	Control	EB
			current	Ignitor	Ballast	Ignitor	Ballast	Ignitor	Ballast	gear unit	
Lamp outpu	it 600 W			-		-					
Osram	NAV-TSuper 4Y	E40	6.20	Z 750	NaH 600	PZ 1000KD20	NaH 600PZT	_	_	VNaH 600	_
Osram	Plantastar 600	E40	6.20	Z 750	NaH 600	PZ 1000KD20	NaH 600PZT	_	_	VNaH 600	-
Philips	SON-TPlus	E40	5.80	Z 750	NaH 600	PZ 1000KD20	NaH 600PZT	_	_	VNaH 600	_
Philips	SON-T Green Power	E40	6.30	Z 750	NaH 600	PZ 1000KD20	NaH 600PZT	_	_	VNaH 600	_
Philips	SON-T 600W/400V	E40	3.62	Z 1000/400V	NaH 600/400V	PZ 1000/	NaH 600PZT/	_	_	_	_
	Green Power					400V A5	400V				
Philips	SON-T 600W	E40	2.93-2.24	_	_	_	_	_	_	_	-
	EL 400V Green Power*										
Radium	RNP-T	E40	6.20	Z 750	NaH 600	PZ 1000KD20	NaH 600PZT	-	_	VNaH 600	-
Sylvania	SHP-TS	E40	5.90	Z 750	NaH 600	PZ 1000KD20	NaH 600PZT	-	_	VNaH 600	-
Sylvania	SHP-TSGro-Lux	E40	5.50	Z 750	NaH 600	PZ 1000KD20	NaH 600PZT	-	_	VNaH 600	-
amp outpu	rt 750 W										
GE	LUPSL	E40	7.00	Z 750	NaH 750	PZ 1000KD20	NaH 750/600PZT	-	-	-	-
ЭE	LU 400V/750W PSL	E40	4.40	Z 1000/400V	NaH 750/400V	PZ 1000/400V A5	NaHJ 750PZT	-	-	-	-
amp outpu	t 1000 W										
GE	LUT	E40	10.60	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	_	_	-	-	-
ЭE	LUD	E40	10.30	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	_	_	_	_	-
ЭE	LUTD	RX7s	10.30	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	_	_	_	-	_
wasaki	NH	E40	10.30	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	_	_	-	-	-
wasaki	NHT	E40	10.30	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	_	_	-	-	-
Varva	NA	E40	10.60	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	_	_	-	_	-
Varva	NAD	E40	10.60	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	_	_	-	-	-
Varva	NAT-VEG 1000/400V	E40	5.70	Z 1000/400V, Z 2000/400V	-	PZ 1000/ 400V A5	_	_	-	-	-
Osram	NAV-E	E40	10.30	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	_	_	_	_	_
Osram	NAV-T	E40	10.30	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	_	_	_	-	-
hilips	SONPro	E40	10.30	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	_	_	_	_	_
Philips	SON-TPro	E40	10.60	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	_	-	-	-	-
Philips	SON-T 1000W EL 400V Green Power**	Wire	4-3.17	_	-	_	_	-	-	-	-
Radium	RNP-E	E40	10.30	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	_	-	-	_	-
Radium	RNP-T	E40	10.30	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	_	-	-	_	-
Sylvania	SHP-T	E40	10.60	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	_	_	-	-	-
Sylvania	SHP-TSBY	E40	10.60	Z 1000	NaH 1000, NaHJD 1000	PZ 1000KD20	_	-	-	-	-

^{*} Voltage range 210-275 V

i

2

3

4

5

6

7

8

9

^{**} Voltage range 250-315 V

Metal halide lamps (HI lamps)

Manufacture	Designation	Base	Lamp	Superimposed ignit	ion system	Pulse ignition system	1	Instant restrike	ignition system	Control	EB
			current	Ignitor	Ballast	Ignitor	Ballast	Ignitor	Ballast	gear unit	
Lamp outp	ut 70 W										
BLV	HIE	E27	0.90	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
BLV	HIE-P	E27	0.90	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
BLV	HIT	G12	0.90	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
BLV	HIT-DE	RX7s	0.90	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
GE	ARC	G12	0.95	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
GE	ARC	Rx7s	0.95	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
lwasaki	М	E27	1.00	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
lwasaki	MT	E27	1.00	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
lwasaki	MT	G8.5	1.00	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
lwasaki	MT	G12	1.00	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Narva	NC	E27; G12	0.90	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
Narva	NC	RX7s	0.90	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
Osram	HQI-E	E27	0.95 - 1.00	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
Osram	HQI-T	G12	1.00	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
Osram	HQI-TS	RX7s	1.00	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
Philips	MHN-TD	RX7s	1.00	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
Philips	MHW-TD	RX7s	1.00	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
Radium	HRI-E	E27	0.95	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Radium	HRI-T	G12	1.00	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Radium	HRI-TS	RX7s	1.00	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
Sylvania	HSI-MP	E27	1.00	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Sylvania	HSI-T	G12	0.95	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Sylvania	HSI-TD	RX7s	0.98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
Venture	HIE	E27	0.90	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXc 70
Venture	HIPE	E27	0.90	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Venture	HIT	E27	0.90	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Venture	HIT	G12	0.90	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Venture	MH-DE	RX7s	1.00	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	-	VNaHJ 70	EHXc 70
Lamp outp	ut 100 W			1							
BLV	HIE	E27	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	-	VNaHJ 100	_
BLV	HIE-P	E27	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	-
Narva	NC	E27; E40	1.10	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	-
Osram	HQI-E	E27	1.10	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	-
Radium	HRI-E	E27	1.10	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	-	VNaHJ 100	_
Sylvania	HSI-MP	E27	1.15	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	_
Venture	HIE	E27	1.10	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	-	VNaHJ 100	_
Venture	HIPE	E27; E40	1.10	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	-
Venture	HIT	E27; E40	1.10	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	-
Lamp outp	ut 150 W			1							
BLV	HIE	E27	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	-	VNaHJ 150	EHXc 15
BLV	HIE-P	E27	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXc 15
BLV	HIT	G12; E27; E40			NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXc 15
BLV	HIT-DE	RX7s-24	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXc 15
GE	ARC	G12	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXc 15
GE	ARC	RX7s-24	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXc 15
lwasaki	М	E27	1.90	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXc 15
	MT	E27	1.90	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXc 15
					INT. LIL 1 FO	LD7 1000KD00	NaHJ 150PZT			VNaHJ 150	EHXc 13
Iwasaki	MT	G12	1.90	Z 250, Z 400	NaHJ 150	PZ 1000KD20		-			
Iwasaki	MT MTD	G12 RX7s	1.90	Z 250, Z 400 Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXc 15
lwasaki Iwasaki	MTD NC	RX7s E27; E40; G12	1.90	Z 250, Z 400 Z 250, Z 400	NaHJ 150 NaHJ 150	PZ 1000KD20 PZ 1000KD20	NaHJ 150PZT NaHJ 150PZT	-	-	VNaHJ 150 VNaHJ 150	EHXc 13
lwasaki Iwasaki Narva	MTD	RX7s E27; E40; G12 RX7s	1.90 1.80 1.80	Z 250, Z 400 Z 250, Z 400 Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT NaHJ 150PZT NaHJ 150PZT	HZ 1000K - HZ 1000K	NaHJ 150 - NaHJ 150	VNaHJ 150	EHXc 13
lwasaki Iwasaki Narva Narva	MTD NC	RX7s E27; E40; G12	1.90	Z 250, Z 400 Z 250, Z 400	NaHJ 150 NaHJ 150 NaHJ 150 NaHJ 150	PZ 1000KD20 PZ 1000KD20	NaHJ 150PZT NaHJ 150PZT	-	-	VNaHJ 150 VNaHJ 150	EHXc 15
lwasaki Iwasaki Narva Narva Osram	MTD NC	RX7s E27; E40; G12 RX7s	1.90 1.80 1.80	Z 250, Z 400 Z 250, Z 400 Z 250, Z 400	NaHJ 150 NaHJ 150 NaHJ 150	PZ 1000KD20 PZ 1000KD20 PZ 1000KD20	NaHJ 150PZT NaHJ 150PZT NaHJ 150PZT	-	-	VNaHJ 150 VNaHJ 150 VNaHJ 150	EHXc 13
lwasaki Iwasaki Narva Narva Osram	MTD NC NC HQI-E	RX7s E27; E40; G12 RX7s E27	1.90 1.80 1.80 1.80	Z 250, Z 400 Z 250, Z 400 Z 250, Z 400 Z 250, Z 400	NaHJ 150 NaHJ 150 NaHJ 150 NaHJ 150	PZ 1000KD20 PZ 1000KD20 PZ 1000KD20 PZ 1000KD20	NaHJ 150PZT NaHJ 150PZT NaHJ 150PZT NaHJ 150PZT	- HZ 1000K - -	-	VNaHJ 150 VNaHJ 150 VNaHJ 150 VNaHJ 150	EHXc 13 EHXc 13 EHXc 13
lwasaki Iwasaki Narva Narva Osram Osram	MTD NC NC HQI-E HQI-R	RX7s E27; E40; G12 RX7s E27 connector	1.90 1.80 1.80 1.80	Z 250, Z 400 Z 250, Z 400 Z 250, Z 400 Z 250, Z 400 Z 250, Z 400	NaHJ 150 NaHJ 150 NaHJ 150 NaHJ 150 NaHJ 150	PZ 1000KD20 PZ 1000KD20 PZ 1000KD20 PZ 1000KD20 PZ 1000KD20 PZ 1000KD20	NaHJ 150PZT NaHJ 150PZT NaHJ 150PZT NaHJ 150PZT NaHJ 150PZT	-	-	VNaHJ 150 VNaHJ 150 VNaHJ 150 VNaHJ 150 VNaHJ 150	EHXc 13 EHXc 13 EHXc 13 - EHXc 13
lwasaki lwasaki Narva Narva Osram Osram Osram Osram	MTD NC NC HQI-E HQI-R HQI-T	RX7s E27; E40; G12 RX7s E27 connector G12	1.90 1.80 1.80 1.80 1.80	Z 250, Z 400 Z 250, Z 400	NaHJ 150 NaHJ 150 NaHJ 150 NaHJ 150 NaHJ 150 NaHJ 150	PZ 1000KD20	NaHJ 150PZT NaHJ 150PZT NaHJ 150PZT NaHJ 150PZT NaHJ 150PZT NaHJ 150PZT	- HZ 1000K - -	- NaHJ 150 - -	VNaHJ 150 VNaHJ 150 VNaHJ 150 VNaHJ 150 VNaHJ 150 VNaHJ 150	EHXc 15 EHXc 15 EHXc 15 - EHXc 15 EHXc 15
lwasaki lwasaki Narva Narva Osram Osram Osram Osram Philips	MTD NC NC HQI-E HQI-R HQI-T HQI-TS	RX7s E27; E40; G12 RX7s E27 connector G12 RX7s-24	1.90 1.80 1.80 1.80 1.80 1.80	Z 250, Z 400 Z 250, Z 400	NaHJ 150 NaHJ 150 NaHJ 150 NaHJ 150 NaHJ 150 NaHJ 150 NaHJ 150	PZ 1000KD20	NaHJ 150PZT	 HZ 1000K HZ 1000K	- NaHJ 150 - - - NaHJ 150	VNaHJ 150 VNaHJ 150 VNaHJ 150 VNaHJ 150 VNaHJ 150 VNaHJ 150 VNaHJ 150	EHXc 15 EHXc 15 EHXc 15 - EHXc 15 EHXc 15 EHXc 15
Iwasaki Iwasaki Narva Narva Osram Osram Osram Osram Philips Philips	MTD NC NC HQI-E HQI-R HQI-T HQI-TS MHN-TD	RX7s E27; E40; G12 RX7s E27 connector G12 RX7s-24 RX7s	1.90 1.80 1.80 1.80 1.80 1.80 1.80	Z 250, Z 400 Z 250, Z 400	NaHJ 150 NaHJ 150 NaHJ 150 NaHJ 150 NaHJ 150 NaHJ 150 NaHJ 150 NaHJ 150	PZ 1000KD20	Nahj 150PZT Nahj 150PZT Nahj 150PZT Nahj 150PZT Nahj 150PZT Nahj 150PZT Nahj 150PZT Nahj 150PZT Nahj 150PZT	HZ 1000K HZ 1000K HZ 1000K	- NaHJ 150 NaHJ 150 NaHJ 150	VNaHJ 150 VNaHJ 150 VNaHJ 150 VNaHJ 150 VNaHJ 150 VNaHJ 150 VNaHJ 150 VNaHJ 150	EHXc 15
Iwasaki Iwasaki Iwasaki Narva Narva Osram Osram Osram Osram Philips Philips Radium Radium	MTD NC NC HQI-E HQI-R HQI-T HQI-TS MHNI-TD MHW-TD	RX7s E27; E40; G12 RX7s E27 connector G12 RX7s-24 RX7s	1.90 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.8	Z 250, Z 400 Z 250, Z 400	NaHJ 150 NaHJ 150 NaHJ 150 NaHJ 150 NaHJ 150 NaHJ 150 NaHJ 150 NaHJ 150 NaHJ 150	PZ 1000KD20	Nahj 150PZT Nahj 150PZT	HZ 1000K HZ 1000K HZ 1000K	- NaHJ 150 NaHJ 150 NaHJ 150	VNaHJ 150 VNaHJ 150 VNaHJ 150 VNaHJ 150 VNaHJ 150 VNaHJ 150 VNaHJ 150 VNaHJ 150 VNaHJ 150 VNaHJ 150	EHXc 15

Metal halide lamps (HI lamps)

Manufacturer	Designation	Base	Lamp	Superimposed ignit	ion system	Pulse ignition syste	em	Instant restrik	e ignition system	Control	EB
71010101010101	Doorgination	5400	current	Ignitor	Ballast	Ignitor	Ballast	Ignitor	Ballast	gear unit	
amp outp	ut 150 W					15		10		10	
Sylvania	HSI-MP	E27	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXc 15
Sylvania	HSI-T	G12	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXc 15
Sylvania	HSI-TD	RX7s	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXc 15
/enture	HIE	E27	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXc 15
Venture	HIPE	E27; E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXc 15
Venture	HIT	E27; E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXc 15
Venture	HIT	G12	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXc 15
Venture	MH-DE	RX7s	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXc 150
Lamp outp	ut 250 W					·			•		
BLV	HIE	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	_
BLV	HIT	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	_
BLV	HIT-DE	Fc2	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250	VNaHJ 250	_
GE	ARC250/T	E40	2.75	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	_
GE	ARC250/TD	Fc2	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250	VNaHJ 250	_
Narva	NC	E40	2.15	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	_
Narva	NCP	E40	2.15	_	_	PZI 1000/1	Q 250	_	_	_	_
Osram	HQI-E	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	-	VNaHJ 250	_
Osram	HQI-E/P	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	_
Osram	HQI-T	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
Osram	HQI-TS	Fc2	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250	VNaHJ 250	-
Philips	HPI Plus	E40	2.20	_	-	PZI 1000/1	Q 250	_	_	-	_
Philips	HPI-T	E40	2.15	_	_	PZI 1000/1	Q 250	_	_	_	_
Philips	MHN-TD	Fc2	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	_
Radium	HRI-E	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	_
Radium	HRI-T	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	_
Radium	HRI-TS	Fc2	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250	VNaHJ 250	_
Sylvania	HSI-HX	E40	2.10	_	_	PZI 1000/1	Q 250	_	_	_	_
Sylvania	HSI-T	E40	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	_
Sylvania	HSI-TD	Fc2	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250	VNaHJ 250	_
Sylvania	HSI-THX	E40	2.10	_	_	PZI 1000/1	Q 250	_	_	_	_
Sylvania	HSI-TSX	E40	2.90	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	_
Sylvania	HSI-SX	E40	2.90	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	_
Venture	HIE	E40	3.10	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	_
Venture	HIPE	E40	3.10	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	_
Venture	HIT	E40	3.10	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	_
Venture	HITEURO	E40	2.10	_	_	PZI 1000/1	Q 250	_	_	_	_
Venture	MH-DE	Fc2	3.10	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250	VNaHJ 250	_
Lamp outp	ut 400 W										
BLV	HIE	E40	4.00	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_
BLV	HIT	E40	4.00	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_
GE	ARC400/T	E40	4.35	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_
Narva	NC	E40	3.25	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	_
Narva	NCP	E40	3.25	_	_	PZI 1000/1	Q 400	-	-		_
Osram	HQI-E	E40	3.50	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	_
Osram	HQI-E/P	E40	3.50	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_		VNaHJ 400	_
Osram	HQI-T	E40	3.60	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	-
Osram	HQI-TS	Fc2	3.60	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	HZ 1000K	NaHJ 400	VNaHJ 400	-
Philips	HPI-T	E40	3.40	-		PZI 1000/1	Q 400	_	-		-
Philips	MH-T	E40	3.40	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	-
Radium	HRI-BT	E40	4.00	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	-	VNaHJ 400	-
Radium	HRI-E	E40	4.60	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	-
Radium	HRI-T	E40	4.60	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	_
Radium	HRI-TS	Fc2	4.10	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	HZ 1000K	NaHJ 400	VNaHJ 400	_
Sylvania	HSI-HX	E40	3.40	_	_	PZI 1000/1	Q 400	_	-	_	-
Sylvania	HSI-T	E40	4.00	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Sylvania	HSI-THX	E40	3.40	_	_	PZI 1000/1	Q 400	-	-	_	-
Sylvania	HSI-TSX	E40	4.40	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_
Sylvania	HSI-SX	E40	4.40	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_
Venture	HIE	E40	3.20	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_
	1	t		-,	_						

Metal halide lamps (HI lamps)

Manufacturer	Designation	Base	Lamp	Superimposed ignit	ion system	Pulse ignition system	n	Instant restrike	ignition system	Control	EB
			current	Ignitor	Ballast	Ignitor	Ballast	Ignitor	Ballast	gear unit	
Lamp outp	ut 400 W										
Venture	HIT	E40	3.20	Z 400, Z 1000	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_
Venture	HITEURO	E40	3.20	_	_	PZI 1000/1	Q 400	_	_	_	_
Lamp outp	-	1									
Osram	HQI-TM	G22	6.10	Z1000	NaH 600	PZ 1000KD20	NaH 600PZT			VNaH 600	
Radium	HRI-TM	G22	6.10	Z1000	NaH 600	PZ 1000KD20	NaH 600PZT	_		VNaH 600	+
Lamp outp		OZZ	0.10	21000	114011000	12 1000KB20	11011000121	ļ-	<u> </u>	V14011000	
BLV	HIT	E40	9.50	Z 1000, Z 2000	NaHJ 1000	PZ 1000KD20					1
		E40	9.50	Z 1000, Z 2000		PZ 1000KD20	_	-	_	-	
GE	SPL 1000	1	_	,	NaHJ 1000		_	-	-	_	+
Narva	NC	E40	8.25	Z 1000, Z 2000	NaHJ 1000	PZ 1000KD20	-	_	_	_	-
Narva	NCP	E40	8.25	_	_	PZI 1000/1	Q 1000	_	_	-	-
Narva	NCT/400V	E40	4.80	Z 1000/400V; Z 2000/400V	NaHJ 1000	_	_	_	_	_	-
Osram	HQI-TM	G22	9,50	Z 1000	NaHJ 1000	PZ 1000KD20					
Osram	HQI-E	E40	9.50	Z 1000, Z 2000	NaHJ 1000	PZ 1000KD20	_	_	_	-	_
Osram	HQI-T	E40	9.50	Z 1000, Z 2000	NaHJ 1000	PZ 1000KD20	_	_	_	_	-
Osram	HQI-TS	cables	9.60	Z 1000, Z 2000	NaHJ 1000	PZ 1000KD20	_	HZ 1000K	NaHJ 1000	_	_
Philips	HPI-T	E40	8.25	_	_	PZI 1000/1	Q 1000	_	_	_	_
Philips	MHN-LA	cables	9.30	Z 1000, Z 2000	NaHI 1000	PZ 1000KD20	_	HZ 1000K	NaHJ 1000	_	_
Radium	HRI-T	E40	9.50	Z 1000, Z 2000	NaHI 1000	PZ 1000KD20	_	_	_	_	
Radium	HRI-TM	G22	9.50	Z 1000	NaHJ 1000	PZ 1000KD20					
Radium	HRI-TS	cables	9.60		NaHJ 1000	PZ 1000KD20		HZ 1000K	NaHJ 1000		
	HSI-THX	E40	8.25	Z 1000, Z 2000	I varij 1000		Q 1000	112 10000	14011) 1000	_	
Sylvania				7 1000 7 2000	N=H11000	PZI 1000/1	Q 1000	-	_	_	-
Venture	HIT	E40	9.15	Z 1000, Z 2000	Nanj 1000	PZ 1000KD20	-	117.00001/ /	-	-	-
Venture	MBIL	RX7s	4.40	Z 2000/400V	_	_	_	HZ 2000K/ 400V	_		-
Lamp outp	ut 2000 W						,				
GE	SPL 2000/T	E40	10.30	Z 2000/400V	JD 2000	-	_	_	_	_	_
Osram	HQI-T/D	E40	10.30	Z 2000/400V	JD 2000			_	_	_	_
Osram	HQI-TSN/3 80V	E40	8.80	_	_	=	QJ 2000	_	_	_	_
Osram	HQI-TS	cables	11.30	Z 2000/400V	JD 2000	_	_	HZ 2000K/ 400V	JD 2000	-	_
	LIOITC	1.1	10.0	7.0000 (400)/	ID 0000U /10 0			4007			-
Osram	HQI-TS	cables	12.2	Z 2000/400V	JD 2000II/12.2	P7L 1000 /1	ID 2000 I	-	_	-	-
Philips	HPI-T 220V	E40	16.50	_	_	PZI 1000/1	JD 2000 I	-	_	_	-
Philips	HPI-T 380V	E40	9.10	7,0000 (100)	ID 0000	=	QJ 2000	117.00001/ /	- ID 0000	-	-
Philips	MHN-LA	cables	9.6-10.3	Z 2000/400V	JD 2000	_	_	HZ 2000K/ 400V	JD 2000	_	-
Philips	MHN-SA	X83OR	11.30	Z 2000/400V	JD 2000	_	_	HZ 2000K/ 400V	JD 2000	-	_
Philips	MHN-SB 400V	cables	11.30	Z 2000/400V	JD 2000	_	_	-	-	-	-
Radium	HRI-T 230V	E40	16.50 (2x8.25)	_	-	PZI 1000/1	JD 2000 I	-	-	-	_
Radium	HRI-T/D	E40	10.30	Z 2000/400V	JD 2000						
Radium Radium	HRI-TS	E40	10.30	Z 2000/400V	JD 2000						
						_	_	H7 2000K /	ID 2000	-	-
Radium	HRI-TS	cables	11.30	Z 2000/400V	JD 2000	_	_	HZ 2000K/ 400V*	JD 2000	_	_
Sylvania	HSI-T	E40	9.00	Z 2000/400V	JD 2000	_	-	_	-	_	-
Sylvania	HSI-TD	cables	11.30	Z 2000/400V	JD 2000	_	_	HZ 2000K/ 400V	JD 2000	-	-
Venture	мн	cables	10.30	Z 2000	JD 2000	_	_	_	_	_	-
Venture	MBIL	RX7s	10.30	Z 2000	JD 2000	_	_	_			
Lamp outp		IIVV 9	10.30	2 2000	JD 2000	1-	<u> -</u>	_			
		E40	10.00	7 2500 (400)	ID 2500						
Radium	HRI-T	E40	18.00	Z 3500/400V	JD 3500	<u> -</u>	-	-	-	-	-
Radium	HRI-TS	cables	18.00	Z 3500/400V	JD 3500	-	-	-	-	-	-

^{*} Not suitable HRI-TS 2000W/N/L; HQI-TS 2000W/N/L

Ceramic discharge tube lamps (C-HI)

Manufacturer	Designation	Base	Lamp	Superimposed ignition	on system	Pulse ignition sys	stem	Instant restr	ike ignition system	Control	EB
			current	Ignitor*	Ballast	Ignitor	Ballast	Ignitor	Ballast	gear unit	
amp outp	ut 20 W										·
ЭE	CMH20MR16	GX10	0.21	_	_	_	_	_	_	-	EHXc 20
ЭE	CMH20PAR	E27	0.23	_	_	_	_	_	_	_	EHXc 20
GE .	CMH20T	G12	0.23	_	_	_	_	_	_	_	EHXc 20
GE	CMH20T	GU6.5	0.21	_	_	_	_	_	_	_	EHXc 20
GE	CMH20TC	G8.5	0.23	_	_	_	_	_	_	_	EHXc 20
GE	СМН20ТС	G12	0.23	_	_	_	_	_	_		EHXc 20
Osram	HCI-PAR	E27	0.22	_	_	_	_	_	_	_	EHXc 20
Osram	HCI-R111	GX8.5	0.22								EHXc 20
Osram Osram	HCI-TF	GN6.5	0.22	_			_	_		_	EHXc 20G.32
		G8.5	0.22	_		_	-	_	-		
Osram	HCI-TC			_	-	-	-	_	-	-	EHXc 20G.32
Philips	CDM-TM	PGJ5	0.22	_	-	_	-	_	_	_	-
Philips	CDM-R	GX10	0.22	-	-	_	-	-	_	-	EHXc 20G.329
Radium	RCC-TC	G8.5	0.22	-	_	_	-	-	_	-	EHXc 20G.329
amp outp	ut 35 W	1									
3LV	C-HIT	G12	0.50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	_	VNaHJ 35	EHXc 35
ЭE	CMH35PAR	E27	0.50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	-	VNaHJ 35	EHXc 35
GE	CMH35T	G12	0.50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	-	VNaHJ 35	EHXc 35
ЭE	CMH35TC	G8.5	0.50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	_	VNaHJ 35	EHXc 35
Osram	HCI-E/P	E27	0.50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	-	VNaHJ 35	EHXc 35
Osram	HCI-PAR	E27	0.50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-		VNaHJ 35	EHXc 35
Osram	HCI-R111	GX8.5	0.50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-		VNaHJ 35	EHXc 35
Osram	HCI-T	G12	0.50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	_	VNaHJ 35	EHXc 35
Osram	HCI-TC	G8.5	0.50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	_	VNaHJ 35	EHXc 35
Osram	HCI-TF	GU6.5	0.50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	_	VNaHJ 35	EHXc 35
anasonic	CPS 35 W	GU8.5	0.44	_	_	_	_	_	_	_	EHXc 35
Philips	CDM-R	E27	0.53	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT		_	VNaHJ 35	EHXc 35
Philips	CDM-R111	GX8.5	0.53	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT			VNaHJ 35	EHXc 35
Philips	CDM-T	G12	0.53	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT			VNaHJ 35	EHXc 35
		G8.5	0.53					_	_		EHXc 35
Philips	CDM-TC	†		Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	-	VNaHJ 35	
Philips	CDM-R	GX10	0,53	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	_	-	EHXc 35G
Radium	RCC-PAR	E27	0.50	Z 250, Z 400	NaHJ 35	PZ 1000KD20		-	-	VNaHJ 35	EHXc 35
Radium	RCC-T	G12	0.50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	_	VNaHJ 35	EHXc 35
Radium	RCC-TC	G8.5	0.50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	_	VNaHJ 35	EHXc 35
Sylvania	CMI-T	G12	0.53	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	-	VNaHJ 35	EHXc 35
Sylvania	CMI-TC	G8.5	0.53	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	_	VNaHJ 35	EHXc 35
Venture	CMH35/T	G12	0.50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	_	VNaHJ 35	EHXc 35
Venture	CMH35/TC	G8.5	0.50	Z 250, Z 400	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	_	_	VNaHJ 35	EHXc 35
Lamp outp	ut 50 W										
Philips	CDM-TC Elite	G8.5	0,59	Z 70	NaH 50	_	_	_	_	VNaH 50	EHXc 50
Philips	CDM-T Elite	G12	0,57	Z 70	NaH 50	_	_	_	_	VNaH 50	EHXc 50
Lamp outp	ut 70 W										
BLV	C-HIT	G12	0.98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
BLV	C-HIT-DE	RX7s	0.90	Z 250, Z 400	NaHJ 70	PZ 1000KD20		_	-	VNaHJ 70	EHXc 70
GE	CMH70E	E27	0.98	Z 250, Z 400	NaHJ 70	PZ 1000KD20		_	_	VNaHJ 70	EHXc 70
GE	CMH70PAR	E27	0.98	Z 250, Z 400	NaHJ 70	PZ 1000KD20				VNaHJ 70	EHXc 70
GE	CMH70T	G12	0.98	Z 250, Z 400	NaHJ 70	PZ 1000KD20				VNaHJ 70	EHXc 70
GE	CMH70TC	G8.5	0.98	Z 250, Z 400	NaHJ 70	PZ 1000KD20				VNaHJ 70	EHXc 70
ge Ge		Rx7s	0.98	Z 250, Z 400				_		VNaHJ 70	EHXc 70
	CMH70TD				NaHJ 70	PZ 1000KD20					
GE D	CMH70TT	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20		-	-	VNaHJ 70	EHXc 70
Osram	HCI-E/P	E27	0.98	Z 250, Z 400	NaHJ 70	PZ 1000KD20		-	=	VNaHJ 70	EHXc 70
Osram -	HCI-PAR	E27	0.97	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Osram	HCI-R111	GX8.5	0.98	Z 250, Z 400	NaHJ 70	PZ 1000KD20		-	-	VNaHJ 70	EHXc 70
Osram	HCI-T	G12	0.96	Z 250, Z 400	NaHJ 70	PZ 1000KD20		-	-	VNaHJ 70	EHXc 70
Osram	HCI-T/P	E27	0.98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Osram	HCI-TC	G8.5	0.96	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXc 70
Osram	HCI-TS	RX7s	0.95	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
Osram	HCI-TT	E27	0.92	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	-	VNaHJ 70	EHXc 70
anasonic	CPS 70 W	GU8.5	0.86	_		_	-	_	-	<u> </u>	EHXc 70
Philips	CDO-ET	E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
	1 11	E27	1.00	Z 70	NaHJ 70	PZ 1000KD20				VNaHJ 70	EHXc 70

Ceramic discharge tube lamps (C-HI)

	current	Ignitor*	Ballast	Ignitor	Ballast	Ignitor	Ballast	gear unit	
								19	
E27	0.97	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXc 70
GX8.5	0.97	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	-	VNaHJ 70	EHXc 70
G12	0.98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXc 70
G8.5	0.98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	_	_	VNaHJ 70	EHXc 70
RX7s	0.97	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
PG12-2	0.98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	_
E27	0.98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
G12	0.96	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXc 70
G8.5	0.96	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXc 70
RX7s	0.98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
G12	0.98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
G8.5	0.98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
RX7s	0.98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXc 70
G12	0.98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXc 70
G8.5	0.98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	_	VNaHJ 70	EHXc 70
RX7s	0.98	Z 250, Z 400	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
E27	0.98	Z 70	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
							i		
E26	1.10	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	-
E40	1.11	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	_	VNaHJ 100	EHXc 100
E27	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	-
E27	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	_	VNaHJ 100	_
G12	1.10	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	EHXc 100
E40	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	_	VNaHJ 100	_
E40	1.20	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	_	VNaHJ 100	_
G12	1.14	Z 250, Z 400	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	_	_	VNaHJ 100	EHXc 100
G12	1.85	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	_	VNaHJ 150	EHXc 150
RX7s-24	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	_	VNaHJ 150	_
G12	1.85	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	_	VNaHJ 150	EHXc 150
RX7s	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	_	VNaHJ 150	EHXc 150
E27	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXc 150
G12	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXc 150
E27	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXc 150
RX7s-24	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	_
E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXc 150
E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXc 150
E40	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	_	VNaHJ 150	EHXc 150
G12	1.80-1.90	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXc 150
RX7s	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXc 150
PGX12-2	1.80	Z 250, Z 400	NaHJ 150		NaHJ 150PZT	-	-	VNaHJ 150	EHXc 150
G12	1.80		NaHJ 150		NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXc 150
RX7s	1.80	Z 250, Z 400	NaHJ 150	PZ 1000KD20		_	_	VNaHJ 150	EHXc 150
G12	1.82	Z 250, Z 400	NaHJ 150		NaHJ 150PZT	_	_	VNaHJ 150	EHXc 150
RX7s-24	1.82	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	_
G12	1.85	Z 250, Z 400	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	_	_	VNaHJ 150	EHXc 150
RX7s	1.80	Z 250, Z 400	NaHJ 150		NaHJ 150PZT	_	_	VNaHJ 150	EHXc 150
		,						. ,	
E40	2.70	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	_
E40	2.70	Z 250, Z 400	NaHJ 250		NaHJ 250PZT	_	_	VNaHJ 250	_
E40	2.90	Z 250, Z 400	NaHJ 250		NaHJ 250PZT	_	_	VNaHJ 250	_
E40	2.90	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_	_	VNaHJ 250	_
E40	2.90	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	_		VNaHJ 250	_
						H7 1000K	NaHI 250		
E40; Fc2									
_+∪, i CZ						112 10000	rading 200		
E40	J3.UU	Z ZJU, Z 400	14anj 230			_	_		_
E40	2.00	7 250 7 400	NI_UI OFO	D7 100011000					
E40 G12 E40	3.00 2.90	Z 250, Z 400 Z 250, Z 400	NaHJ 250 NaHJ 250	PZ 1000KD20 PZ 1000KD20	NaHJ 250PZT NaHJ 250PZT	_	_	VNaHJ 250 VNaHJ 250	_
G22	2 ; Fc2	2 2.90 ; Fc2 3.00	2 2.90 Z 250, Z 400 ; Fc2 3.00 Z 250, Z 400 3.00 Z 250, Z 400	2 2.90 Z 250, Z 400 NaHJ 250 ; Fc2 3.00 Z 250, Z 400 NaHJ 250 3.00 Z 250, Z 400 NaHJ 250	2 2.90 Z 250, Z 400 NaHJ 250 PZ 1000KD20 ; Fc2 3.00 Z 250, Z 400 NaHJ 250 PZ 1000KD20 3.00 Z 250, Z 400 NaHJ 250 PZ 1000KD20	2 2.90 Z 250, Z 400 NaHJ 250 PZ 1000KD20 NaHJ 250PZT ; Fc2 3.00 Z 250, Z 400 NaHJ 250 PZ 1000KD20 NaHJ 250PZT 3.00 Z 250, Z 400 NaHJ 250 PZ 1000KD20 NaHJ 250PZT	2 2.90 Z 250, Z 400 NaHJ 250 PZ 1000KD20 NaHJ 250PZT HZ 1000K ; Fc2 3.00 Z 250, Z 400 NaHJ 250 PZ 1000KD20 NaHJ 250PZT HZ 1000K 3.00 Z 250, Z 400 NaHJ 250 PZ 1000KD20 NaHJ 250PZT –	2 2.90 Z 250, Z 400 NaHJ 250 PZ 1000KD20 NaHJ 250PZT HZ 1000K NaHJ 250 ; Fc2 3.00 Z 250, Z 400 NaHJ 250 PZ 1000KD20 NaHJ 250PZT HZ 1000K NaHJ 250 3.00 Z 250, Z 400 NaHJ 250 PZ 1000KD20 NaHJ 250PZT — —	2 2.90 Z 250, Z 400 NaHJ 250 PZ 1000KD20 NaHJ 250PZT HZ 1000K NaHJ 250 VNaHJ 250 ; Fc2 3.00 Z 250, Z 400 NaHJ 250 PZ 1000KD20 NaHJ 250PZT HZ 1000K NaHJ 250 VNaHJ 250 3.00 Z 250, Z 400 NaHJ 250 PZ 1000KD20 NaHJ 250PZT — VNaHJ 250

Ceramic discharge tube lamps (C-HI)

Manufacturer	Designation	Base	Lamp	Superimposed ignition	osed ignition system		tem	Instant restrike ignition system		Control	EB
			current	Ignitor*	Ballast	Ignitor	Ballast	Ignitor	Ballast	gear unit	
Lamp outp	ut 250 W										
Radium	RCC-TM	G22	2.90	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250	VNaHJ 250	_
Radium	RCC-TS	Fc2	3.00	Z 250, Z 400	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250	VNaHJ 250	_
Lamp outpo	ut 400 W										
GE	CMHTT	E40	4.60	Z 400M, Z 400	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_
Osram	HCI-TM	G22	4.45	Z 400M, Z 400	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	_	_	VNaHJ 400	_

 $^{^{\}star}$ Z 400 M VS power ignitor is not suitable for C-HI lamps

Mercury vapour lamps (HM lamps)

Designation	Base	Current	Operating devices	Capacitor
			Ballasts (ignitor not required)	at 50 Hz
				7 µF
	E27	0.62	Q 50, Q 80/50	7 μF
	507 000 104	1000	0.00.00.00.00.00.00.00.00	
				8 µF
<u> </u>	E27	0.80	Q 80, Q 80/50, Q 125/80	8 µF
	F07 B00 10+	11.15	0.105.0.105.00	10.5
	-			10 µF
				10 µF
				10 µF
				10 µF
HPL 125			Q 125, Q 125/80	10 µF
HRL 125			Q 125, Q 125/80	10 µF
HSL 125	E27, B22d-3*	1.15	Q 125, Q 125/80	10 µF
W				
H 250	E40		Q 250, U-Q 250/150	18 µF
HF 250 PD	E40		Q 250, U-Q 250/150	18 µF
NF 250	E40	2.15	Q 250, U-Q 250/150	18 µF
HQL 250	E40		Q 250, U-Q 250/150	18 µF
HPL 250	E40		Q 250, U-Q 250/150	18 µF
HRL 250	E40	2.15	Q 250, U-Q 250/150	18 µF
HSL 250	E40	2.15	Q 250, U-Q 250/150	18 µF
w				
H 400	E40	3.25	Q 400, U-Q 400/250	25 μF
HF 400 PD	E40	3.25	Q 400, U-Q 400/250	25 μF
NF 400	E40	3.25	Q 400, U-Q 400/250	25 μF
HQL 400	E40	3.25	Q 400, U-Q 400/250	25 μF
HPL 400	E40	3.25	Q 400, U-Q 400/250	25 μF
HRL 400	E40	3.25	Q 400, U-Q 400/250	25 μF
HSL 400	E40	3.25	Q 400, U-Q 400/250	25 μF
w				
			0.700	40 µF
H 700	E40	5.45	Q 700	40 pi
	E40 E40	5.45 5.40	Q 700	40 μF
H 700				
H 700 HF 700 PD	E40	5.40	Q 700	40 μF
H 700 HF 700 PD NF 700	E40 E40	5.40 5.40	Q 700 Q 700	40 μF 40 μF
H 700 HF 700 PD NF 700 HQL 700	E40 E40 E40	5.40 5.40 5.40	Q 700 Q 700 Q 700	40 μF 40 μF 40 μF
H 700 HF 700 PD NF 700 HQL 700 HPL 700	E40 E40 E40 E40	5.40 5.40 5.40 5.40	Q 700 Q 700 Q 700 Q 700	40 μF 40 μF 40 μF 40 μF
H 700 HF 700 PD NF 700 HQL 700 HPL 700 HRL 700	E40 E40 E40 E40 E40	5.40 5.40 5.40 5.40 5.40	Q 700 Q 700 Q 700 Q 700 Q 700	40 μF 40 μF 40 μF 40 μF 40 μF
H 700 HF 700 PD NF 700 HQL 700 HPL 700 HRL 700 HSL 700	E40 E40 E40 E40 E40	5.40 5.40 5.40 5.40 5.40	Q 700 Q 700 Q 700 Q 700 Q 700	40 μF 40 μF 40 μF 40 μF 40 μF
H 700 HF 700 PD NF 700 HQL 700 HPL 700 HRL 700 HSL 700 O W	E40 E40 E40 E40 E40 E40	5.40 5.40 5.40 5.40 5.40 5.40	Q 700 Q 700 Q 700 Q 700 Q 700 Q 700	40 µF 40 µF 40 µF 40 µF 40 µF 40 µF
H 700 HF 700 PD NF 700 HQL 700 HPL 700 HRL 700 HSL 700 HSL 700	E40 E40 E40 E40 E40 E40 E40	5.40 5.40 5.40 5.40 5.40 5.40 5.40	Q 700 Q 700 Q 700 Q 700 Q 700 Q 700 Q 700	40 μF 40 μF 40 μF 40 μF 40 μF 40 μF 40 μF
H 700 HF 700 PD NF 700 HQL 700 HPL 700 HRL 700 HSL 700 HSL 700 HSL 700 HF 1000	E40 E40 E40 E40 E40 E40 E40	5.40 5.40 5.40 5.40 5.40 5.40 7.50 7.50	Q 700 Q 700 Q 700 Q 700 Q 700 Q 700 Q 1000 Q 1000	40 μF 40 μF 40 μF 40 μF 40 μF 40 μF 40 μF 60 μF 60 μF
H 700 HF 700 PD NF 700 HQL 700 HPL 700 HRL 700 HSL 700 HSL 700 HSL 700 NF 1000 NF 1000	E40	5.40 5.40 5.40 5.40 5.40 5.40 7.50 7.50 7.50	Q 700 Q 700 Q 700 Q 700 Q 700 Q 700 Q 1000 Q 1000 Q 1000	40 μF 40 μF 40 μF 40 μF 40 μF 40 μF 40 μF 60 μF 60 μF 60 μF 60 μF
H 700 HF 700 PD NF 700 HQL 700 HPL 700 HRL 700 HSL 700 HSL 700 OW H 1000 HF 1000 PD NF 1000 HQL 1000	E40	5.40 5.40 5.40 5.40 5.40 5.40 7.50 7.50 7.50 7.50	Q 700 Q 1000 Q 1000 Q 1000 Q 1000	40 μF 40 μF 40 μF 40 μF 40 μF 40 μF 40 μF 60 μF 60 μF
	H 50 HF 50 PD NF 50 HQL 50 HRL 50 HRL 50 HRL 50 HRL 50 HRL 80 HF 80 PD NF 80 HQL 80 HRL 80 HRL 80 HRL 80 HRL 80 HRL 125 HRL 1250 HRL 250 HRL 2	H 50 E27, B22d HF 50 PD E27 NF 50 E27 HPL 50 E27 HPL 50 E27 HRL 80 E27 HRL 125 E27 HRL 12	## H 50	Bollasts (gration not required)

^{*} The VS range does not include a lampholder for base B22d-3

Technical Details - Components for Discharge Lamps

Energy efficiency classification

The commission's regulation (EC) No. 245/2009 dated 18 March 2009 implementing Directive 2005/32/EC of the European Parliament and of the Council with regard to defining ecodesign requirements for fluorescent lamps without integrated ballast, high-pressure discharge lamps and for ballasts and luminaires needed for their operation, and repealing Directive 2000/55/EC of the European Parliament and of the Council (official title), has created a legal framework in the EU that defines fundamental requirements for operating efficient lighting technology products.

Although the Regulation predominantly applies to general lighting, it is also product-orientated and thus independent of any specific application. The efficiency and performance requirements (specifications governing performance features) apply to fluorescent lamps without integrated ballast, high-pressure discharge lamps as well as ballasts and luminaires needed to operate these lamps. A brief overview of the requirements governing high-pressure discharge lamps is provided in the following table (excerpt from the CELMA guide).

Stage	Requireme	ents governing							
1	Ballasts	No special requirements							
13.04.2010									
Interim Stage 13.09.2010	Luminaires	After 18 months: technical information must be made available, both online and in luminaire documentation (for luminaires > 2,000 Lumens)							
2	Ballasts	• Introduction of minimum energy-efficiency index values for HID ballasts and their labelling:							
13.04.2012		P < 30 W - η≥65%							
		30 < P < 75 W - η≥75%							
		75 < P < 105 W - η≥ 80%							
		105 < P < 405 W - η ≥ 85%							
		P > 405 W - η ≥ 90%							
		HID ballasts to be labelled: EEI=A3							
	Luminaires	Luminaire designs must permit the integration of 3rd-stage ballasts. Exception: luminaires > IP4X							
at the latest by	Revision of the regulation								
13.04.2014	Technological progress as well as the sum of the experience gained during the implementation of the Regulatio be taken into oconsideration during the revision process.								
3	Ballasts	Minimum energy-efficiency index values will be raised:							
13.04.2017		P< 30 W - η≥78%							
		30 < P < 75 W - η≥ 85%							
		75 < P < 105 W - η ≥ 87%							
		$105 < P < 405 W - \eta \ge 90\%$							
		P > 405 W - η≥ 92%							
		HID ballasts to be labelled: A2							
	Luminaires	All luminaire designs must permit the integration of 3rd-stage ballasts.							

WARM START, DIMMABLE AND INSTANT START

ELECTRONIC BALLASTS

Operating fluorescent lamps with electronic ballasts yields numerous advantages with regard to efficiency and convenience. Further details are provided on the respective product pages and the technical appendix.

The brightness of fluorescent lamps can also be regulated with the help of dimmable electronic ballasts. Adjusting lamp wattage leads to a further reduction of energy consumption and of the associated costs. The corresponding ELXd units from Vossloh-Schwabe enable conventional 1–10 V control units to be connected via a bipolar 1–10 V dimmer interface.

Moreover, Vossloh-Schwabe's product range also contains electronic ballasts that can be dimmed using conventional light sensors or polarity-independent dimmer interfaces via DALI-compatible control units. Both interfaces (1 - 10 V and DALI) were developed in accordance with EN 60929. Under consideration of the maximum current of the respective control unit, it is also possible to operate several electronic ballasts in parallel.

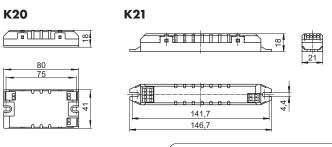
Electronic Ballasts for TC and T Lamps

Electronic ballasts for compact fluorescent lamps	228-244
ELXs - Warm start	228
ELXc - Warm start - Linear casing shape	229
ELXd - Dimmable - Linear casing shape	230-23
ELXc - Warm start - Compact casing shape	232-239
ELXd - Dimmable - Compact casing shape	240-244
Electronic ballasts for tubular fluorescent lamps	245-255
ELXs - Warm start	245
ELXc - Warm start - Linear casing shape	246-249
ELXc EffectLine - Warm start	250-25
ELXd - Dimmable - Linear casing shape	252-254
ELXe - Instant start - Linear casing shape	255
Accessories for dimmable electronic built-in ballasts	256
echnical details for fluorescent lamps	350-379
General technical details	533-540
Floregry	5/1 - 5/1

ELXs – Warm Start for Compact Fluorescent Lamps

Electronic built-in ballasts
Casing: heat-resistant polyamide
Power factor: approx. 0.6
 (depending on the lamp output)
DC voltage operation: 198-264 V
Push-in terminals with push-button: 0.5-1.5 mm²
RFI-suppressed
For luminaires of protection class I and II
Degree of protection: IP20

Fixing slots for screws M4
For lighting systems with high switching frequency (> 5/day)
EOL shut down approved acc. to EN 61347 Test 2


BUILT-IN

○ INDEPENDENT

○1-10 V

O DALI/PUSH

O TC

Electronic ballast Base Ref. No. Voltage AC Energy Casing Output Output Power con-Ambient Туре Туре Casing 50, 60 Hz efficienc emperature sumption temperature 1°Cl TC-SEL 220-240 АЗ max. 75 2G7 ELXs 116.900 188661 - 15 to 55 K20 1 x 5.0 6.1 - 15 to 55 ELXs 116.903 188662 220-240 АЗ max. 75 K21 220-240 TC-SEL 2G7 ELXs 116.900 Α2 15 to 55 K20 1 x 6.4 188661 A2 7.5 ELXs 116.903 K21 188662 TC-SEL 2G7 220-240 1 x 8.0 ELXs 116.900 188661 - 15 to 55 8.8 ELXs 116.903 188662 10 TC-DEL - 15 to 55 G24q-1 1 x 9.3 ELXs 116.900 188661 C-DD GR10q ELXs 116.900 188661 TC-DEL G24q-1 ELXs 116.903 188662 max. 75 C-DD 188662 1 x 10.8 TC-SEL ELXs 116.900 188661 Α2 max. 75 188662 13 TC-DEL/-TEL G24q-1/GX24q-1 1 x 12.5 ELXs 121.901 188663 Α2 15 to 55 max. 80 K20 15.5 ELXs 121.904 188664 Α2 15 to 55 max. 80 K21 15.5 TC-DD GR10q 1 x 13.2 ELXs 116.900 188661 220-240 АЗ - 15 to 55 max. 75 K20 15.1 ELXs 116.903 188662 220-240 АЗ - 15 to 55 max. 75 K21 15.1 18 TC-DEL/-TEL G24q-2/GX24q-2 1 x 15.3 ELXs 121.901 188663 220-240 Α2 15 to 55 max. 80 K20 16.9 ELXs 121.904 188664 220-240 Α2 15 to 55 max. 80 K21 16.9 TC-F/-L 2G10/2G11 1 x 16.0 ELXs 124.902 188665 220-240 A2 15 to 55 max. 85 K20 17.9 ELXs 124.905 188666 220-240 Α2 15 to 55 max. 85 K21 17.9 22 T-R5 2GX13 1 x 19.1 ELXs 124.902 188665 220-240 Α2 max. 85 K20 21.2 - 15 to 55 188666 ELXs 124.905 220-240 Α2 -15 to 55 max. 85 K21 21.2 24 TC-F/-L 2G10/2G11 ELXs 124.902 188665 220-240 Α2 K20 1 x 20.0 -15 to 55 max. 85 21.4 188666 ELXs 124.905 220-240 Α2 max. 85 K21 21.4 - 15 to 55 188667 ELXs 126.906 220-240 Α2 22.9 1×20.8 15 to 55 max. 85 K20 188668 220-240 Α2 ELXs 126.907 - 15 to 55 max. 85 K21 22.9 TC-DEL/-TEL 1 x 21.5 188667 Α2 K20 G24q-3/GX24q-3 ELXs 126.906 220-240 - 15 to 55 max. 85 23.4 188668 K21 ELXs 126.907 220-240 Α2 - 15 to 55 max. 85 23.4

Circuit diagrams see pages 362-365

ELXc - Warm Start for TC-F, TC-L Lamps

Electronic built-in ballasts

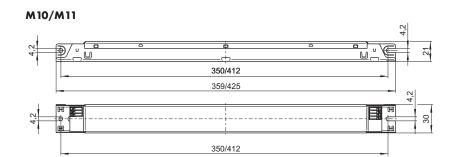
Casing: metal Power factor: > 0.96

DC voltage

for operation: 176-264 V for ignition: 198-264 V

(ELXc 180.866, 280.538: DC voltage

cannot be reduced to 176 V)
Push-in terminals: 0.5-1 mm²


For the automatic luminaire wiring: IDC terminals for leads H05V-U 0.5

RFI-suppressed

For luminaires of protection class I Degree of protection: IP20 For lighting systems with

high switching frequency (> 5/day)

EOL shut down approved acc. to EN 61347 Test 2

							○ T5		BUILT-IN INDEPENDENT		○ 1–10 V ○ DALI/PUSH	
Lamp				Electronic ballast							System	
Output	Туре	Base	Power con-	Туре	Ref. No.	Voltage AC	Energy	Ambient	Casing	Casing	Output	Luminous
			sumption			50, 60 Hz	efficiency	temperature	temperature			factor
W			W			V±10%		ta (°C)	tc (°C)		W	%
18	TC-F/-L	2G10/2G11	1 x 16.0	ELXc 140.862	188140	220-240	A2	-15 to 55	max. 70	M10	19.0	109.0
2x18	TC-F/-L	2G10/2G11	2 x 16.0	ELXc 240.863	188616	220-240	A2 BAT	-15 to 55	max. 70	M10	35.0	105.3
24	TC-F/-L	2G10/2G11	1 x 22.0	ELXc 140.862	188140	220-240	A2 BAT	-15 to 55	max. 70	M10	27.0	109.0
2x24	TC-F/-L	2G10/2G11	2 x 22.0	ELXc 240.863	188616	220-240	A2 BAT	-15 to 55	max. 70	M10	51.0	106.8
36	TC-F/-L	2G10/2G11	1 x 32.0	ELXc 140.862	188140	220-240	A2	-15 to 55	max. 70	M10	35.0	101.0
2x36	TC-F/-L	2G10/2G11	2 x 32.0	ELXc 240.863	188616	220-240	A2 BAT	-15 to 55	max. 70	M10	71.0	98.7
40	TC-L	2G11	1 x 40.0	ELXc 140.862	188140	220-240	A2	-15 to 55	max. 70	M10	46.0	104.0
2x40	TC-L	2G11	2 x 40.0	ELXc 240.863	188616	220-240	A2 BAT	-15 to 55	max. 70	M10	89.0	103.6
55	TC-L	2G11	1 x 55.0	ELXc 180.866	188144	220-240	A2 BAT	-15 to 55	max. 70	M10	62.0	107.3
2x55	TC-L	2G11	2 x 50.0	ELXc 254.865	188618	220-240	A2 BAT	-15 to 50	max. 70	M10	112.0	92.9
			2 x 55.0	ELXc 280.538	188619	220-240	A2 BAT	-15 to 50	max. 70	M11	120.0	100.0
80	TC-L	2G11	1 x 80.0	ELXc 180.866	188144	220-240	A2 BAT	-15 to 55	max. 70	M10	87.0	97.6
2x80	TC-L	2G11	2 x 80.0	ELXc 280.538	188619	220-240	A2 BAT	-15 to 50	max. 70	M11	175.0	100.0

Circuit diagrams see pages 362-365

2

3

4

5

6

7

8

9

ELXd – Dimmable for TC-F, TC-L Lamps

Electronic built-in ballasts Casing: metal

Dimming range:

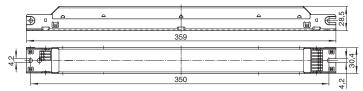
approx. 1-100% of lamp power

Power factor: \geq 0.95 at 100% operation

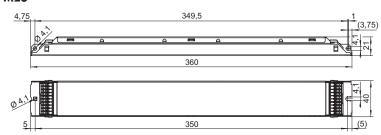
DC voltage

for operation: 154-276 V (M22, M23, M24)

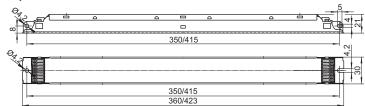
for operation: 176-264 V (M9) for ignition: 198-264 V Push-in terminals: 0.5-1 mm² For the automatic luminaire wiring: IDC terminals for leads H05V-U 0.5


RFI-suppressed

For luminaires of protection class I Degree of protection: IP20 Fixing holes for screws M4 for lateral or base mounting For lighting systems with


high switching frequency (> 5/day)

EOL shut down approved acc. to EN 61347 Test 2


M9

ELXd – Dimmable 1–10 V for TC-F, TC-L lamps

Control voltage: DC 1-10 V acc. to EN 60929 with earth leakage current 0.5 mA (protected if connected to mains voltage)
For use with open- or closed-loop control units

For use v	vith open	or closed-loop	control units					T8 OINDEPENDENT ODALI/PUSH					
Lamp				Electronic ballast	1						System		
Output	Туре	Base	Power con-	Туре	Ref. No.	Voltage AC	Energie	Ambient	Casing	Casing	Output	Luminous	
			sumption			50, 60 Hz	efficiency	temperature	temperature			factor	
W			W			V±10%		ta (°C)	tc (°C)		W	%	
18	TC-F/-L	2G10/2G11	1 x 16.0	ELXd 118.718	188873	220 - 240	EEI=A1	10 to 50	max. 70	M9	18.0	94.0	
2x18	TC-F/-L	2G10/2G11	2 x 16.0	ELXd 218.719	188874	220 - 240	EEI=A1	10 to 50	max. 70	M9	36.0	90.6	
24	TC-F/-L	2G10/2G11	1 x 22.0	ELXd 118.718	188873	220 - 240	EEI=A1	10 to 50	max. 70	M9	27.0	96.6	
			1 x 23.0	ELXd 124.607	188336	220 - 240	A1 BAT	10 to 50	max. 75	M22	26.0	100.0	
2x24	TC-F/-L	2G10/2G11	2 x 22.0	ELXd 218.719	188874	220 - 240	EEI=A1	10 to 50	max. 70	M9	52.0	100.8	
			2 x 23.0	ELXd 224.608	188337	220 - 240	A1 BAT	10 to 50	max. 75	M24	49.0	100.0	
3x24	TC-F/-L	2G10/2G11	3 x 24.0	ELXd 324.623	188597	220 - 240	A1 BAT	10 to 50	max. 75	M23	73.4	100.0	
4x24	TC-F/-L	2G10/2G11	4 x 24.0	ELXd 424.624	188598	220 - 240	A1 BAT	10 to 50	max. 75	M23	97.6	100.0	
36	TC-F/-L	2G10/2G11	1 x 32.0	ELXd 136.720	188875	220 - 240	A1 BAT	10 to 50	max. 70	M9	37.3	93.5	
2x36	TC-F/-L	2G10/2G11	2 x 32.0	ELXd 236.721	188876	220 - 240	EEI=A1	10 to 50	max. 70	M9	72.0	92.6	
40	TC-L	2G11	1 x 38.0	ELXd 139.609	188338	220 - 240	A1 BAT	10 to 50	max. 75	M22	42.0	100.0	
2x40	TC-L	2G11	2 x 38.0	ELXd 239.610	188339	220 - 240	A1 BAT	10 to 50	max. 75	M24	82.0	100.0	
55	TC-L	2G11	1 x 51.0	ELXd 158.722	188877	220 - 240	EEI=A1	10 to 50	max. 70	M9	56.0	92.5	
			1 x 54.0	ELXd 154.611	188340	220 - 240	A1 BAT	10 to 50	max. 75	M22	59.0	100.0	
2×55	TC-L	2G11	2 x 54.0	ELXd 254.612	188341	220 - 240	A1 BAT	10 to 50	max. 75	M24	115.0	100.0	
80	TC-L	2G11	1 x 80.0	ELXd 180.613	188342	220 - 240	A1 BAT	10 to 50	max. 75	M22	88.0	100.0	

BUILT-IN

INDEPENDENT

● TC ● BUILT-IN

Circuit diagrams see pages 362-365

ELXd – Dimmable with push key or DALI for TC-F, TC-L lamps

Complete implementation of the DALI-standard: addressable, memory store for scenes and groups, revertive information communication, physical and RND-selection, standardized lamp characteristic Low-power design ensures very low standby power consumption standby power consumption: $\leq 0.2~\rm W$

	Lamp Electronic ballast										<u> </u>	
Lamp				Electronic ballast							System	
Output	Туре	Base	Power con-	Туре	Ref. No.	Voltage AC	Energie	Ambient	Casing	Casing	Output	Luminous
			sumption			50, 60 Hz	efficiency	temperature	temperature			factor
W			W			V±10%		ta (°C)	t _c (°C)		W	%
18	TC-F/-L	2G10/2G11	1 x 16.0	ELXd 118.615	188344	220-240	A1 BAT	10 to 50	max. 75	M22	19.0	100.0
2x18	TC-F/-L	2G10/2G11	2 x 16.0	ELXd 218.616	188345	220-240	A1 BAT	10 to 50	max. 75	M24	37.0	100.0
24	TC-F/-L	2G10/2G11	1 x 23.0	ELXd 124.600	188329	220-240	A1 BAT	10 to 50	max. 75	M22	26.0	100.0
2x24	TC-F/-L	2G10/2G11	2 x 23.0	ELXd 224.601	188330	220-240	A1 BAT	10 to 50	max. 75	M24	49.0	100.0
3x24	TC-F/-L	2G10/2G11	3 x 23.0	ELXd 324.626	188600	220-240	A1 BAT	10 to 50	max. 75	M23	73.4	100.0
4x24	TC-F/-L	2G10/2G11	4 x 23.0	ELXd 424.628	188602	220-240	A1 BAT	10 to 50	max. 75	M23	97.6	100.0
36	TC-F/-L	2G10/2G11	1 x 32.0	ELXd 136.617	188346	220-240	A1 BAT	10 to 50	max. 75	M22	36.0	100.0
2x36	TC-F/-L	2G10/2G11	2 x 32.0	ELXd 236.618	188347	220-240	A1 BAT	10 to 50	max. 75	M24	69.0	100.0
40	TC-L	2G11	1 x 38.0	ELXd 139.602	188331	220-240	A1 BAT	10 to 50	max. 75	M22	42.0	100.0
2x40	TC-L	2G11	2 x 38.0	ELXd 239.621	188350	220-240	A1 BAT	10 to 50	max. 75	M24	82.0	100.0
55	TC-L	2G11	1 x 54.0	ELXd 154.603	188332	220-240	A1 BAT	10 to 50	max. 75	M22	59.0	100.0
2x55	TC-L	2G11	2 x 54.0	ELXd 254.604	188333	220-240	A1 BAT	10 to 50	max. 75	M24	115.0	100.0
80	TC-L	2G11	1 x 80.0	ELXd 180.605	188334	220-240	A1 BAT	10 to 50	max. 75	M22	88.0	100.0

Circuit diagrams see pages 362-365

1

● 1-10 V

2

3

4

5

6

7

8

9

10

○1-10 V

O DALI/PUSH

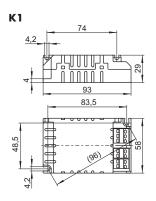
ELXc – Warm Start for Compact Fluorescent Lamps

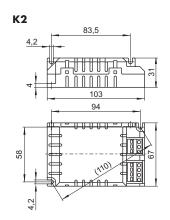
Electronic ballasts

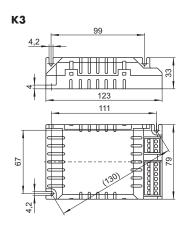
Casing: heat-resistant polyamide (K2, K3) or heat-resistant polycarbonate (K1, K4) DC voltage

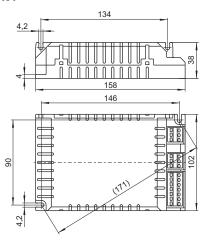
for operation: 176-264 V for ignition: 198-264 V

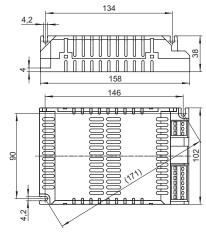
(ELXc 242.837: DC voltage cannot


be reduced to 176 V)


Power factor: > 0.96 (K1: 0.9)
Push-in terminals with push-button: 0.5-1.5 mm²
RFI-suppressed
Constant power consumption
For luminaires of protection class I and II


Degree of protection: IP20 Fixing brackets for screws M4 for lateral or base mounting For lighting systems with high switching frequency (> 5/day) EOL shut down approved acc. to EN 61347 Test 2

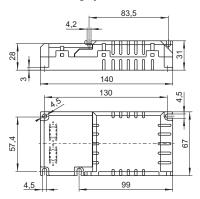

Electronic built-in ballasts



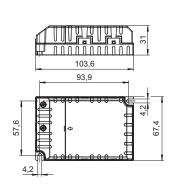
Κ4

K4⁺ with venting slits

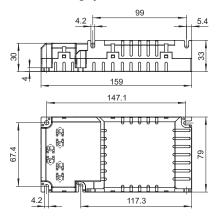
Electronic Ballasts for TC and T Lamps

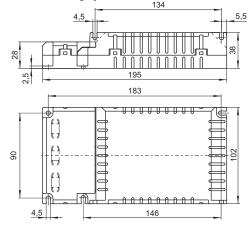


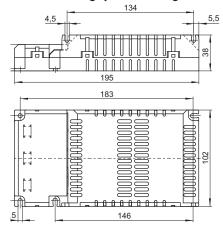
1


2

Independent electronic ballasts


K2 with cord grip


K2.1 with cord grip


K3 with cord grip

K4 with cord grip

K4⁺ with cord grip and venting slits

_

6

7

8

9

O TC O BUILT-IN

INDEPENDENT

○ T8

○ 1-10 V

O DALI/PUSH

ELXc – Warm start for compact fluorescent lamps Built-in ballasts

ELXc 213.870, 218.871, 142.872, 242.837, 155.378 have a second earth terminal to ground the luminaires for example

									_		_	
Lamp				Electronic ballas	st						System	
Output	Туре	Base	Power con-	Туре	Ref. No.	Voltage AC	Energie	Ambient	Casing	Casing	Output	Luminous
			sumption			50, 60 Hz	efficiency	temperature	temperature			factor
N			W			V±10%		ta (°C)	t _c (°C)		W	%
5	TC-SEL	2G7	1 x 5.0	ELXc 113.392	188454	220-240	A2	-20 to 55	max. 65	K1	6.5	100.0
7	TC-SEL	2G7	1 x 6.5	ELXc 113.392	188454	220-240	A2	-20 to 55	max. 65	K1	8.0	100.0
7	TC-SEL	2G7	1 x 8.0	ELXc 113.392	188454	220-240	A2 BAT	-20 to 55	max. 65	K1	10.0	100.0
				ELXc 213.870	188698	220-240	A2 BAT	-20 to 50	max. 65	K2	10.7	102.9
2x9	TC-SEL	2G7	2 x 8.0	ELXc 213.870	188698	220-240	A2 BAT	-20 to 50	max. 65	K2	19.4	102.9
0	TC-DEL	G24q-1	1 x 9.5	ELXc 113.392	188454	220-240	A2 BAT	-20 to 55	max. 65	K1	11.5	106.0
				ELXc 213.870	188698	220-240	A2 BAT	-20 to 50	max. 65	K2	10.9	99.2
2x10	TC-DEL	G24q-1	2 x 9.5	ELXc 213.870	188698	220-240	A2 BAT	-20 to 50	max. 65	K2	20.5	98.8
1	TC-SEL	2G7	1 x 11.0	ELXc 113.392	188454	220-240	A2 BAT	-20 to 55	max. 65	K1	13.5	100.0
				ELXc 213.870	188698	220-240	A2 BAT	-20 to 50	max. 65	K2	14.7	110.1
2x11	TC-SEL	2G7	2 x 11.0	ELXc 213.870	188698	220-240	A2 BAT	-20 to 50	max. 65	K2	27.9	116.1
3	TC-DEL/-TEL	G24q-1/GX24q-1	1 x 12.5	ELXc 113.392	188454	220-240	A2 BAT	-20 to 55	max. 65	K1	15.0	100.0
				ELXc 213.870	188698	220-240	A2 BAT	-20 to 50	max. 65	K2	15.0	102.9
x13	TC-DEL/-TEL	G24q-1/GX24q-1	2 x 12.5	ELXc 213.870	188698	220-240	A2 BAT	-20 to 50	max. 65	K2	28.1	110.9
4	TC-TEL	GR14q-1	1 x 14.8	ELXc 217.873	188760	220-240	A2 BAT	-20 to 50	max. 65	K2	18.0	100.0
2x14	TC-TEL	GR14q-1	2 x 14.8	ELXc 217.873	188760	220-240	A2 BAT	-20 to 50	max. 65	K2	34.0	102.0
7	TC-TEL	GR14q-1	1 x 18.4	ELXc 217.873	188760	220-240	A2 BAT	-20 to 50	max. 65	K2	22.0	99.0
2x17	TC-TEL	GR14q-1	2 x 18.4	ELXc 217.873	188760	220-240	A2 BAT	-20 to 50	max. 65	K2	41.5	102.0
8	TC-DEL/-TEL	G24q-2/GX24q-2	1 x 16.5	ELXc 218.871	188699	220-240	A2 BAT	-20 to 50	max. 65	K2	21.0	104.8
	TC-F/-L	2G10/2G11	1 x 16.0	ELXc 142.872	188700	220-240	A2 BAT	-20 to 50	max. 65	K2	18.0	102.0
2×18	TC-DEL/-TEL	G24q-2/GX24q-2	2 x 16.5	ELXc 218.871	188699	220-240	A2 BAT	-20 to 50	max. 65	K2	38.0	100.7

Circuit diagrams see pages 362-365

TC-F/-L

T-R5

T-R5

T-R5

TC-F/-L

TC-F/-L

22+40

2x22

2x24

26

2x26

2G10/2G11

2GX13

2GX13

2GX13

2G10/2G11

2G10/2G11

TC-DEL/-TEL G24q-3/GX24q-3 1 x 24.0

TC-DEL/-TEL | G24q-3/GX24q-3 | 2 x 24.0

2 x 16.0

1 x 22.0

1 x 22+40

2 x 22.0

1 x 22.0

 1×22.5

2 x 22.0

ELXc 242.837

ELXc 142.872

ELXc 142.872

ELXc 128.869

ELXc 242.837

ELXc 242.837

ELXc 142.872

ELXc 128.869

ELXc 242.837

ELXc 142.872

ELXc 142.872

ELXc 242.837

ELXc 257.836

ELXc 142.872

188643

188700

188700

188589

188643

188643

188700

188589

188643 220-240

188700 220-240

188700 220-240

188643 220-240

188132 220-240

188700 220-240

220-240

220-240

220-240

220-240

220-240

220-240

220-240

220-240

A2 BAT

20 to 50

max. 65

max. 65

max. 65

max. 70

max. 65

max. 65

max. 65

max. 70

max. 65

max. 65

max. 65

max. 65

max. 70

max. 65

КЗ

Κ2

Κ2

Κ2

ΚЗ

КЗ

Κ2

КЗ

K2

Κ2

ΚЗ

35.0

34.0

26.0

25.0

68.0

48.5

27.0

25.0

48.5

47.0

26.0

53.0

52.0

53.0

104.3

98.0

103.0

96.7

100.0

105.8

105.0

95.8

106.2

102.0

104.0

106.1

106.2

105.0

ELXc – Warm start for compact fluorescent lamps Built-in ballasts

ELXc 213.870, 218.871, 142.872, 242.837, 155.378 have a second earth terminal to ground the luminaires for example

	<u> </u>	BUILT-IN	○1-10 V
○ T8		INDEPENDENT	ODALI/PUSI

Lamp				Electronic balla	st						System	
Output	Туре	Base	Power con-	Туре	Ref. No.	Voltage AC	Energie	Ambient	Casing	Casing	Output	Luminous
			sumption			50, 60 Hz	efficiency	temperature	temperature			factor
W			W			V±10%		ta (°C)	tc (°C)		W	%
28	TC-DD	GR10q	1 x 26.0	ELXc 128.869	188589	220-240	A2 BAT	-20 to 50	max. 70	K2	32.0	98.1
32	TC-TEL	GX24q-3	1 x 32.0	ELXc 142.872	188700	220-240	A2 BAT	-20 to 50	max. 65	K2	33.0	102.0
2x32	TC-TEL	GX24q-3	2 x 32.0	ELXc 242.837	188643	220-240	A2 BAT	-20 to 50	max. 65	К3	70.5	104.8
				ELXc 257.836	188132	220-240	A2 BAT	-20 to 50	max. 70	K4	70.0	109.4
36	TC-F/-L	2G10/2G11	1 x 32.0	ELXc 142.872	188700	220-240	A2 BAT	-20 to 50	max. 65	K2	34.0	105.0
2x36	TC-F/-L	2G10/2G11	2 x 32.0	ELXc 242.837	188643	220-240	A2 BAT	-20 to 50	max. 65	K3	70.5	101.8
38	TC-DD	GR10q	1 x 36.0	ELXc 142.872	188700	220-240	A2 BAT	-20 to 50	max. 65	K2	38.0	95.0
2x38	TC-DD	GR10q	2 x 36.0	ELXc 242.837	188643	220-240	A2 BAT	-20 to 50	max. 65	K3	79.2	101.3
40	TC-L	2G11	1 x 40.0	ELXc 142.872	188700	220-240	A2 BAT	-20 to 50	max. 65	K2	43.0	99.0
	T-R5	2GX13	1 x 40.0	ELXc 142.872	188700	220-240	A2 BAT	-20 to 50	max. 65	K2	41.0	96.0
2x40	TC-L	2G11	2 x 40.0	ELXc 242.837	188643	220-240	A2 BAT	-20 to 50	max. 65	К3	88.0	101.3
	T-R5	2GX13	2 x 40.0	ELXc 242.837	188643	220-240	A2 BAT	-20 to 50	max. 65	K3	88.0	101.1
42	TC-TEL	GX24q-4	1 x 42.0	ELXc 142.872	188700	220-240	A2 BAT	-20 to 50	max. 65	K2	45.0	99.0
2x42	TC-TEL	GX24q-4	2 x 43.0	ELXc 242.837	188643	220-240	A2 BAT	-20 to 50	max. 65	K3	94.5	100.6
				ELXc 257.836	188132	220-240	A2 BAT	-20 to 50	max. 70	K4	94.0	104.9
55	TC-L	2G11	1 x 55.6	ELXc 155.378	188680	220-240	A2 BAT	-20 to 50	max. 70	K3	60.0	102.4
	T-R5	2GX13	1 x 55.6	ELXc 155.378	188680	220-240	A2 BAT	-20 to 50	max. 70	K3	60.0	101.2
57	TC-TEL	GX24q-5	1 x 57.0	ELXc 170.833	188682	220-240	A2 BAT	-20 to 50	max. 65	К3	63.0	105.0
2x57	TC-TEL	GX24q-5	2 x 57.5	ELXc 257.836	188132	220-240	A2 BAT	-20 to 50	max. 70	K4	130.0	100.0
60	TC-TEL	2G8-1	1 x 63.0	ELXc 120.838	188238	220-240	A2 BAT	-20 to 60	max. 70	K4+	70.0	106.1
	T-R5	2GX13	1 x 60.6	ELXc 155.378	188680	220-240	A2	-20 to 50	max. 70	K3	66.0	109.5
2x60	TC-TEL	2G8-1	2 x 63.0	ELXc 120.838	188238	220-240	A2 BAT	-20 to 60	max. 70	K4+	139.0	100.0
70	TC-TEL	GX24q-6	1 x 70.0	ELXc 170.833	188682	220-240	A2 BAT	-20 to 50	max. 65	K3	77.0	110.0
80	TC-L	2G11	1 x 80.5	ELXc 155.378	188680	220-240	A2 BAT	-20 to 50	max. 70	K3	88.0	101.3
85	TC-TEL	2G8-1	1 x 87.0	ELXc 120.838	188238	220-240	A2 BAT	-20 to 60	max. 70	K4+	96.0	100.0
120	TC-TEL	2G8-1	1 x 122.0	ELXc 120.838	188238	220-240	A2	-20 to 60	max. 70	K4+	134.0	100.0

Circuit diagrams see pages 362-365

8

9

Electronic Ballasts for TC and T Lamps

☐ T5 ☐ TC ☐ BUILT-IN

○1-10 V

ELXc - Warm start for compact fluorescent lamps - Independent ballasts

For ELXc 257.836 a loop-through of the mains supply is possible ELXc 213.870, 218.871, 142.872, 242.837, 155.378 have a second earth terminal to ground the luminaires

								78	O INDEP	ENDENT		LI/PUSH
Lamp				Electronic ballo	ıst						System	
Output	Туре	Base	Power consumption	Туре	Ref. No.	Voltage AC 50, 60 Hz V±10%	Energy efficiency	Ambient temperature	Casing temperature	Casing	Output	Luminous factor
9	TC-SEL	2G7	1 x 8.0	ELXc 213.870	188712	220-240	A2 BAT	-20 to 50	max. 65	K2	10.7	102.9
2x9	TC-SEL	2G7	2 x 8.0	ELXc 213.870	188712	220-240	A2 BAT	-20 to 50	max. 65	K2	19.4	102.9
10	TC-DEL	G24q-1	1 x 9.5	ELXc 213.870	188712	220-240	A2 BAT	-20 to 50	max. 65	K2	10.9	99.2
2×10	TC-DEL	G24q-1	2 x 9.5	ELXc 213.870	188712	220-240	A2 BAT	-20 to 50	max. 65	K2	20.5	98.8
11	TC-SEL	2G7	1 x 11.0	ELXc 213.870	188712	220-240	A2 BAT	-20 to 50	max. 65	K2	14.7	110.1
2x11	TC-SEL	2G7	2 x 11.0	ELXc 213.870	188712	220-240	A2 BAT	-20 to 50	max. 65	K2	27.9	116.1
13	TC-DEL/-TEL	G24q-1/GX24q-1	1 x 12.5	ELXc 213.870	188712	220-240	A2 BAT	-20 to 50	max. 65	K2	15.0	102.9
2x13	TC-DEL/-TEL	G24q-1/GX24q-1	2 x 12.5	ELXc 213.870	188712	220-240	A2 BAT	-20 to 50	max. 65	K2	28.1	110.9
14	TC-TEL	GR14q-1	1 x 14.8	ELXc 217.873	188761	220-240	A2 BAT	-20 to 50	max. 65	K2	18.0	100.0
2x14	TC-TEL	GR14q-1	2 x 14.8	ELXc 217.873	188761	220-240	A2 BAT	-20 to 50	max. 65	K2	34.0	102.0
1 <i>7</i>	TC-TEL	GR14q-1	1 x 18.4	ELXc 217.873	188761	220-240	A2 BAT	-20 to 50	max. 65	K2	22.0	99.0
2x17	TC-TEL	GR14q-1	2 x 18.4	ELXc 217.873	188761	220-240	A2 BAT	-20 to 50	max. 65	K2	41.5	102.0
18	TC-DEL/-TEL	G24q-2/GX24q-2	1 x 16.5	ELXc 218.871	188713	220-240	A2 BAT	-20 to 50	max. 65	K2	21.0	104.8
	TC-F/-L	2G10/2G11	1 x 16.0	ELXc 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	18.0	102.0
2x18	TC-DEL/-TEL	G24q-2/GX24q-2	2 x 16.5	ELXc 218.871	188713	220-240	A2 BAT	-20 to 50	max. 65	K2	38.0	100.7
	TC-F/-L	2G10/2G11	2 x 16.0	ELXc 242.837	188687	220-240	A2 BAT	-20 to 50	max. 65	K3	35.0	104.3
				ELXc 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	34.0	98.0
22	T-R5	2GX13	1 x 22.0	ELXc 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	26.0	103.0
				ELXc 128.869	188590	220-240	A2 BAT	-20 to 50	max. 70	K2	25.0	96.7
22+40	T-R5	2GX13	1 x 22+40	ELXc 242.837	188687	220-240	A2 BAT	-20 to 50	max. 65	K3	68.0	100.0
2x22	T-R5	2GX13	2 x 22.0	ELXc 242.837	188687	220-240	A2 BAT	-20 to 50	max. 65	K3	48.5	105.8
24	TC-F/-L	2G10/2G11	1 x 22.0	ELXc 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	27.0	105.0
	TC-F/-L	2G10/2G11	1 x 22.5	ELXc 128.869	188590	220-240	A2	-20 to 50	max. 70	K2	25.0	95.8
2x24	TC-F/-L	2G10/2G11	2 x 22.0	ELXc 242.837	188687	220-240	A2 BAT	-20 to 50	max. 65	K3	48.5	106.2
				ELXc 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	47.0	102.0
26	TC-DEL/-TEL	G24q-3/GX24q-3	1 x 24.0	ELXc 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	26.0	104.0
2x26	TC-DEL/-TEL	G24q-3/GX24q-3	2 x 24.0	ELXc 242.837	188687	220-240	A2 BAT	-20 to 50	max. 65	K3	53.0	106.1
				ELXc 257.836	188400	220-240	A2 BAT	-20 to 50	max. 70	K4	52.0	106.2
				ELXc 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	53.0	105.0

Circuit diagrams see pages 362-365

ELXc - Compact warm start for compact fluorescent lamps - Independent ballasts

For ELXc 257.836 a loop-through of the mains supply is possible ELXc 213.870, 218.871, 142.872, 242.837, 155.378 have a second earth terminal to ground the luminaires for example

	O TC	BUILT-IN	◯ 1–10 V
○ T8		INDEPENDENT	ODALI/PUSH

Lamp				Electronic balla	st						System	
Dutput	Туре	Base	Power con-	Туре	Ref. No.	Voltage AC	Energy	Ambient	Casing	Casing	Output	Luminous
			sumption			50, 60 Hz	efficiency	temperature	temperature			factor
\wedge			W			V±10%		ta (°C)	tc (°C)		W	%
28	TC-DD	GR10q	1 x 26.0	ELXc 128.869	188590	220-240	A2 BAT	-20 to 50	max. 70	K2	32.0	98.1
32	TC-TEL	GX24q-3	1 x 32.0	ELXc 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	33.0	102.0
2x32	TC-TEL	GX24q-3	2 x 32.0	ELXc 242.837	188687	220-240	A2 BAT	-20 to 50	max. 65	К3	70.5	104.8
				ELXc 257.836	188400	220-240	A2 BAT	-20 to 50	max. 70	K4	70.0	109.4
36	TC-F/-L	2G10/2G11	1 x 32.0	ELXc 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	34.0	105.0
2x36	TC-F/-L	2G10/2G11	2 x 32.0	ELXc 242.837	188687	220-240	A2 BAT	-20 to 50	max. 65	K3	70.5	101.8
38	TC-DD	GR10q	1 x 36.0	ELXc 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	38.0	95.0
2x38	TC-DD	GR10q	2 x 36.0	ELXc 242.837	188687	220-240	A2 BAT	-20 to 50	max. 65	K3	79.2	101.3
40	TC-L	2G11	1 x 40.0	ELXc 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	43.0	99.0
	T-R5	2GX13	1 x 40.0	ELXc 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	41.0	96.0
2x40	TC-L	2G11	2 x 40.0	ELXc 242.837	188687	220-240	A2 BAT	-20 to 50	max. 65	К3	88.0	101.3
	T-R5	2GX13	2 x 40.0	ELXc 242.837	188687	220-240	A2 BAT	-20 to 50	max. 65	К3	88.0	101.1
12	TC-TEL	GX24q-4	1 x 42.0	ELXc 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	45.0	99.0
2x42	TC-TEL	GX24q-4	2 x 43.0	ELXc 242.837	188687	220-240	A2 BAT	-20 to 50	max. 65	K3	94.5	100.6
				ELXc 257.836	188400	220-240	A2 BAT	-20 to 50	max. 70	K4	94.0	104.9
55	TC-L	2G11	1 x 55.6	ELXc 155.378	188681	220-240	A2 BAT	-20 to 50	max. 70	K3	60.0	102.4
	T-R5	2GX13	1 x 55.6	ELXc 155.378	188681	220-240	A2 BAT	-20 to 50	max. 70	K3	60.0	101.2
57	TC-TEL	GX24q-5	1 x 57.0	ELXc 170.833	188683	220-240	A2 BAT	-20 to 50	max. 65	К3	63.0	105.0
2x57	TC-TEL	GX24q-5	2 x 57.0	ELXc 257.836	188400	220-240	A2 BAT	-20 to 50	max. 70	K4	130.0	100.0
50	TC-TEL	2G8-1	1 x 63.0	ELXc 120.838	188273	220-240	A2 BAT	-20 to 60	max. 70	K4+	70.0	106.1
	T-R5	2GX13	1 x 60.6	ELXc 155.378	188681	220-240	A2	-20 to 50	max. 70	K3	66.0	109.5
2x60	TC-TEL	2G8-1	2 x 63.0	ELXc 120.838	188273	220-240	A2 BAT	-20 to 60	max. 70	K4+	139.0	100.0
70	TC-TEL	GX24q-6	1 x 70.0	ELXc 170.833	188683	220-240	A2 BAT	-20 to 50	max. 65	К3	<i>77</i> .0	110.0
30	TC-L	2G11	1 x 80.5	ELXc 155.378	188681	220-240	A2 BAT	-20 to 50	max. 70	K3	88.0	101.3
35	TC-TEL	2G8-1	1 x 87.0	ELXc 120.838	188273	220-240	A2 BAT	-20 to 60	max. 70	K4+	96.0	100.0
120	TC-TEL	2G8-1	1 x 122.0	ELXc 120.838	188273	220-240	A2	-20 to 60	max. 70	K4+	134.0	100.0

Circuit diagrams see pages 362-365

ELXc EffectLine

Warm start for compact fluorescent lamps – Independent ballasts

○ T5	○ TC	O BUILT-IN	○1-10 V
○ T8		INDEPENDENT	ODALI/PUSH

amp.				Electronic ballas	st						System	
Output	Туре	Base	Power con-	Туре	Ref. No.	Voltage AC	Energy	Ambient	Casing	Casing	Output	Luminous
			sumption			50, 60 Hz	efficiency	temperature	temperature			factor
V			W			V±10%		ta (°C)	t _c (°C)		W	%
26	TC-DEL/-TEL	G24q-3/GX24q-3	1 x 24.0	ELXc 226.878	183040	220-240	A2 BAT	-20 to 55	75	K2.1	27.0	105.0
2x26	TC-DEL/-TEL	G24q-3/GX24q-3	2 x 24.0	ELXc 226.878	183040	220-240	A2 BAT	-20 to 55	75	K2.1	49.5	100.0

Circuit diagrams see pages 362-365

new

1

2

3

4

5

6

7

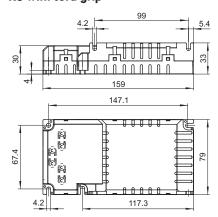
8

0

ELXc – Warm Start for Compact Fluorescent Lamps

Independent electronic ballasts Casing: heat-resistant polyamide (K3) Power factor: > 0.96 DC voltage

for operation: 176-264 V for ignition: 198-264 V


Push-in terminals with push-button: 0.5 – 1.5 mm²

Mains and earth through-wiring on primary side is possible Existing terminals: 2xL; 2xN; 3xPE

RFI-suppressed
Constant power consumption
For luminaires of protection class I and II
Degree of protection: IP20
Fixing brackets for screws M4
for lateral or base mounting
For lighting systems with
high switching frequency (> 5/day)
EOL shut down approved acc. to EN 61347 Test 2

K3 with cord grip

								T5 <u>•</u> TC	_	IN ENDENT	\sim	IO V LI/PUSH
Lamp				Electronic balla	st		<u>'</u>				System	
Output	Туре	Base	Power consumption	Туре	Ref. No.	Voltage AC 50, 60 Hz V±10%	Energy efficiency	Ambient temperature t _a (°C)	Casing temperature t _c (°C)	Casing	Output	Luminous factor %
9	TC-SEL	2G7	1 x 8.0	ELXc 213.874	188886	220 - 240	A2 BAT	-20 to 50	max. 65	K3	10.7	102.9
2x9	TC-SEL	2G7	2 x 8.0	ELXc 213.874	188886	220 - 240	A2 BAT	-20 to 50	max. 65	K3	19.4	102.9
10	TC-DEL	G24q-1	1 x 9.5	ELXc 213.874	188886	220 - 240	A2 BAT	-20 to 50	max. 65	K3	10.9	99.2
2x10	TC-DEL	G24q-1	2 x 9.5	ELXc 213.874	188886	220 - 240	A2 BAT	-20 to 50	max. 65	K3	20.5	98.8
11	TC-SEL	2G7	1 x 11.0	ELXc 213.874	188886	220 - 240	A2 BAT	-20 to 50	max. 65	K3	14.7	110.1
2x11	TC-SEL	2G7	2 x 11.0	ELXc 213.874	188886	220 - 240	A2 BAT	-20 to 50	max. 65	K3	27.9	116.1
13	TC-DEL/-TEL	G24q-1/GX24q-1	1 x 12.5	ELXc 213.874	188886	220 - 240	A2 BAT	-20 to 50	max. 65	K3	15.0	102.9
2×13	TC-DEL/-TEL	G24q-1/GX24q-1	2 x 12.5	ELXc 213.874	188886	220 - 240	A2 BAT	-20 to 50	max. 65	K3	28.1	110.9
18	TC-DEL/-TEL	G24q-2/GX24q-2	1 x 16.5	ELXc 218.875	188887	220 - 240	A2 BAT	-20 to 50	max. 65	K3	21.0	104.8
	TC-F/-L	2G10/2G11	1 x 16.0	ELXc 142.876	188888	220 - 240	A2 BAT	-20 to 50	max. 65	K3	18.0	102.0
2x18	TC-DEL/-TEL	G24q-2/GX24q-2	2 x 16.5	ELXc 218.875	188887	220 - 240	A2 BAT	-20 to 50	max. 65	K3	38.0	100.7
	TC-F/-L	2G10/2G11	2 x 16.0	ELXc 242.877	188889	220 - 240	A2	-20 to 50	max. 65	K3	35.0	104.3
				ELXc 142.876	188888	220 - 240	A2 BAT	-20 to 50	max. 65	K3	34.0	98.0
22	T-R5	2GX13	1 x 22.0	ELXc 142.876	188888	220 - 240	A2 BAT	-20 to 50	max. 65	K3	26.0	103.0
22+40	T-R5	2GX13	1 x 22+40	ELXc 242.877	188889	220 - 240	A2	-20 to 50	max. 65	K3	68.0	100.0
2x22	T-R5	2GX13	2 x 22.0	ELXc 242.877	188889	220 - 240	A2	-20 to 50	max. 65	K3	48.5	105.8
24	TC-F/-L	2G10/2G11	1 x 22.0	ELXc 142.876	188888	220 - 240	A2 BAT	-20 to 50	max. 65	K3	27.0	105.0
2x24	TC-F/-L	2G10/2G11	2 x 22.0	ELXc 242.877	188889	220 - 240	A2 BAT	-20 to 50	max. 65	K3	48.5	106.2
				ELXc 142.876	188888	220 - 240	A2 BAT	-20 to 50	max. 65	K3	47.0	102.0

Circuit diagrams see pages 362-365

ELXc - Warm start for compact fluorescent lamps - Independent ballasts

				Flectronic ballast			○ τ	75 OTC	BUILT-IN INDEPENDENT		1-10 V DALI/PUSI		
Lamp				Electronic ballas	t		·					System	
Output	Туре	Base	Power con-	Туре	Ref. No.	Voltage AC	Energ	y	Ambient	Casing	Casing	Output	Luminous
			sumption			50, 60 Hz	efficie	ncy t	emperature	temperature			factor
W			W			V±10%		t	a (°C)	tc (°C)		W	%
26	TC-DEL/-TEL	G24q-3/GX24q-3	1 x 24.0	ELXc 142.876	188888	220-240	A2		-20 to 50	max. 65	K3	26.0	104.0
2x26	TC-DEL/-TEL	G24q-3/GX24q-3	2 x 24.0	ELXc 242.877	188889	220-240	A2		-20 to 50	max. 65	K3	53.0	106.1
				ELXc 142.876	188888	220-240	A2		-20 to 50	max. 65	K3	53.0	105.0
32	TC-TEL	GX24q-3	1 x 32.0	ELXc 142.876	188888	220-240	A2	-	-20 to 50	max. 65	K3	33.0	102.0
2x32	TC-TEL	GX24q-3	2 x 32.0	ELXc 242.877	188889	220-240	A2		-20 to 50	max. 65	K3	70.5	104.8
36	TC-F/-L	2G10/2G11	1 x 32.0	ELXc 142.876	188888	220-240	A2 BA	AT -	-20 to 50	max. 65	K3	34.0	105.0
2x36	TC-F/-L	2G10/2G11	2 x 32.0	ELXc 242.877	188889	220-240	A2 BA	AT .	-20 to 50	max. 65	K3	70.5	101.8
38	TC-DD	GR10q	1 x 36.0	ELXc 142.876	188888	220-240	A2		-20 to 50	max. 65	K3	38.0	95.0
2x38	TC-DD	GR10q	2 x 36.0	ELXc 242.877	188889	220-240	A2 BA	AT .	-20 to 50	max. 65	K3	79.2	101.3
40	TC-L	2G11	1 x 40.0	ELXc 142.876	188888	220-240	A2		-20 to 50	max. 65	K3	43.0	99.0
	T-R5	2GX13	1 x 40.0	ELXc 142.876	188888	220-240	A2		-20 to 50	max. 65	K3	41.0	96.0
2x40	TC-L	2G11	2 x 40.0	ELXc 242.877	188889	220-240	A2		-20 to 50	max. 65	K3	88.0	101.3
	T-R5	2GX13	2 x 40.0	ELXc 242.877	188889	220-240	A2		-20 to 50	max. 65	K3	88.0	101.1
42	TC-TEL	GX24q-4	1 x 42.0	ELXc 142.876	188888	220-240	A2		-20 to 50	max. 65	K3	45.0	99.0
2x42	TC-TEL	GX24q-4	2 x 43.0	ELXc 242.877	188889	220-240	A2		-20 to 50	max. 65	K3	94.5	100.6

2x42 | TC-TEL | GX24q-4 | Circuit diagrams see pages 362-365

5

6

7

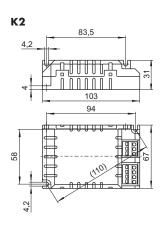
8

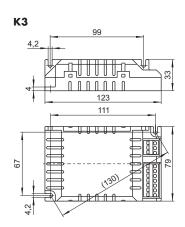
9

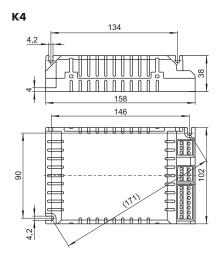
ELXd - Dimmable for TC-DEL, TC-TEL Lamps

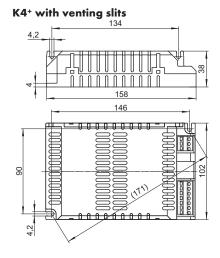
Electronic ballasts
Casing: heat-resistant polycarbonate

Dimming range: approx. 3-100% of lamp power

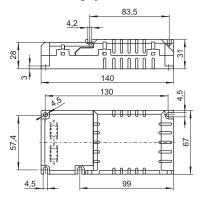

Push-in terminals with push-button: 0.5 – $1.5~\mathrm{mm^2}$ RFI-suppressed

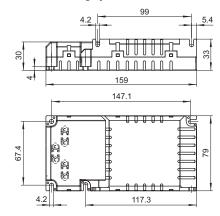

Degree of protection: IP20
For luminaires of protection class I
Fixing brackets for screws M4
for lateral or base mounting
For lighting systems with
high switching frequency (> 5/day)


EOL shut down approved acc. to EN 61347 Test 2

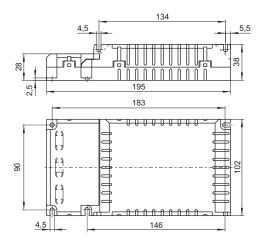


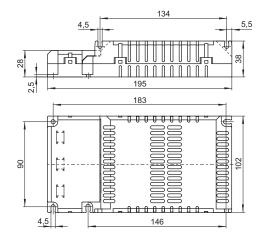
Electronic built-in ballasts




ELXd – Dimmable for TC-DEL, TC-TEL Lamps

Independent electronic ballasts


K2 with cord grip


K3 with cord grip

K4 with cord grip

K4+ with cord grip and venting slits

2

3

4

5

6

7

8

9

Electronic Ballasts for TC and T Lamps

ELXd - Dimmable 1-10 V for TC-DEL, TC-TEL lamps

Electronic built-in ballasts
Casing: K3, K4 and K4+ with venting slits
Control voltage: DC 1-10 V acc. to
EN 60929 with earth leakage current 0.5 mA
(protected if connected to mains voltage)
For use with open- or closed-loop control units
Power factor: 0.98 at 100% operation

DC voltage

for operation: $176-264\ V$ for ignition: $198-264\ V$

							() T	BUILT-IN INDEPENDENT		\sim	10 V LI/PUSH	
Lamp				Electronic ballas	t						System	
Output	Туре	Base	Power con-	Туре	Ref. No.	Voltage AC	Energy	Ambient	Casing	Casing	Output	Luminous
			sumption			50, 60 Hz	efficiency	temperature	temperature			factor
W			W			V±10%		ta (°C)	tc (°C)		W	%
18	TC-DEL/-TEL	G24q-2/GX24q-2	1 x 16.5	ELXd 118.802	188564	220-240	A1 BAT	5 to 55	max. 70	K3	21.0	100.0
2x18	TC-DEL/-TEL	G24q-2/GX24q-2	2 x 16.5	ELXd 218.803	188549	220-240	A1 BAT	5 to 55	max. 70	K4	38.0	100.0
26	TC-DEL/-TEL	G24q-3/GX24q-3	1 x 24.0	ELXd 142.806	188565	220-240	A1 BAT	10 to 50	max. 70	К3	27.0	100.0
2x26	TC-DEL/-TEL	G24q-3/GX24q-3	2 x 24.0	ELXd 242.807	188550	220-240	A1 BAT	10 to 50	max. 70	K4	53.0	100.0
				ELXd 226.801	188431	220-240	A1 BAT	10 to 50	max. 70	К3	54.0	100.0
32	TC-TEL	GX24q-3	1 x 32.0	ELXd 142.806	188565	220-240	A1 BAT	10 to 50	max. 70	К3	36.0	100.0
2x32	TC-TEL	GX24q-3	2 x 32.0	ELXd 242.807	188550	220-240	A1 BAT	10 to 50	max. 70	K4	71.0	100.0
42	TC-TEL	GX24q-4	1 x 43.0	ELXd 142.806	188565	220-240	A1 BAT	10 to 50	max. 70	К3	46.0	100.0
2x42	TC-TEL	GX24q-4	2 x 43.0	ELXd 242.807	188550	220-240	A1 BAT	10 to 50	max. 70	K4	92.0	100.0
57	TC-TEL	GX24q-5	1 x 57.0	ELXd 170.808	188276	220-240	A1 BAT	10 to 55	max. 60	K4+	62.0	100.0
70	TC-TEL	GX24q-6	1 x 70.0	ELXd 170.808	188276	220-240	A1 BAT	10 to 55	max. 60	K4+	77.0	100.0

Circuit diagrams see pages 362-365

ELXd - Dimmable 1-10 V for TC-DEL, TC-TEL lamps

Independent electronic ballasts
Casing with cord grip: K3, K4 and

 $K4^{+}$ with venting slits

Control voltage: DC 1-10 V acc. to EN 60929 with earth leakage current 0.5 mA (protected if connected to mains voltage) For use with open- or closed-loop control units Power factor: 0.98 at 100% operation DC voltage

for operation: 176-264 V for ignition: 198-264 V

Power f	actor: 0.98 a	t 100% operation						T8	INDEP	ENDEN	r ÖD	ALI/PUSH
Lamp				Electronic ballas	t						System	
Output	Туре	Base	Power con-	Туре	Ref. No.	Voltage AC	Energy	Ambient	Casing	Casing	Output	Luminous
			sumption			50, 60 Hz	efficiency	temperature	temperature			factor
W			W			V±10%		ta (°C)	t _c (°C)		W	%
18	TC-DEL/-TEL	G24q-2/GX24q-2	1 x 16.5	ELXd 118.802	188694	220 - 240	A1 BAT	5 to 55	max. 70	K3	21.0	100.0
2×18	TC-DEL/-TEL	G24q-2/GX24q-2	2 x 16.5	ELXd 218.803	188696	220 - 240	A1 BAT	5 to 55	max. 70	K4	38.0	100.0
26	TC-DEL/-TEL	G24q-3/GX24q-3	1 x 24.0	ELXd 142.806	188695	220 - 240	A1 BAT	10 to 50	max. 70	К3	27.0	100.0
2x26	TC-DEL/-TEL	G24q-3/GX24q-3	2 x 24.0	ELXd 242.807	188697	220 - 240	A1 BAT	10 to 50	max. 70	K4	53.0	100.0
				ELXd 226.801	188490	220 - 240	A1 BAT	10 to 50	max. 70	К3	54.0	100.0
32	TC-TEL	GX24q-3	1 x 32.0	ELXd 142.806	188695	220 - 240	A1 BAT	10 to 50	max. 70	K3	36.0	100.0
2x32	TC-TEL	GX24q-3	2 x 32.0	ELXd 242.807	188697	220 - 240	A1 BAT	10 to 50	max. 70	K4	71.0	100.0
42	TC-TEL	GX24q-4	1 x 43.0	ELXd 142.806	188695	220 - 240	A1 BAT	10 to 50	max. 70	К3	46.0	100.0
2×42	TC-TEL	GX24q-4	2 x 43.0	ELXd 242.807	188697	220 - 240	A1 BAT	10 to 50	max. 70	K4	92.0	100.0
57	TC-TEL	GX24q-5	1 x 57.0	ELXd 170.808	188495	220 - 240	A1 BAT	10 to 55	max. 60	K4+	62.0	100.0
70	TC-TEL	GX24q-6	1 x 70.0	ELXd 170.808	188495	220 - 240	A1 BAT	10 to 55	max. 60	K4+	77.0	100.0

Circuit diagrams see pages 362-365

O BUILT-IN

O TC

● 1-10 V

ELXd - Dimmable with push key or DALI for TC-DEL, TC-TEL lamps

Electronic built-in ballasts

PUSH: dimmable with usual push key

and sensor

DALI: poles are not polarity sensitive

(protected if connected to mains voltage) for use with DALI compatible control units Automatic restart after lamp has been changed

Power factor: > 0.95 at 100% operation

DC voltage

for operation: 176-264 V for ignition: 198-264 V

standby power consumption: $\leq 0.5 \text{ W}$

Complete implementation of the DALI-standard: addressable, memory store for scenes and groups, revertive information communication, physical and RND-selection, standardized lamp characteristic Low-power design ensures very low standby power consumption

Compatible with IEC 62386

● TC ● BUILT-IN ○1-10 V **◯ T8** O DALI/PUSH **INDEPENDENT**

	Lamp				Electronic ballast							System	
	Output	Туре	Base	Power con-	Туре	Ref. No.	Voltage AC	Energy	Ambient	Casing	Casing	Output	Luminous
				sumption			50, 60 Hz	efficiency	temperature	temperature			factor
	W			W			V±10%		ta (°C)	t _c (°C)		W	%
	14	TC-TEL	GR14q-1	1 x 16.7	ELXd 117.715	188864	220-240	A1 BAT	10 to 50	max. 65	K2	18.0	103.8
	2x14	TC-TEL	GR14q-1	2 x 14.0	ELXd 217.717	188866	220-240	A1 BAT	10 to 60	max. 70	K3	33.8	95.9
	1 <i>7</i>	TC-TEL	GR14q-1	1 x 20.0	ELXd 117.715	188864	220-240	A1 BAT	10 to 50	max. 65	K2	22.0	105.3
	2x17	TC-TEL	GR14q-1	2 x 17.0	ELXd 217.717	188866	220-240	A1 BAT	10 to 60	max. 70	K3	40.7	95.2
W	18	TC-DEL/-TEL	G24q-2/GX24q-2	1 x 16.5	ELXd 118.705	188952	220-240	A1 BAT	10 to 50	max. 65	K2	20.2	105.5
w	2x18	TC-DEL/-TEL	G24q-2/GX24q-2	2 x 18.0	ELXd 218.707	188954	220-240	A1 BAT	10 to 50	max. 70	K3	40.0	100.1
	26	TC-DEL/-TEL	G24q-3/GX24q-3	1 x 25.0	ELXd 142.709	188923	220-240	A1 BAT	10 to 50	max. 65	K2	27.5	106.8
W	2x26	TC-DEL/-TEL	G24q-3/GX24q-3	2 x 24.0	ELXd 242.711	188974	220-240	A1 BAT	10 to 50	max. 70	K3	56.0	97.9
	32	TC-TEL	GX24q-3	1 x 32.0	ELXd 142.709	188923	220-240	A1 BAT	10 to 50	max. 65	K2	34.5	106.3
w	2x32	TC-TEL	GX24q-3	2 x 32.0	ELXd 242.711	188974	220-240	A1 BAT	10 to 50	max. 70	K3	69.0	97.6
	42	TC-TEL	GX24q-4	1 x 42.0	ELXd 142.709	188923	220-240	A1 BAT	10 to 50	max. 65	K2	45.0	103.8
W	2x42	TC-TEL	GX24q-4	2 x 42.0	ELXd 242.711	188974	220-240	A1 BAT	10 to 50	max. 70	K3	90.0	99.1

Circuit diagrams see pages 362-365

ELXd - Dimmable with push key or DALI for TC-DEL, TC-TEL lamps

Independent electronic ballasts
PUSH: dimmable with usual push key

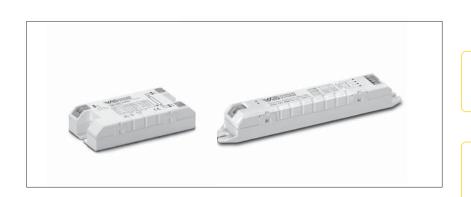
and sensor

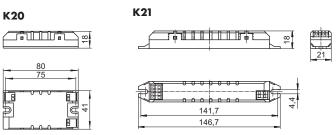
DALI: poles are not polarity sensitive

(protected if connected to mains voltage) for use with DALI compatible control units Automatic restart after lamp has been changed Power factor: > 0.95 at 100% operation

DC voltage

for operation: 176-264 V for ignition: 198-264 V standby power consumption: ≤ 0.5 W Complete implementation of the DALI-standard: addressable, memory store for scenes and groups, revertive information communication, physical and RND-selection, standardized lamp characteristic Low-power design ensures very low standby power consumption


Compatible with IEC 62386


									_	BUILT-IN INDEPEN		\sim	10 V LI/PUSH
La	amp				Electronic ballast							System	
0	output	Туре	Base	Power con-	Туре	Ref. No.	Voltage AC	Energy	Ambient	Casing	Casing	Output	Luminous
				sumption			50, 60 Hz	efficiency	temperature	temperature			factor
V	/			W			V±10%		ta (°C)	t _c (°C)		W	%
14	4	TC-TEL	GR14q-1	1 x 16.7	ELXd 117.715	188865	220-240	A1BAT	10 to 50	max. 65	K2	18.0	103.8
2×	x14	TC-TEL	GR14q-1	2 x 14.0	ELXd 217.717	188867	220-240	Albat	10 to 60	max. 70	K3	33.8	95.9
17	7	TC-TEL	GR14q-1	1 x 20.0	ELXd 117.715	188865	220-240	A1BAT	10 to 50	max. 65	K2	22.0	105.3
2×	x17	TC-TEL	GR14q-1	2 x 17.0	ELXd 217.717	188867	220-240	Albat	10 to 60	max. 70	K3	40.7	95.2
7 18	8	TC-DEL/-TEL	G24q-2/GX24q-2	1 x 16.5	ELXd 118.705	188953	220-240	A1BAT	10 to 50	max. 65	K2	20.2	105.5
/ 2×	x18	TC-DEL/-TEL	G24q-2/GX24q-2	2 x 18.0	ELXd 218.707	188955	220-240	Albat	10 to 60	max. 70	K3	40.0	100.1
26	6	TC-DEL/-TEL	G24q-3/GX24q-3	1 x 25.0	ELXd 142.709	188924	220-240	A1BAT	10 to 50	max. 65	K2	27.5	106.3
/ 2×	x26	TC-DEL/-TEL	G24q-3/GX24q-3	2 x 24.0	ELXd 242.711	188975	220-240	Albat	10 to 50	max. 70	K3	56.0	97.9
32	2	TC-TEL	GX24q-3	1 x 32.0	ELXd 142.709	188924	220-240	A1BAT	10 to 50	max. 65	K2	34.8	106.3
/ 2×	x32	TC-TEL	GX24q-3	2 x 32.0	ELXd 242.711	188975	220-240	A1BAT	10 to 50	max. 70	K3	69.0	97.6
42	2	TC-TEL	GX24q-4	1 x 42.0	ELXd 142.709	188924	220-240	A1BAT	10 to 50	max. 65	K2	45.0	103.8
/ 2×	x42	TC-TEL	GX24q-4	2 x 42.0	ELXd 242.711	188975	220-240	A1BAT	10 to 50	max. 70	K3	90.0	99.1

Circuit diagrams see pages 362-365

ELXs - Warm Start for T5 and **T8 Lamps**

Electronic built-in ballasts Casing: heat-resistant polyamide Power factor: approx. 0.6 (depending on the lamp output) DC voltage operation: 198-264 V Push-in terminals with push-button: $0.5-1.5~\text{mm}^2$ RFI-suppressed For luminaires of protection class I and II Degree of protection: IP20 Fixing slots for screws M4 For lighting systems with high switching frequency (> 5/day) EOL shut down approved acc. to EN 61347 Test 2

								T8	INDEPEND	ENT (DALI/PUSH
Lamp				Electronic ballast							System
Output	Туре	Base	Power consumption	Туре	Ref. No.	Voltage AC 50, 60 Hz	Energy efficiency	Ambient temperature	Casing temperature	Casing	Output
W			W			V±10%		ta (°C)	tc (°C)		W
4	T5	G5	1 x 4.6	ELXs 116.900	188661	220-240	A3	- 15 to 55	max. 75	K20	5.9
			1 x 4.6	ELXs 116.903	188662	220-240	A3	- 15 to 55	max. 75	K21	5.9
6	T5	G5	1 x 6.0	ELXs 116.900	188661	220-240	A2	- 15 to 55	max. 75	K20	7.5
			1 x 6.0	ELXs 116.903	188662	220-240	A2	-15 to 55	max. 75	K21	7.5
8	T5	G5	1 x 7.1	ELXs 116.900	188661	220-240	A2	-15 to 55	max. 75	K20	8.6
			1 x 7.1	ELXs 116.903	188662	220-240	A2	-15 to 55	max. 75	K21	8.6
13	T5	G5	1 x 12.0	ELXs 116.900	188661	220-240	A2	-15 to 55	max. 75	K20	13.1
			1 x 12.0	ELXs 116.903	188662	220-240	A2	-15 to 55	max. 75	K21	13.1
14	T5	G5	1 x 14.1	ELXs 121.901	188663	220-240	A2	-15 to 55	max. 80	K20	16.3
			1 x 14.1	ELXs 121.904	188664	220-240	A2	-15 to 55	max. 80	K21	16.3
	T8	G13	1 x 13.5	ELXs 124.902	188665	220-240	A2	-15 to 55	max. 85	K20	16.2
			1 x 13.5	ELXs 124.905	188666	220-240	A2	-15 to 55	max. 85	K21	16.2
15	T8	G13	1 x 14.1	ELXs 124.902	188665	220-240	A2	-15 to 55	max. 85	K20	17.6
			1 x 14.1	ELXs 124.905	188666	220-240	A2	-15 to 55	max. 85	K21	17.6
16	T8	G13	1 x 12.0	ELXs 116.900	188661	220-240	A2	-15 to 55	max. 75	K20	13.4
			1 x 12.0	ELXs 116.903	188662	220-240	A2	-15 to 55	max. 75	K21	13.4
18	T8	G13	1 x 15.9	ELXs 124.902	188665	220-240	A2	-15 to 55	max. 85	K20	18.5
			1 x 15.9	ELXs 124.905	188666	220-240	A2	-15 to 55	max. 85	K21	18.5
21	T5	G5	1 x 19.1	ELXs 121.901	188663	220-240	A2	-15 to 55	max. 80	K20	21.8
			1 x 19.1	ELXs 121.904	188664	220-240	A2	- 15 to 55	max. 80	K21	21.8
24	T5	G5	1 x 20.1	ELXs 124.902	188665	220-240	A2	- 15 to 55	max. 85	K20	21.5
			1 x 20.1	ELXs 124.905	188666	220-240	A2	- 15 to 55	max. 85	K21	21.5

Circuit diagrams see pages 362-365

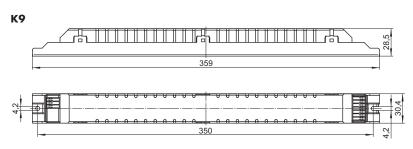
○1-10 V

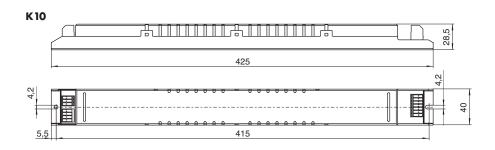
ELXc – Warm Start for T5 and T8 Lamps

Electronic built-in ballasts

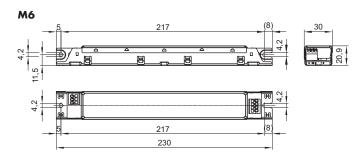
Casing: heat-resistant polycarbonate (K9, K10) or metal (M8, M9, M10, M11, M22, M24)

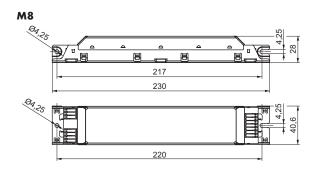
Power factor: ≥ 0.95 RFI-suppressed

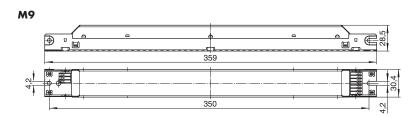

For luminaires of protection class I (metal casing)

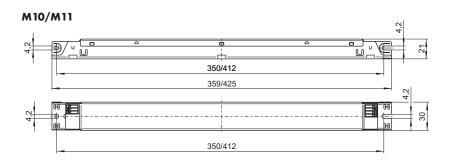

For luminaires of protection class I and II $\,$

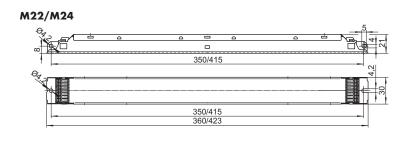
(plastic casing)


Degree of protection: IP20 For lighting systems with high switching frequency (> 5/day)








ELXc – Warm Start for T5 and T8 Lamps

ELXc – Warm start for T5 lamps with automatic lamp detection

DC voltage

for operation: 176-276 V for ignition: 198-264 V Push-in terminals: 0.5-1 mm² For the automatic luminaire wiring: IDC terminals for leads H05V-U 0.5 EOL shut down approved acc. to EN 61347 Test 2
Automatic lamp detection (T5 HO/HE)
Optimum pre-heating of the filament ensures lamps can be ignited within 1 second.

								● T5 (○ T8		ILT-IN DEPENDE	NT C	1-10 V DALI/PUSH
Lamp				Electronic ballast							System	
Output	Туре	Base	Power consumption	Туре	Ref. No.	Voltage AC 50, 60 Hz V±10%	Energy efficiency	Ambient temperature t _a (°C)	Casing temperature t _c (°C)	Casing	Output	Luminous factor %
14	T5	G5	1 x 14.0	ELXc 139.632	188945	220-240	A2 BAT	-20 to 50	max. 75	M22	16.0	100.0
2x14	T.5	G5	2 x 14.0	ELXc 239.635	188948	220-240	A2 BAT	-20 to 50	max. 75	M22	31.0	100.0
21	T5	G5	1 x 21.0	ELXc 139.632	188945	220-240	A2 BAT	-20 to 50	max. 75	M22	24.0	100.0
2x21	T5	G5	2 x 20.5	ELXc 239.635	188948	220-240	A2 BAT	-20 to 50	max. 75	M22	45.0	100.0
24	T5	G5	1 x 23.0	ELXc 139.632	188945	220-240	A2 BAT	-20 to 50	max. 75	M22	26.0	100.0
2x24	T5	G5	2 x 23.0	ELXc 239.635	188948	220-240	A2 BAT	-20 to 50	max. 75	M22	50.0	100.0
28	T5	G5	1 x 28.0	ELXc 154.633	188946	220-240	A2 BAT	-20 to 50	max. 75	M22	32.0	100.0
2x28	T5	G5	2 x 28.0	ELXc 254.636	188949	220-240	A2 BAT	-20 to 50	max. 75	M22	61.0	100.0
35	T5	G5	1 x 35.0	ELXc 154.633	188946	220-240	A2 BAT	-20 to 50	max. 75	M22	38.0	100.0
			1 x 35.0	ELXc 180.634	188947	220-240	A2 BAT	-20 to 50	max. 75	M22	38.0	100.0
2x35	T5	G5	2 × 35.0	ELXc 254.636	188949	220-240	A2 BAT	-20 to 50	max. 75	M22	76.0	100.0
			2 × 35.0	ELXc 280.637	188950	220-240	A2 BAT	-20 to 50	max. 75	M24	75.0	100.0
39	T5	G5	1 x 38.0	ELXc 139.632	188945	220-240	A2 BAT	-20 to 50	max. 75	M22	41.0	100.0
2x39	T5	G5	2 x 38.0	ELXc 239.635	188948	220-240	A2 BAT	-20 to 50	max. 75	M22	81.0	100.0
49	T5	G5	1 x 49.0	ELXc 154.633	188946	220-240	A2 BAT	-20 to 50	max. 75	M22	53.0	100.0
			1 x 49.0	ELXc 180.634	188947	220-240	A2 BAT	-20 to 50	max. 75	M22	53.0	100.0
2x49	T5	G5	2 x 49.0	ELXc 254.636	188949	220-240	A2 BAT	-20 to 50	max. 75	M22	105.0	100.0
			2 x 49.0	ELXc 280.637	188950	220-240	A2 BAT	-20 to 50	max. 75	M24	104.0	100.0
54	T5	G5	1 x 54.0	ELXc 154.633	188946	220-240	A2 BAT	-20 to 50	max. 75	M22	58.0	100.0
2x54	T5	G5	2 x 54.0	ELXc 254.636	188949	220-240	A2 BAT	-20 to 50	max. 75	M22	115.0	100.0
80	T5	G5	1 x 80.0	ELXc 180.634	188947	220-240	A2 BAT	-20 to 50	max. 75	M22	85.0	100.0
2x80	T5	G5	2 x 80.0	ELXc 280.637	188950	220-240	A2 BAT	-20 to 50	max. 75	M24	165.0	100.0

Circuit diagrams see pages 362-365

ELXc - Warm start

DC voltage

new

for operation: 176-264 V for ignition: 198-264 V (ELXc 135.856, 235.857, 149.858, 154.864,

180.866, 270.206; 280.538: DC voltage cannot be reduced to 176 V)

Push-in terminals: $0.5-1 \text{ mm}^2$

For the automatic luminaire wiring: IDC terminals for leads H05V-U 0.5 EOL shut down approved acc. to EN 61347 Test 2 (for T5) EOL shut down (for T8)

2

H

4

5

6

7

8

Q

10

								T5T8	\sim	UILT-IN NDEPEND	`	1-10 V DALI/PUSH
Lamp				Electronic ballasi	•			18		NDEPENL	System) DALI/PUSH
Output	Туре	Base	Power con-	Type	Ref. No.	Voltage AC	Energy	Ambient	Casing	Casing	Output	Luminous
	1.775		sumption	1,75		50, 60 Hz	efficiency	temperature	temperature			factor
W			W			V±10%		ta (°C)	t _c (°C)		W	%
T5 lamp	s – Casir	ng: M8, I	M10 and M11		·			,				· ·
14	T5	G5	1 x 14.0	ELXc 135.856	188093	220-240	A2 BAT	- 15 to 55	max. 70	M10	17.0	110.7
2x14	T.5	G5	2 x 14.0	ELXc 235.857	188094	220-240	A2 BAT	-15 to 55	max. 70	M10	33.4	107.0
3x14	T5	G5	3 x 14.0	ELXc 414.868	188438	220-240	A2 BAT	-15 to 55	max. 70	M8	48.0	105.4
4x14	T.5	G5	4 x 14.0	ELXc 414.868	188438	220-240	A2 BAT	- 15 to 55	max. 70	M8	63.0	102.3
21	T5	G5	1 x 21.0	ELXc 135.856	188093	220-240	A2 BAT	-15 to 55	max. 70	M10	24.0	107.4
2x21	T.5	G5	2 x 21.0	ELXc 235.857	188094	220-240	A2 BAT	- 15 to 55	max. 70	M10	50.2	110.6
24	T5	G5	1 x 22.5	ELXc 140.862	188140	220-240	A2 BAT	-15 to 55	max. 70	M10	27.0	114.0
2x24	T5	G5	2 x 22.5	ELXc 240.863	188616	220-240	A2 BAT	-15 to 55	max. 70	M10	51.0	107.4
3x24	T5	G5	3 x 21.5	ELXc 424.223	183039	220-240	A2 BAT	-15 to 55	max. 75	M8	76.0	98.2
4x24	T5	G5	4 x 21.5	ELXc 424.223	183039	220-240	A2 BAT	- 15 to 50	max. 75	M8	96.5	98.4
28	T5	G5	1 x 28.0	ELXc 135.856	188093	220-240	A2 BAT	-15 to 55	max. 70	M10	32.0	104.9
2x28	T5	G5	2 x 28.0	ELXc 235.857	188094	220-240	A2 BAT	-15 to 55	max. 70	M10	60.6	106.2
35	T5	G5	1 x 35.0	ELXc 135.856	188093	220-240	A2 BAT	-15 to 55	max. 70	M10	39.5	102.7
2x35	T5	G5	2 x 35.0	ELXc 235.857	188094	220-240	A2 BAT	-15 to 55	max. 70	M10	74.5	102.5
39	T5	G5	1 x 38.0	ELXc 140.862	188140	220-240	A2 BAT	-15 to 55	max. 70	M10	43.0	107.0
2x39	T.5	G5	2 x 38.0	ELXc 240.863	188616	220-240	A2 BAT	-15 to 55	max. 70	M10	82.0	97.9
49	T5	G5	1 x 49.0	ELXc 149.858	188095	220-240	A2 BAT	-15 to 55	max. 70	M10	54.0	102.5
2x49	T5	G5	2 x 49.0	ELXc 249.859	188617	220-240	A2 BAT	-15 to 50	max. 70	M10	113.0	106.6
54	T5	G5	1 x 54.0	ELXc 154.864	188142	220-240	A2 BAT	-15 to 55	max. 70	M10	59.0	101.1
2x54	T.5	G5	2 x 54.0	ELXc 254.865	188618	220-240	A2 BAT	-15 to 50	max. 70	M10	119.0	106.0
80	T5	G5	1 x 80.0	ELXc 180.866	188144	220-240	A2 BAT	-15 to 55	max. 70	M10	87.0	97.6
2x80	T5	G5	2 x 80.0	ELXc 280.538	188619	220-240	A2 BAT	- 15 to 50	max. 70	M11	175.0	97.2
T8 lamp	s – Casir	ng: K9, N	18 and M9				•		-			
18	Т8	G13	1 x 16.0	ELXc 136.200	188314	220-240	A2 BAT	-20 to 55	max. 70	K9	19.5	106.0
2×18	Т8	G13	2 x 16.0	ELXc 236.202	188316	220-240	A2 BAT	-20 to 55	max. 70	K9	38.0	104.3
3×18	Т8	G13	3 x 16.0	ELXc 418.204	188744	220-240	A2 BAT	-15 to 55	max. 70	M8	56.0	100.8
4×18	Т8	G13	4 x 16.0	ELXc 418.204	188744	220-240	A2 BAT	-15 to 55	max. 70	M8	71.5	98.9
36	T8	G13	1 x 32.0	ELXc 136.200	188314	220-240	A2 BAT	-20 to 55	max. 70	K9	34.5	96.5
2x36	Т8	G13	2 x 32.0	ELXc 236.202	188316	220-240	A2 BAT	-20 to 55	max. 70	K9	72.0	98.3
3x36	T8	G13	3 x 32.0	ELXc 336.214	188595	220-240	A2 BAT	-15 to 50	max. 65	M8	105.0	99.4
58	T8	G13	1 x 50.0	ELXc 158.201	188315	220-240	A2 BAT	-20 to 55	max. 70	K9	55.0	100.9
2x58	T8	G13	2 x 50.0	ELXc 258.203	188317	220-240	A2 BAT	-20 to 50	max. 75	K9	107.0	101.0
70	Т8	G13	1 x 60.0	ELXc 170.205	188319	220-240	A2 BAT	-20 to 55	max. 70	M9	67.8	104.3
2x70	T8	G13	2 x 60.0	ELXc 270.206	188320	220-240	A2 BAT	-20 to 50	max. 65	M9	131.0	104.3

Circuit diagrams see pages 362-365

VSSLOH SCHWABE

ELXc EffectLine – Warm start

Warm start for T5 and T8 lamps – Casing: M6, M8 and M10

DC voltage for operation: 176-264 V for ignition: 198-264 V (not possible for T8)

new new new new new new new new EOL shut down approved acc. to EN 61347 Test 2 (for T5) EOL shut down (for T8)

	مامديم مانت	h	1 5								
IIIIGIS V	viin pusn	I-DUIIOII. U.J -	1.J mm²				● T5	○ TC ○ B	UILT-IN	(◯ 1–10 V
							● T8		IDEPEND	ENT	DALI/PUSH
			Electronic ballast	t						System	
Туре	Base	Power con-	Туре	Ref. No.	Voltage AC	Energy	Ambient	Casing	Casing	Output	Luminous
		sumption			50, 60 Hz	efficiency	temperature	temperature			factor
		W			V±10%		ta (°C)	t _c (°C)		W	%
- Casin	ng: M6 aı	nd M10									
T5	G5	1 x 14.3	ELXc 135.220	188921	220-240	A2 BAT	-15 to 55	max. 70	M6	17.0	104.8
T5	G5	2 x 14.3	ELXc 235.221	188922	220-240	A2 BAT	-15 to 55	max. 70	M10	34.5	101.9
T5	G5	1 x 20.4	ELXc 135.220	188921	220-240	A2 BAT	-15 to 55	max. 70	M6	23.3	106.9
T5	G5	2 x 21.4	ELXc 235.221	188922	220-240	A2 BAT	-15 to 55	max. 70	M10	48.3	104.9
T5	G5	1 x 26.7	ELXc 135.220	188921	220-240	A2 BAT	-15 to 55	max. 70	M6	29.9	107.5
T5	G5	2 x 28.7	ELXc 235.221	188922	220-240	A2 BAT	-15 to 55	max. 70	M10	62.1	109.0
T5	G5	1 x 32.6	ELXc 135.220	188921	220-240	A2 BAT	-15 to 55	max. 70	M6	36.5	103.0
T5	G5	2 x 35.6	ELXc 235.221	188922	220-240	A2 BAT	-15 to 55	max. 70	M10	78.2	100.8
- Casin	ig: M8										
T8	G13	1 x 16.0	ELXc 136.207	188704	220-240	A2 BAT	-20 to 55	max. 60	M8	18.4	105.0
T8	G13	2 x 16.0	ELXc 236.208	188705	220-240	A2 BAT	-20 to 50	max. 60	M8	35.2	106.0
T8	G13	1 x 32.0	ELXc 136.207	188704	220-240	A2 BAT	-20 to 55	max. 60	M8	35.4	97.0
T8	G13	2 x 32.0	ELXc 236.208	188705	220-240	A2 BAT	-20 to 50	max. 60	M8	69.7	98.0
T8	G13	1 x 50.0	ELXc 158.209	188706	220-240	A2 BAT	-20 to 50	max. 60	M8	52.6	106.0
T8	G13	2 x 50.0	ELXc 258.210	188707	220-240	A2	-20 to 50	max. 65	M8	109.9	105.0
	- Casir T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T8 T8 T8	Type Base - Casing: M6 at 15 G5 T5	Type Base Power consumption W - Casing: M6 and M10 T5 G5 1 x 14.3 T5 G5 2 x 14.3 T5 G5 1 x 20.4 T5 G5 1 x 26.7 T5 G5 2 x 21.4 T5 G5 2 x 28.7 T5 G5 2 x 35.6 - Casing: M8 T8 G13 1 x 16.0 T8 G13 1 x 32.0 T8 G13 1 x 32.0 T8 G13 1 x 50.0	Type Base Power consumption w Type - Casing: M6 and M10 T5 G5 1 x 14.3 ELXc 135.220 T5 G5 2 x 14.3 ELXc 235.221 T5 G5 1 x 20.4 ELXc 135.220 T5 G5 2 x 21.4 ELXc 235.221 T5 G5 1 x 26.7 ELXc 135.220 T5 G5 2 x 28.7 ELXc 235.221 T5 G5 1 x 32.6 ELXc 135.220 T5 G5 2 x 35.6 ELXc 235.221 - Casing: M8 T8 G13 1 x 16.0 ELXc 136.207 T8 G13 2 x 16.0 ELXc 236.208 T8 G13 1 x 32.0 ELXc 136.207 T8 G13 1 x 32.0 ELXc 236.208 T8 G13 1 x 50.0 ELXc 136.209	Type	Type	Type	Type	Type	Electronic ballast	Type

Circuit diagrams see pages 362-365

Warm start for T8 lamps - Casing: M8

IDC termin	For the automatic luminaire wiring: IDC terminals for leads H05V-U 0.5 EOL shut down T5 TC BUILT-IN 1-10 V T8 INDEPENDENT DALI/PUSH														
Lamp				Electronic ballast				System							
Output	Туре	Base	Power con-	Туре	Ref. No.	Voltage AC	Energy	Ambient	Casing	Casing	Output	Luminous			
			sumption			50, 60 Hz	efficiency	temperature	temperature			factor			
W			W			V±10%		ta (°C)	t _c (°C)		W	%			
18	T8	G13	1 x 16.0	ELXc 136.207	188708	220-240	A2 BAT	-20 to 55	max. 60	M8	18.4	105.0			
2x18	T8	G13	2 x 16.0	ELXc 236.208	188709	220-240	A2 BAT	-20 to 50	max. 60	M8	35.2	106.0			
36	T8	G13	1 x 32.0	ELXc 136.207	188708	220-240	A2 BAT	-20 to 55	max. 60	M8	35.4	97.0			
2x36	T8	G13	2 x 32.0	ELXc 236.208	188709	220-240	A2 BAT	-20 to 50	max. 60	M8	69.7	98.0			
58	T8	G13	1 x 50.0	ELXc 158.209	188710	220-240	A2 BAT	-20 to 50	max. 60	M8	52.6	106.0			
2x58	T8	G13	2 x 50.0	ELXc 258.210	188711	220-240	A2	-20 to 50	max. 65	M8	109.9	105.0			

Circuit diagrams see pages 362-365

ELXc EffectLine II - Warm start

Warm start for T8 lamps – Casing: M8

DC voltage

for operation: 176-264 V

(DC voltage can be reduced to 176 V for 2 hours)

for ignition: 198-264 V IDC terminals: 0.5-1 mm² For the automatic luminaire wiring:

IDC/push-in terminals for leads H05V-U 0.5

EOL 2 shut down

	\bigcirc TC	BUILT-IN	○1-10 V
⊗ T8			ODALI/PUSH

Lamp				Electronic ballast								System	
Output	Туре	Base	Power con-	Туре	Ref. No.	Voltage AC	Energy	Ambient	Casing	Casing	Output	Luminous	
			sumption			50, 60 Hz	efficiency	temperature	temperature			factor	
W			W			V±10%		ta (°C)	tc (°C)		W	%	
18	T8	G13	1 x 16.0	ELXc 136.216	188868	220-240	A2 BAT	-20 to 55	max. 65	M8	19.8	105.7	
2x18	T8	G13	2 x 16.0	ELXc 236.217	188869	220-240	A2 BAT	-20 to 60	max. 70	M8	38.0	101.6	
36	T8	G13	1 x 32.0	ELXc 136.216	188868	220-240	A2 BAT	-20 to 55	max. 65	M8	34.4	97.5	
2x36	T8	G13	2 x 32.0	ELXc 236.217	188869	220-240	A2 BAT	-20 to 60	max. 70	M8	71.9	110.6	
58	T8	G13	1 x 50.0	ELXc 158.218	188870	220-240	A2 BAT	-20 to 60	max. 65	M8	56.0	100.8	
2x58	T8	G13	2 x 50.0	ELXc 258.219	188871	220-240	A2	-20 to 55	max. 70	M8	110.0	101.0	

Circuit diagrams see pages 362-365

Warm start for T8 lamps – Casing: M8

DC voltage

for operation: $176-264\ V$

(DC voltage can be reduced to 176 V for 2 hours)

for ignition: 198-264 V

Push-in terminals with push-button: 0.5 – 1.5 mm²

EOL 2 shut down

● T8		\sim	DEPEND	ENT	DALI/PUSH
				System	
Ambient	Casina		Casina	Output	Luminous

Lamp				Electronic ballast						System		
Output	Туре	Base	Power con-	Туре	Ref. No.	Voltage AC	Energy	Ambient	Casing	Casing	Output	Luminous
			sumption			50, 60 Hz	efficiency	temperature	temperature			factor
W			W			V±10%		ta (°C)	t _c (°C)		W	%
18	T8	G13	1 x 16.0	ELXc 136.216	188912	220-240	A2 BAT	-20 to 55	max. 65	M8	19.8	105.7
2x18	T8	G13	2 x 16.0	ELXc 136.217	188913	220-240	A2 BAT	-20 to 60	max. 60	M8	38.0	101.6
36	T8	G13	1 x 32.0	ELXc 136.216	188912	220-240	A2 BAT	-20 to 55	max. 65	M8	34.4	97.5
2x36	T8	G13	2 x 32.0	ELXc 236.217	188913	220-240	A2 BAT	-20 to 60	max. 70	M8	71.9	110.6
58	Т8	G13	1 x 50.0	ELXc 158.218	188914	220-240	A2 BAT	-20 to 60	max. 65	M8	56.0	100.8
2x58	T8	G13	2 x 50.0	ELXc 258.219	188915	220-240	A2	-20 to 50	max. 70	M8	110.0	101.0

Circuit diagrams see pages 362-365

10

VSSLOH SCHWABE 1

2

3

6

7

8

9

ELXd – Dimmable for T5 and T8 Lamps

Electronic built-in ballasts

Casing: metal

Power factor: ≥ 0.95 at 100% operation

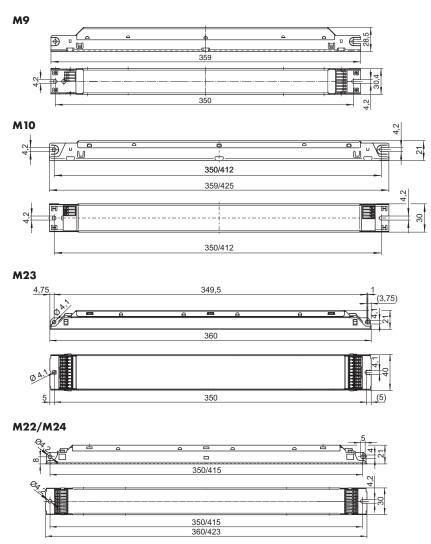
DC voltage

for operation: 154-276 V (M22, M23, M24)

for operation: 176-264 V (M9) for ignition: 198-264 V

For the automatic luminaire wiring: IDC terminals for leads H05V-U 0.5

RFI-suppressed


For luminaires of protection class I Degree of protection: IP20

For lighting systems with

high switching frequency (> 5/day)

Suitable for use in luminaires for emergency

lighting systems acc. to VDE 0108

ELXd - Dimmable 1-10 V

Dimming range: approx. 1–100% of lamp power

Control voltage: DC 1-10 V acc. to EN 60929 with earth leakage current 0.6 mA (protected if connected to mains voltage)

For use with open- or closed-loop control units Push-in terminals: 0.5-1 mm² EOL shut down approved acc. to EN 61347 Test 2 (for T5) EOL 2 shut down (for T8)

Lamp				Electronic balla							System	
Output	Туре	Base	Power con-	Туре	Ref. No.	Voltage AC	Energy	Ambient	Casing	Casing	Output	Luminous
			sumption			50, 60 Hz	efficiency	temperature	temperature			factor
W			W			V±10%		ta (°C)	t _c (°C)		W	%
			M22, M23 a									
14	T5	G5	1 x 14.0	ELXd 135.823	188717	220-240	A1 BAT	10 to 55	max. 65	M10	17.0	99.5
				ELXd 124.607	188336	220-240	A1 BAT	10 to 50	max. 75	M22	16.0	100.0
2x14	T5	G5	2 x 14.0	ELXd 224.608	188337	220-240	A1 BAT	10 to 50	max. 75	M24	31.0	100.0
3x14	T5	G5	3 x 14.0	ELXd 324.623	188597	220-240	A1 BAT	10 to 50	max. 75	M23	45.3	100.0
4x14	T5	G5	4 x 14.0	ELXd 424.624	188598	220-240	A1 BAT	10 to 50	max. 75	M23	60.4	100.0
21	T5	G5	1 x 21.0	ELXd 135.823	188717	220-240	A1 BAT	10 to 55	max. 65	M10	24.0	99.0
				ELXd 139.609	188338	220-240	A1 BAT	10 to 50	max. 75	M22	23.0	100.0
2x21	T5	G5	2 x 21.0	ELXd 239.610	188339	220-240	A1 BAT	10 to 50	max. 75	M24	45.0	100.0
24	T5	G5	1 x 23.0	ELXd 124.607	188336	220-240	A1 BAT	10 to 50	max. 75	M22	26.0	100.0
2x24	T5	G5	2 x 23.0	ELXd 224.608	188337	220-240	A1 BAT	10 to 50	max. 75	M24	50.0	100.0
3x24	T5	G5	3 x 23.0	ELXd 324.623	188597	220-240	A1 BAT	10 to 50	max. 75	M23	73.4	100.0
4x24	T5	G5	4 x 23.0	ELXd 424.624	188598	220-240	A1 BAT	10 to 50	max. 75	M23	97.6	100.0
28	T5	G5	1 x 28.0	ELXd 135.823	188717	220-240	A1 BAT	10 to 55	max. 65	M10	32.0	98.6
				ELXd 154.611	188340	220-240	A1 BAT	10 to 50	max. 75	M22	31.0	100.0
2x28	T5	G5	2 x 28.0	ELXd 254.612	188341	220-240	A1 BAT	10 to 50	max. 75	M24	61.0	100.0
35	T5	G5	1 x 35,0	ELXd 135.823	188717	220-240	A1 BAT	10 to 55	max. 65	M10	38,0	95.0
				ELXd 180.613	188342	220-240	A1 BAT	10 to 50	max. 75	M22	38.0	100.0
2x35	T5	G5	2 x 35.0	ELXd 249.614	188343	220-240	A1 BAT	10 to 50	max. 75	M24	75.0	100.0
				ELXd 280.630	188604	220-240	A1 BAT	10 to 50	max. 75	M24	75.0	100.0
39	T5	G5	1 x 38.0	ELXd 139.609	188338	220-240	A1 BAT	10 to 50	max. 75	M22	42.0	100.0
2x39	T5	G5	2 x 38.0	ELXd 239.610	188339	220-240	A1 BAT	10 to 50	max. 75	M24	82.0	100.0
49	T5	G5	1 x 49.0	ELXd 180.613	188342	220-240	A1 BAT	10 to 50	max. 75	M22	54.0	100.0
2x49	T5	G5	2 x 49.0	ELXd 249.614	188343	220-240	A1 BAT	10 to 50	max. 75	M24	104.0	100.0
				ELXd 280.630	188604	220-240	A1 BAT	10 to 50	max. 75	M24	104.0	100.0
54	T5	G5	1 x 54.0	ELXd 154.611	188340	220-240	A1 BAT	10 to 50	max. 75	M22	59.0	100.0
2x54	T5	G5	2 x 54.0	ELXd 254.612	188341	220-240	A1 BAT	10 to 50	max. 75	M24	115.0	100.0
80	T5	G5	1 x 80.0	ELXd 180.613	188342	220-240	A1 BAT	10 to 50	max. 75	M22	88.0	100.0
2x80	T5	G5	2 x 80.0	ELXd 280.630	188604	220-240	A1 BAT	10 to 50	max. 75	M24	165.0	100.0
T8 lamps	s - Casir	ng: M9 a				!			+		'	
18	T8	G13	1 x 16.0	ELXd 118.718	188873	220-240	EEI=A1	10 to 50	max. 70	M9	21.0	102.1
2×18	T8	G13	2 x 16.0	ELXd 218.719	188874	220-240	EEI=A1	10 to 50	max. 70	M9	41.5	104.6
3×18	Т8	G13	3 x 16.0	ELXd 318.622	188596	220-240	A1 BAT	-20 to 50	max. 75	M23	53.6	100.0
4×18	T8	G13	4 x 16.0	ELXd 418.625	188599	220-240	A1 BAT	-20 to 50	max. 75	M23	69.3	100.0
36	T8	G13	1 x 32.0	ELXd 136.720	188875	220-240	A1 BAT	10 to 50	max. 70	M9	37.3	101.6
2x36	T8	G13	2 x 32.0	ELXd 236.721	188876	220-240	EEI=A1	10 to 50	max. 70	M9	72.0	98.9
58	T8	G13	1 x 50.0	ELXd 158.722	188877	220-240	EEI=A1	10 to 50	max. 70	M9	55.0	101.3
	10	0.0	1 1 00.0	LL/(G 150.7 ZZ	.000//	220 240	LL: /\!	.01030	.IIGA. 7 O	1417	00.0	.01.0

Circuit diagrams see pages 362-365

10

1

2

3

4

5

6

7

8

ELXd - Dimmable with push key or DALI

Dimming range:

approx. 1-100% of lamp power

PUSH: dimmable with usual push key DALI: poles are not polarity sensitive

(protected if connected to mains voltage) for use with DALI compatible control units

Fush-in terminals: 0.5-1 mm²
EOL shut down approved

acc. to EN 61347 Test 2 (for T5) EOL 2 shut down (for T8)

standby power consumption: $\leq 0.2 \text{ W}$

Complete implementation of the DALI-standard: addressable, memory store for scenes and groups, revertive information communication, physical and RND-selection, standardized lamp characteristic Low-power design ensures very low standby

power consumption

Compatible with IEC 62386

								T5T8		UILT-IN NDEPEND	_	1-10 V DALI/PUSH
Lamp				Electronic ballast				<u>'</u>			System	
Output	Туре	Base	Power con-	Туре	Ref. No.	Voltage AC	Energy	Ambient	Casing	Casing	Output	Luminous
			sumption			50, 60 Hz	efficiency	temperature	temperature			factor
W			W			V±10%		ta (°C)	tc (°C)		W	%
T5 lam	s - Cas	ing: M22	2, M23 and M2	4				•	•			
14	T5	G5	1 x 14.0	ELXd 124.600	188329	220-240	A1 BAT	10 to 50	max. 75	M22	16.0	100.0
2×14	T5	G5	2 x 14.0	ELXd 224.601	188330	220-240	A1 BAT	10 to 50	max. 75	M24	31.0	100.0
3×14	T5	G5	3 x 14.0	ELXd 324.626	188600	220-240	A1 BAT	10 to 50	max. 75	M23	45.3	100.0
4x14	T5	G5	4 x 14.0	ELXd 424.628	188602	220-240	A1 BAT	10 to 50	max. 75	M23	60.4	100.0
21	T5	G5	1 x 21.0	ELXd 139.602	188331	220-240	A1 BAT	10 to 50	max. 75	M22	23.0	100.0
2x21	T5	G5	2 x 21.0	ELXd 239.621	188350	220-240	A1 BAT	10 to 50	max. 75	M24	45.0	100.0
24	T5	G5	1 x 23.0	ELXd 124.600	188329	220-240	A1 BAT	10 to 50	max. 75	M22	26.0	100.0
2x24	T5	G5	2 x 23.0	ELXd 224.601	188330	220-240	A1 BAT	10 to 50	max. 75	M24	50.0	100.0
3×24	T5	G5	3 x 23.0	ELXd 324.626	188600	220-240	A1 BAT	10 to 50	max. 75	M23	73.4	100.0
4×24	T5	G5	4 x 23.0	ELXd 424.628	188602	220-240	A1 BAT	10 to 50	max. 75	M23	97.6	100.0
28	T5	G5	1 x 28.0	ELXd 154.603	188332	220-240	A1 BAT	10 to 50	max. 75	M22	31.0	100.0
2x28	T5	G5	2 x 28.0	ELXd 254.604	188333	220-240	A1 BAT	10 to 50	max. 75	M24	61.0	100.0
35	T5	G5	1 x 35.0	ELXd 180.605	188334	220-240	A1 BAT	10 to 50	max. 75	M22	38.0	100.0
2x35	T5	G5	2 x 35.0	ELXd 249.606	188335	220-240	A1 BAT	10 to 50	max. 75	M24	75.0	100.0
39	T5	G5	1 x 38.0	ELXd 139.602	188331	220-240	A1 BAT	10 to 50	max. 75	M22	42.0	100.0
2x39	T5	G5	2 x 38.0	ELXd 239.621	188350	220-240	A1 BAT	10 to 50	max. 75	M24	82.0	100.0
49	T5	G5	1 x 49.0	ELXd 180.605	188334	220-240	A1 BAT	10 to 50	max. 75	M22	54.0	100.0
2×49	T5	G5	2 x 49.0	ELXd 249.606	188335	220-240	A1 BAT	10 to 50	max. 75	M24	104.0	100.0
54	T5	G5	1 x 54.0	ELXd 154.603	188332	220-240	A1 BAT	10 to 50	max. 75	M22	59.0	100.0
2×54	T5	G5	2 x 54.0	ELXd 254.604	188333	220-240	A1 BAT	10 to 50	max. 75	M24	115.0	100.0
80	T5	G5	1 x 80.0	ELXd 180.605	188334	220-240	A1 BAT	10 to 50	max. 75	M22	88.0	100.0
2x80	T5	G5	2 x 80.0	ELXd 280.631	188605	220-240	A1 BAT	10 to 50	max. 75	M24	165.0	100.0
T8 lam	s - Cas	ing: M22	2, M23 and M2	4	·			•	-			-
18	T8	G13	1 x 16.0	ELXd 118.615	188344	220-240	A1 BAT	-20 to 50	max. 75	M22	19.0	100.0
2×18	T8	G13	2 x 16.0	ELXd 218.616	188345	220-240	A1 BAT	-20 to 50	max. 75	M24	37.0	100.0
3×18	T8	G13	1 x 16.0	ELXd 318.627	188601	220-240	A1 BAT	-20 to 50	max. 75	M23	53.6	100.0
4x18	T8	G13	2 x 16.0	ELXd 418.629	188603	220-240	A1 BAT	-20 to 50	max. 75	M23	69.3	100.0
36	T8	G13	1 x 32.0	ELXd 136.617	188346	220-240	A1 BAT	-20 to 50	max. 75	M22	36.0	100.0
2x36	T8	G13	2 x 32.0	ELXd 236.618	188347	220-240	A1 BAT	-20 to 50	max. 75	M24	69.0	100.0
58	T8	G13	1 x 50.0	ELXd 158.619	188348	220-240	A1 BAT	-20 to 50	max. 75	M22	56.0	100.0
2×58	Т8	G13	2 x 50.0	ELXd 258.620	188349	220-240	A1 BAT	-20 to 50	max. 75	M24	108.0	100.0

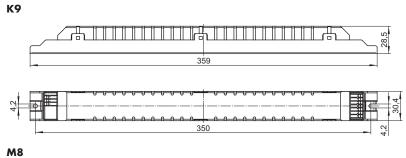
Circuit diagrams see pages 362-365

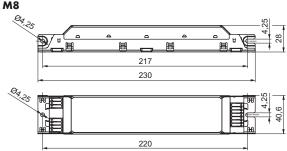
ELXe – Instant Start for T8 Lamps

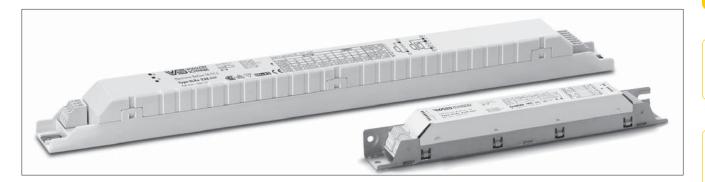
Electronic built-in ballasts

Casing: heat-resistant polycarbonate (K9)

or metal (M8) Power factor: 0.98


DC voltage operation: 198 - 264 V Push-in terminals: 0.5 - 1 mm² For the automatic luminaire wiring: IDC terminals for leads H05V-U 0.5


 ${\sf RFI-} suppressed$


For luminaires of protection class I and II $\,$

Degree of protection: IP20 For lighting systems with

low switching frequency (< 5/day)

								 T5 ■ T8		BUILT-IN		◯ 1–10 V ◯ DALI/PUSH
Lamp				Electronic ballast							System	
Output	Туре	Base	Power con-	Туре	Ref. No.	Voltage AC	Energy	Ambient	Casing	Casing	Output	Luminous
			sumption			50, 60 Hz	efficiency	temperature	temperature			factor
W			W			V±10%		ta (°C)	t _c (°C)		W	%
15	Т8	G13	1 x 13.0	ELXe 218.526	188136	220-240	A2 BAT	-20 to 50	max. 60	K9	14.5	100.0
2x15	Т8	G13	2 x 13.0	ELXe 218.526	188136	220-240	A2 BAT	-20 to 50	max. 60	K9	29.0	100.0
18	Т8	G13	1 x 16.0	ELXe 218.526	188136	220-240	A2 BAT	-20 to 50	max. 60	K9	18.0	100.0
2x18	Т8	G13	2 x 16.0	ELXe 218.526	188136	220-240	A2 BAT	-20 to 50	max. 60	K9	34.0	102.3
4x18	Т8	G13	4 x 17.0	ELXe 418.215	188660	220-240	A2 BAT	- 10 to 55	max. 65	M8	68.0	98.2
30	T8	G13	1 x 30.0	ELXe 238.527	188137	220-240	A2	-20 to 50	max. 60	K9	31.0	100.0
2x30	Т8	G13	2 x 30.0	ELXe 238.527	188137	220-240	A2	-20 to 50	max. 60	K9	62.0	100.0
36	Т8	G13	1 x 32.0	ELXe 238.527	188137	220-240	A2 BAT	-20 to 50	max. 60	K9	35.0	100.0
2x36	Т8	G13	2 x 32.0	ELXe 238.527	188137	220-240	A2 BAT	-20 to 50	max. 60	K9	68.5	99.4
38	Т8	G13	1 x 34.0	ELXe 238.527	188137	220-240	A2 BAT	-20 to 50	max. 60	K9	35.0	100.0
2x38	Т8	G13	2 x 34.0	ELXe 238.527	188137	220-240	A2 BAT	-20 to 50	max. 60	K9	70.0	101.3
58	Т8	G13	1 x 52.0	ELXe 258.222	188130	220-240	A2 BAT	-20 to 50	max. 60	К9	54.0	100.0
2x58	Т8	G13	2 x 52.0	ELXe 258.222	188130	220-240	A2 BAT	-20 to 50	max. 60	K9	108.0	100.0

Circuit diagrams see pages 362-365

1

2

3

4

5

6

7

8

9

Accessories for Dimmable Electronic Ballasts

Manual controller

Dimmer for EB with low-voltage interface 1–10 $\rm V$

Dimensions: $67 \times 67 \times 51 \text{ mm}$

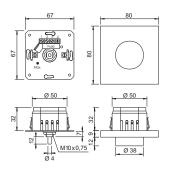
Push-button change-over switch with stud 4 mm for installation in flushtype boxes with \varnothing 55 mm

Max. 50 EBs per dimmer Weight: 60/30 g, unit: 25 pcs. Without cover plate

Ref. No.: 172778

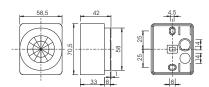
Cover plate with rotary knob Dimensions: 80x80x9 mm **Ref. No.: 172775** white

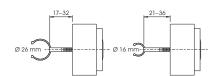
Light sensor


Constant light control with clamp fastening for fluorescent lamps T8 (T26) and compact fluorescent lamps Dimensions: 33.5 x 40 x 96 mm With connection lead: 2 x 0.24 mm²

Length: 800 mm

Max. 50 EBs per light sensor Weight: 55 g, unit: 60 pcs. **Ref. No.: 172776**


Multi sensor
Dimensions: 58.5 x70.5 x42 mm
With the sensor the lighting can be kept on a pre-defined level
With integrated motion detector
Max. 50 EBs per multi sensor
Weight: 125 g, unit: 25 pcs.


Ref. No.: 172777

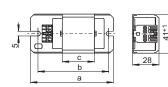
Electronic Ballasts for TC and T Lamps

RELIABLE AND DURABLE

ELECTROMAGNETIC BALLASTS

The following chapter presents Vossloh-Schwabe's broad range of electromagnetic ballasts for compact fluorescent lamps and tubular fluorescent lamps. The variety of available performance properties and shapes satisfies the most diverse design requirements.

Vossloh-Schwabe's electromagnetic ballasts are characterized by extremely tight impedance-value tolerances, which are achieved by individual adjustment of the air gap during the automated production and testing process of the ballasts. This optimises both light output as well as the service life of fluorescent lamps.


Electromagnetic Ballasts for TC and T Lamps

Electromagnetic ballasts for compact fluorescent lamps	260-272
Standard ballasts	260-264
Super-thin ballasts	265-268
Slim ballasts	269-270
Ballasts 120 V, 60 Hz	271
Operating units 120 V, 60 Hz	272
Electromagnetic ballasts for tubular fluorescent lamps	273-280
Standard ballasts	273-275
Super-thin ballasts	276-277
Slim ballasts	277-278
Ballasts 120 V, 60 Hz	279
Operating units 120 V, 60 Hz	280
Technical details for fluorescent lamps	350-379
General technical details	533-540
Glossary	541 - 543

Standard Ballasts 5–16 W, 230 V

For compact fluorescent lamps Shape: 28 x 41 mm

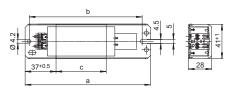
Vacuum-impregnated with polyester resin Push-in terminal for leads: 0.5–1 mm² For the automatic luminaire wiring: IDC terminals for leads HO5V-U 0.5 tw 130 Protection class I

Lamp				Ballast									Саро	citor
Output	Туре	Base	Current	Туре	Ref. No.	Voltage	а	Ь	С	Weight	$\Delta t/\Delta t_{an.}$	Energy efficiency*	СР	Current
W			mA			V, Hz	mm	mm	mm	kg	K		μF	mA
230 V,	50 Hz													
5	TC-S	G23	180	L7/9/11.307	163694	230, 50	85	75	34	0.32	60/85	B2	2.0	50
2x5	TC-S	G23	180	LN 13.805	169647	230, 50	85	75	34	0.32	50/85	B1	2.0	70
				LN 13.313	163711	230, 50	85	75	34	0.32	55/80	B2	2.0	70
7	TC-S	G23	175	L7/9/11.307	163694	230, 50	85	75	34	0.32	60/85	B2	2.0	50
2x7	TC-S	G23	160	LN 13.805	169647	230, 50	85	75	34	0.32	50/85	B1	2.0	70
				LN 13.313	163711	230, 50	85	75	34	0.32	55/80	B2	2.0	70
9	TC-S	G23	170	L7/9/11.307	163694	230, 50	85	75	34	0.32	60/85	B1	2.0	60
2x9	TC-S	G23	140	LN 13.805	169647	230, 50	85	75	34	0.32	50/85	B1	2.0	70
				LN 13.313	163711	230, 50	85	75	34	0.32	55/80	B2	2.0	80
10	TC-D	G24d-1	190	LN 13.805	169647	230, 50	85	75	34	0.32	50/85	B1	2.0	70
				LN 13.313	163711	230, 50	85	75	34	0.32	55/80	B2	2.0	70
	TC-DD	GR10q	180	LN 13.805	169647	230, 50	85	75	34	0.32	50/85	B1	2.0	70
				LN 13.313	163711	230, 50	85	75	34	0.32	55/80	B2	2.0	70
11	TC-S	G23	155	L7/9/11.307	163694	230, 50	85	75	34	0.32	60/85	B1	2.0	80
13	TC-D/TC-T	G24d-1/GX24d-1	175	LN 13.805	169647	230, 50	85	75	34	0.32	50/85	B1	2.0	80
				LN 13.313	163711	230, 50	85	75	34	0.32	55/80	B2	2.0	80
16	TC-DD	GR8/GR10q	195	LN 16.316	163730	230, 50	85	75	34	0.32	60/125	В1	2.0	100

^{*} Energy efficiency: EEI=B2 and EEI=B1, valid until 2017

Standard Ballasts 5-16 W, 240/220 V

For compact fluorescent lamps Shape: 28 x 41 mm


	Lamp				Ballast									Сарс	acitor
	Output	Туре	Base	Current	Туре	Ref. No.	Voltage	а	Ь	С	Weight	$\Delta t/\Delta t_{an.}$	Energy efficiency*	СР	Curren
	W			mA			V, Hz	mm	mm	mm	kg	K		μF	mA
	240 V, 5	0 Hz													
W	5	TC-S	G23	180	L7/9/11.411	164335	240, 50	85	75	34	0.32	60/85	B2	2.0	50
W	2x5	TC-S	G23	180	LN 13.413	164342	240, 50	85	75	34	0.32	60/90	B2	2.0	70
w	7	TC-S	G23	175	L7/9/11.411	164335	240, 50	85	75	34	0.32	60/85	B2	2.0	50
w	2x7	TC-S	G23	160	LN 13.413	164342	240, 50	85	75	34	0.32	60/90	B2	2.0	70
W	9	TC-S	G23	170	L7/9/11.411	164335	240, 50	85	75	34	0.32	60/85	В1	2.0	60
W	2x9	TC-S	G23	140	LN 13.413	164342	240, 50	85	75	34	0.32	60/90	B2	2.0	80
W	10	TC-D	G24d-1	190	LN 13.413	164342	240, 50	85	75	34	0.32	60/90	B2	2.0	70
w		TC-DD	GR10q	180	LN 13.413	164342	240, 50	85	75	34	0.32	60/90	B2	2.0	70
W	11	TC-S	G23	155	L7/9/11.411	164335	240, 50	85	75	34	0.32	60/85	В1	2.0	80
w	13	TC-D/TC-T	G24d-1/GX24d-1	175	LN 13.413	164342	240, 50	85	75	34	0.32	60/90	В1	2.0	80
W	16	TC-DD	GR8/GR10q	195	LN 16.417	164358	240, 50	85	75	34	0.32	60/130	В1	2.0	100
	220 V, 6	0 Hz													
W	5	TC-S	G23	180	L7/9/11.207	163305	220, 60	85	75	34	0.32	35/65	_	2.0	70
W	2x5	TC-S	G23	180	L 13.210	520992	220, 60	85	75	34	0.32	45/80	_	2.0	90
W	7	TC-S	G23	175	L7/9/11.207	163305	220, 60	85	75	34	0.32	35/65	_	2.0	70
w	2x7	TC-S	G23	160	L 13.210	520992	220, 60	85	75	34	0.32	45/80	_	2.0	90
W	9	TC-S	G23	170	L7/9/11.207	163305	220, 60	85	75	34	0.32	35/65	_	2.0	70
W	2x9	TC-S	G23	140	L 13.210	520992	220, 60	85	75	34	0.32	45/80	_	2.0	90
W	10	TC-D	G24d-1	190	L 13.210	520992	220, 60	85	75	34	0.32	45/80	_	2.0	80
W		TC-DD	GR10q	180	L 13.210	520992	220, 60	85	75	34	0.32	45/80	_	2.0	80
W	11	TC-S	G23	155	L7/9/11.207	163305	220, 60	85	75	34	0.32	35/65	_	2.0	80
W	13	TC-D/TC-T	G24d-1/GX24d-1	165	L 13.210	520992	220, 60	85	75	34	0.32	45/80	_	2.0	110

Standard Ballasts 18–58 W, 230 V

For compact fluorescent lamps Shape: 28 x 41 mm

Vacuum-impregnated with polyester resin Push-in terminal for leads: 0.5–1 mm² For the automatic luminaire wiring: IDC terminals for leads HO5V-U 0.5 tw 130 Protection class I

	Lamp				Ballast									Сара	citor
	Output	Туре	Base	Current	Туре	Ref. No.	Voltage	а	Ь	С	Weight	$\Delta t/\Delta t_{an.}$	Energy efficiency*	СР	Current
	W			mA			V, Hz	mm	mm	mm	kg	K	'	μF	mA
	230 V, 5	0 Hz													
	18	TC-D/TC-T	G24d-2/GX24d-2	220	LN 181.940	508922	230, 50	85	75	34	0.32	50/120	В1	2.0	110
					LN 181.319	163763	230, 50	85	75	34	0.32	60/140	B1	2.0	110
		TC-F/TC-L	2G10/2G11	370	LN 18.510	164572	230, 50	155	140	92	0.80	40/65	В1	4.5	120
					LN 18.131	530941	230, 50	150	140	60	0.55	55/95	B2	4.5	120
					L 18.934**	534621	230, 50	150	140	45	0.43	70/150	_	4.5	120
		T-U	2G13	370	LN 18.131	530941	230, 50	150	140	60	0.55	55/95	B2	4.5	120
					L 18.934**	534621	230, 50	150	140	45	0.43	70/150	_	4.5	120
	2x18	TC-F/TC-L	2G10/2G11	400	LN 2x18.135	532155	230, 50	150	140	45	0.43	65	В1	4.0	210
					L 36.334	530007	230, 50	150	140	60	0.55	60/155	В1	4.0	210
new	22	T-R	G10q	400	LN 30.530	164680	230, 50	155	140	92	0.80	45/65	B2	4.5	200
	24	TC-F/TC-L	2G10/2G11	345	LN 24/26.804	534490	230, 50	150	140	60	0.55	55/110	B2	4.5	150
					L 18.934**	534621	230, 50	150	140	45	0.43	70/150	_	4.5	150
	26	TC-D/TC-T	G24d-3/GX24d-3	325	LN 18.131	530941	230, 50	150	140	60	0.55	55/95	В1	3.5	140
					LN 26.813	509502	230, 50	110	100	45	0.41	55/145	B2	3.5	140
					L 18.934**	534621	230, 50	150	140	45	0,43	70/150	_	3,5	140
	28	TC-DD	GR8/GR10q	320	LN 18.510	164572	230, 50	155	140	92	0.80	40/65	В1	3.5	150
					LN 18.131	530941	230, 50	150	140	60	0.55	55/95	В1	3.5	150
					L 18.934**	534621	230, 50	150	140	45	0.43	70/150	_	3.5	150
	36	TC-F/TC-L	2G10/2G11	430	LN 36.570	169779	230, 50	155	140	92	0.80	35/90	В1	4.5	210
					LN 36.511	164590	230, 50	155	140	92	0.80	35/95	В1	4.5	210
new					LN 36.130	527191	230, 50	150	140	60	0.55	50/140	B2	4.5	210
					LN 36.149	529029	230, 50	150	140	60	0.55	55/150	B2	4.5	210
new					L 36.132**	535977	230, 50	150	140	45	0.43	65	_	4.5	210
	36/40	T-U/T-R	2G13/G10q	430	LN 36.570	169779	230, 50	150	140	92	0.80	35/90	В1	4.5	210
					LN 36.149	529029	230, 50	150	140	60	0.55	55/150	B2	4.5	210
new					L 36.132**	535977	230, 50	150	140	45	0.43	65	_	4.5	210
	38	TC-DD	GR10q	430	LN 36.570	169779	230, 50	155	140	92	0.80	35/90	В1	4.5	210
					LN 36.149	529029	230, 50	150	140	60	0.55	55/150	B2	4.5	210
new					L 36.132**	535977	230, 50	150	140	45	0.43	65	_	4.5	210
	58	T-U	2G13	670	LN 58.568	169389	230, 50	233	220	160	1.31	35/95	В1	7.0	320
					LN 58.189	537038	230, 50	190	180	100	0.87	50/135	B2	7.0	320
					LN 58.116	508186	230, 50	190	180	92	0.80	55/160	B2	7.0	320
					L 58.718**	169658	230, 50	190	180	92	0.80	60/170	_	7.0	320

^{*} Energy efficiency: EEI=B2 and EEI=B1, valid until 2017

 $^{^{\}star\,\star}$ Ballasts without CE mark for markets outside of the EU

Standard Ballasts 18–58 W, 240 V

For compact fluorescent lamps Shape: 28 x 41 mm

	Lamp				Ballast									Сара	icitor
	Output	Туре	Base	Current	Туре	Ref. No.	Voltage	а	Ь	С	Weight	$\Delta t/\Delta t_{an.}$	Energy	CP	Current
													efficiency*		
	W			mA			V, Hz	mm	mm	mm	kg	K		μF	mA
	240 V, 5														
new	18	TC-D/TC-T	G24d-2/GX24d-2	220	LN 181.418	164353	240, 50	85	75	34	0.28	60/130	В1	2.0	110
		TC-F/TC-L	2G10/2G11	370	LN 18.507	164566	240, 50	155	140	92	0.80	35/60	В1	4.5	120
					LN 18.162	533043	240, 50	150	140	60	0.55	60/110	B2	4.5	120
					L 18.936**	534627	240, 50	150	140	45	0.43	70/140	_	4.5	120
		T-U	2G13	370	LN 18.507	164566	240, 50	155	140	92	0.80	35/60	В1	4.5	120
					LN 18.162	533043	240, 50	150	140	60	0.55	60/110	B2	4.5	120
					L 18.936**	534627	240, 50	150	140	45	0.43	70/140	-	4.5	120
	2x18	TC-F/TC-L	2G10/2G11	400	LN 2x18.135	535778	240, 50	150	140	45	0.43	65	В1	4.0	210
					L 36/40.443	530008	240, 50	150	140	60	0.55	65/155	B1	4.0	210
					LN 36.201	527196	240, 50	150	140	60	0.55	55/140	В1	4.0	210
					LN 36.505	164555	240, 50	155	140	92	0.80	40/95	В1	4.0	210
new	21	TC-DD	GR10q	260	LN 21.293	547145	240, 50	105	95	45	0,41	55	В1	3,0	120
	24	TC-F/TC-L	2G10/2G11	345	LN 18.507	164566	240, 50	155	140	92	0.80	35/60	В1	4.5	150
					LN 18.162	533043	240, 50	150	140	60	0.55	60/110	B2	4.5	150
					L 18.936**	534627	240, 50	150	140	45	0.43	70/140	-	4.5	150
	26	TC-D/TC-T	G24d-3/GX24d-3	325	LN 18.162	533043	240, 50	150	140	60	0.55	60/110	В1	4.5	150
new					LN 26.238	545405	240, 50	105	95	45	0.41	55/145	B2	3.5	140
	28	TC-DD	GR8/GR10q	320	LN 18.162	533043	240, 50	150	140	60	0.55	60/110	В1	3.5	150
					L 18.936**	534627	240, 50	150	140	45	0.43	70/140	-	3.5	150
	32	T-R	G10q	450	LN 36.505	164555	240, 50	155	140	92	0.80	40/95	В1	4.0	220
	36	TC-F/TC-L	2G10/2G11	430	LN 36.505	164555	240, 50	155	140	92	0.80	40/95	В1	4.5	210
					LN 36.201	527196	240, 50	155	140	60	0.55	55/140	B2	4.5	210
					L 36/40.443**	164438	240, 50	150	140	60	0.55	65/155	-	4.5	210
	36/40	T-U/T-R	2G13/G10q	430	LN 36.505	164555	240, 50	155	140	92	0.80	40/95	В1	4.5	210
					LN 36.201	527196	240, 50	150	140	60	0.55	55/140	B2	4.5	210
					L 36/40.443**	164438	240, 50	150	140	60	0.55	65/155	_	4.5	210
	38	TC-DD	GR10q	430	LN 36.201	527196	240, 50	150	140	60	0.55	55/140	B2	4.5	210
					L 36/40.443**	164438	240, 50	150	140	60	0.55	65/155	_	4.5	210
	58	T-U	2G13	670	LN 58.506	164560	240, 50	233	220	160	1.31	35/85	В1	7.0	320
					LN 58.190	537056	240, 50	190	180	100	0.87	50/150	B2	7.0	320
					IN 58.722	534252	240, 50	190	180	92	0.80	60/180	B2	7.0	320

^{*} Energy efficiency: EEI=B2 and EEI=B1, valid until 2017

i

2

3

4

5

6

7

8

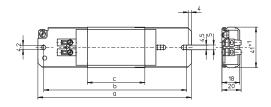
9

^{**} Ballasts without CE mark for markets outside of the EU

Standard Ballasts 18–58 W, 220 V

For compact fluorescent lamps Shape: 28 x 41 mm

	Lamp				Ballast									Сарс	acitor
	Output	Туре	Base	Current	Туре	Ref. No.	Voltage	а	Ь	С	Weight	$\Delta t/\Delta t_{an.}$	Energy	C_P	Current
													efficiency*		
	W			mA			V, Hz	mm	mm	mm	kg	K		μF	mA
	220 V, 5		1												
new	18	TC-F/TC-L	2G10/2G11	370	L18.933	534624	220,50	150	140	45	0.43	70/160	-	4.5	120
new		T-U	2G13	370	L18.933	534624	220,50	150	140	45	0.43	70/160	_	4.5	120
new	2x18	TC-F/TC-L	2G10/2G11	400	L 36.158	530252	220,50	150	140	45	0.43	65	-	4.0	210
new	24	TC-F/TC-L	2G10/2G11	345	L18.933	534624	220,50	150	140	45	0.43	70/160	_	4.5	150
new	26	TC-D/TC-T	G24d-3/GX24d-3	325	L18.933	534624	220,50	150	140	45	0.43	70/160	-	3.5	140
new	28	TC-DD	GR8/GR10q	320	L18.933	534624	220,50	150	140	45	0.43	70/160	_	3.5	150
new	36	TC-F/TC-L	2G10/2G11	430	L 36.158	530252	220,50	150	140	45	0.43	65	_	4.5	210
new	36/40	T-U/T-R	2G13/G10q	430	L 36.158	530252	220,50	150	140	45	0.43	65	_	4.5	210
new	38	TC-DD	GR10q	430	L 36.158	530252	220,50	150	140	45	0.43	65	_	4.5	210
new	58	T-U	2G13	670	L 58.625	164828	220,50	190	180	92	0.80	55/155	_	7.0	320
	220 V, 6	0 Hz													
	18	TC-D/TC-T	G24d-2/GX24d-2	220	L 18I.602	164779	220, 60	85	75	34	0.32	45/110	_	2.0	110
new		TC-F/TC-L	2G10/2G11	370	L 18.121	532149	220, 60	110	100	45	0.42	65/145	_	4.0	150
					L 18.121	528582	220, 60	150	140	45	0.43	65/145	_	4.0	150
					L 18.249	538801	220, 60	150	140	34	0.32	75/140	_	4.0	150
		T-U	2G13	370	L 18.121	532149	220, 60	110	100	45	0.42	65/145	_	4.0	150
new					L 18.121	528582	220, 60	150	140	45	0.43	65/145	_	4.0	150
					L 18.249	538801	220, 60	150	140	34	0.32	75/140	-	4.0	150
	2x18	TC-F/TC-L	2G10/2G11	400	L 36.120	509373	220, 60	150	140	45	0.43	60/170	_	4.0	210
	24	TC-F/TC-L	2G10/2G11	345	L 18.121	532149	220, 60	110	100	45	0.42	65/145	_	4.0	190
new					L 18.121	528582	220, 60	150	140	45	0.43	65/145	_	4.0	190
					L 18.249	538801	220, 60	150	140	34	0.32	75/140	_	4.0	190
	26	TC-D/TC-T	G24d-3/GX24d-3	325	L 18.121	532149	220, 60	110	100	45	0.42	65/145	_	3.0	160
new					L 18.121	528582	220, 60	150	140	45	0.43	65/145	_	3.0	160
					L 18.249	538801	220, 60	150	140	34	0.32	75/140	_	3.0	160
	28	TC-DD	GR8/GR10q	320	L 18.121	532149	220, 60	110	100	45	0.42	65/145	-	3.0	155
					L 18.249	538801	220, 60	150	140	34	0.32	75/140	_	3.0	155
	36	TC-F/TC-L	2G10/2G11	430	L 36.120	509373	220, 60	150	140	45	0.43	60/170	_	4.0	210
	36/40	T-U/T-R	2G13/G10q	430	L 36.120	509373	220, 60	150	140	45	0.43	60/170	_	4.0	220
	38	TC-DD	GR10q	430	L 36.120	509373	220, 60	150	140	45	0.43	60/170	_	4.0	220
	58	T-U	2G13	670	L 58.657	164870	220, 60	195	180	92	0.80	55/140	_	6.0	320


^{*} Energy efficiency: EEI=B2 and EEI=B1, valid until 2017

Super-thin Ballasts 5–40 W, 230 V

For compact fluorescent lamps Shape: 18 x 41 mm

Vacuum-impregnated with polyester resin Push-in terminal for leads: 0.5–1.5 mm² With earth screw tw 130 Protection class I

Lamp				Ballast									Capa	citor
Output	Туре	Base	Current	Туре	Ref. No.	Voltage	а	Ь	С	Weight	$\Delta t/\Delta t_{an.}$	Energy efficiency*	СР	Current
W			mA			V, Hz	mm	mm	mm	kg	K		μF	mA
230 V, 5	0 Hz													-
5	TC-S	G23	180	L7/9/11.141	163052	230, 50	155	140	58	0.37	50/80	B2	2.0	50
2x5	TC-S	G23	180	LN 13.143	163071	230, 50	155	140	58	0.37	45/70	B2	2.0	70
7	TC-S	G23	175	L7/9/11.141	163052	230, 50	155	140	58	0.37	50/80	B2	2.0	50
2x7	TC-S	G23	160	LN 13.143	163071	230, 50	155	140	58	0.37	45/70	B2	2.0	70
9	TC-S	G23	170	L7/9/11.141	163052	230, 50	155	140	58	0.37	50/80	B2	2.0	60
2x9	TC-S	G23	140	LN 13.143	163071	230, 50	155	140	58	0.37	45/70	B2	2.0	80
10	TC-D	G24d-1	190	LN 13.143	163071	230, 50	155	140	58	0.37	45/70	B2	2.0	70
	TC-DD	GR10q	180	LN 13.143	163071	230, 50	155	140	58	0.37	45/70	B2	2.0	70
11	TC-S	G23	155	L7/9/11.141	163052	230, 50	155	140	58	0.37	50/80	B2	2.0	80
13	TC-D/TC-T	G24d-1/GX24d-1	175	LN 13.143	163071	230, 50	155	140	58	0.37	45/70	B2	2.0	80
16	TC-DD	GR8/GR10q	195	LN 16.145	163084	230, 50	155	140	58	0.37	50/110	B2	2.0	100
18	TC-D	G24d-2/GX24d-2	220	LN 181.147	163102	230, 50	155	140	58	0.37	55/110	B2	2.0	110
	TC-F/TC-L	2G10/2G11	370	LN 18.220	526592	230, 50	195	180	116	0.70	55/80	B2	4.5	120
	T-U	2G13	370	LN 18.220	526592	230, 50	195	180	116	0.70	55/80	B2	4.5	120
2x18	TC-F/TC-L	2G10/2G11	400	LN 36.221	526593	230, 50	195	180	116	0.70	50/125	B2	4.0	210
24	TC-F/TC-L	2G10/2G11	345	LN 18.220	526592	230, 50	195	180	116	0.70	55/80	B2	4.5	150
26	TC-D/TC-T	G24d-3/GX24d-3	325	LN 18.220	526592	230, 50	195	180	116	0.70	55/80	В1	3.5	140
28	TC-DD	GR8/GR10q	320	LN 18.220	526592	230, 50	195	180	116	0.70	55/80	В1	3.5	150
36	TC-F/TC-L	2G10/2G11	430	LN 36.221	526593	230, 50	195	180	116	0.70	50/125	B2	4.5	210
36/40	T-U/T-R	2G13/G10q	430	LN 36.221	526593	230, 50	195	180	116	0.70	50/125	B2	4.5	220
38	TC-DD	GR10q	430	LN 36.221	526593	230, 50	195	180	116	0.70	50/125	B2	4.5	210

^{*} Energy efficiency: EEI=B2 and EEI=B1, valid until 2017

1

2

3

4

5

5

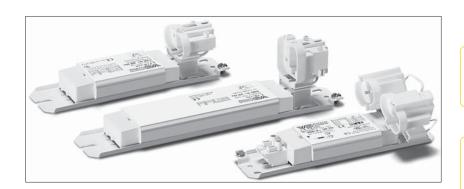
7

8

9

Super-thin Ballasts 5–40 W, 240/220 V

For compact fluorescent lamps Shape: 18 x 41 mm


Lamp				Ballast									Сарс	acitor
Output	Туре	Base	Current	Туре	Ref. No.	Voltage	а	Ь	С	Weight	Δt/Δt _{an.}	Energy efficiency*	СР	Current
W			mA			V, Hz	mm	mm	mm	kg	K		υF	mA
240 V,	50 Hz	_		!		,				10				
2x5	TC-S	G23	180	L 13.111	162966	240, 50	155	140	58	0.37	55/85	B2	2.0	70
7	TC-S	G23	175	L7/9/11.110	162958	240, 50	155	140	58	0.37	55/80	B2	2.0	50
2x7	TC-S	G23	160	L 13.111	162966	240, 50	155	140	58	0.37	55/85	B2	2.0	70
9	TC-S	G23	170	L7/9/11.110	162958	240, 50	155	140	58	0.37	55/80	B2	2.0	60
2x9	TC-S	G23	140	L 13.111	162966	240, 50	155	140	58	0.37	55/85	B2	2.0	80
10	TC-D	G24d-1	190	L 13.111	162966	240, 50	155	140	58	0.37	55/85	B2	2.0	70
	TC-DD	GR10q	180	L 13.111	162966	240, 50	155	140	58	0.37	55/85	B2	2.0	70
11	TC-S	G23	155	L7/9/11.110	162958	240, 50	155	140	58	0.37	55/80	B2	2.0	80
13	TC-D/TC-T	G24d-1/GX24d-1	175	L 13.111	162966	240, 50	155	140	58	0.37	55/85	B2	2.0	80
16	TC-DD	GR8/GR10q	195	L 16.113	162976	240, 50	155	140	58	0.37	45/110	B2	2.0	100
18	TC-D/TC-T	G24d-2/GX24d-2	220	L 18I.132	163031	240, 50	155	140	58	0.37	70/140	B2	2.0	110
	TC-F/TC-L	2G10/2G11	370	LN 18.121	529272	240, 50	195	180	116	0.64	50/85	B2	2.0	110
	T-U	2G13	370	LN 18.121	529272	240, 50	195	180	116	0.64	50/85	B2	4.5	120
2×18	TC-F/TC-L	2G10/2G11	400	LN 36.124	529273	240, 50	195	180	116	0.64	55/140	B2	4.0	210
24	TC-F/TC-L	2G10/2G11	345	LN 18.121	529272	240, 50	195	180	116	0.64	50/85	B2	4.5	150
26	TC-D/TC-T	G24d-3/GX24d-3	325	LN 18.121	529272	240, 50	195	180	116	0.64	50/85	В1	3.5	140
28	TC-DD	GR8/GR10q	320	LN 18.121	529272	240, 50	195	180	116	0.64	50/85	B1	3.5	150
36	TC-F/TC-L	2G10/2G11	430	LN 36.124	529273	240, 50	195	180	116	0.64	55/140	B2	4.5	210
36/40	T-U/T-R	2G13/G10q	430	LN 36.124	529273	240, 50	195	180	116	0.64	55/140	B2	4.5	210
38	TC-DD	GR8/GR10q	430	LN 36.124	529273	240, 50	195	180	116	0.64	55/140	B2	4.5	210
220 V,	60 Hz													
5	TC-S	G23	180	L7/9/11.134	163041	220, 60	155	140	58	0.37	45/65	_	2.0	70
2x5	TC-S	G23	180	L 13.164	163162	220, 60	155	140	58	0.37	40/80	_	2.0	90
7	TC-S	G23	175	L7/9/11.134	163041	220, 60	155	140	58	0.37	45/65	-	2.0	70
2x7	TC-S	G23	160	L 13.164	163162	220, 60	155	140	58	0.37	40/80	_	2.0	90
9	TC-S	G23	170	L7/9/11.134	163041	220, 60	155	140	58	0.37	45/65	_	2.0	70
2x9	TC-S	G23	140	L 13.164	163162	220, 60	155	140	58	0.37	40/80	_	2.0	90
10	TC-D	G24d-1	190	L 13.164	163162	220, 60	155	140	58	0.37	40/80	_	2.0	80
11	TC-S	G23	155	L7/9/11.134	163041	220, 60	155	140	58	0.37	45/65	_	2.0	80
13	TC-D/TC-T	G24d-1/GX24d-1	175	L 13.164	163162	220, 60	155	140	58	0.37	40/80	_	2.0	110
16	TC-DD	GR8/GR10q	195	L 16.202	163235	220, 60	155	140	58	0.37	45/110	_	2.0	100
18	TC-F/TC-L	2G10/2G11	370	L 18.140	163045	220, 60	195	180	116	0.64	55/80	_	4.0	150
	T-U	2G13	370	L 18.140	163045	220, 60	195	180	116	0.64	55/80	_	4.0	150
2x18	TC-F/TC-L	2G10/2G11	400	L 36.188	163218	220, 60	195	180	116	0.64	45/110	_	4.0	210
24	TC-F/TC-L	2G10/2G11	345	L 18.140	163045	220, 60	195	180	116	0.64	55/80	_	4.0	190
26	TC-D/TC-T	G24d-3/GX24d-3	325	L 18.140	163045	220, 60	195	180	116	0.64	55/80	_	3.0	160
28	TC-DD	GR8/GR10q	320	L 18.140	163045	220, 60	195	180	116	0.64	55/80	_	3.0	155
36	TC-F/TC-L	2G10/2G11	430	L 36.188	163218	220, 60	195	180	116	0.64	45/110	_	4.0	210
36/40	T-U/T-R	2G13/G10q	430	L 36.188	163218	220, 60	195	180	116	0.64	45/110	-	4.0	220
38	TC-DD	GR10q	430	L 36.188	163218	220, 60	195	180	116	0.64	45/110	-	4.0	220

^{*} Energy efficiency: EEI=B2 and EEI=B1, valid until 2017

Super-thin Ballasts with Pre-Mounted Lampholder 5–26 W 230/240/220 V

For compact fluorescent lamps Shape: 18 x 41 mm

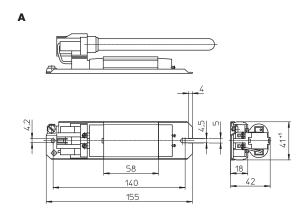
Vacuum-impregnated with polyester resin Push-in terminals: 0.5–1.5 mm² With earth screw With groove for reflector attachment tw 130 Protection class I

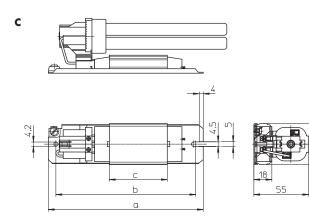
1

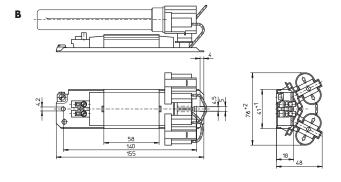
2

3

4


7

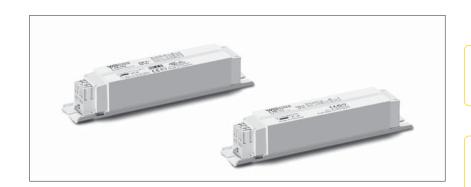

5

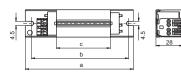

Z

2

9

Super-thin Ballasts with Pre-Mounted Lampholder 5–26 W, 230/240/220 V


Lamp				Ballast										Сара	citor
Output	Туре	Base	Current	Туре	Ref. No.	Voltage	Drawing	а	Ь	С	Weight	$\Delta t/\Delta t_{an.}$	Energy	СР	Curren
													efficiency*		
W			mA			V, Hz		mm	mm	mm	kg	K		μF	mA
230 V,	50 Hz														
5	TC-S	G23	180	L7/9/11.141	163148	230, 50	А	155	140	58	0.37	50/80	B2	2.0	50
2x5	TC-S	G23	180	LN 13.143	163207	230, 50	В	155	140	58	0.37	45/70	B2	2.0	70
7	TC-S	G23	175	L7/9/11.141	163148	230, 50	А	155	140	58	0.37	50/80	B2	2.0	50
2x7	TC-S	G23	160	LN 13.143	163207	230, 50	В	155	140	58	0.37	45/70	B2	2.0	70
9	TC-S	G23	170	L7/9/11.141	163148	230, 50	А	155	140	58	0.37	50/80	B2	2.0	60
2x9	TC-S	G23	140	LN 13.143	163207	230, 50	В	155	140	58	0.37	45/70	B2	2.0	80
10	TC-D	G24d-1	190	LN 13.143	163157	230, 50	С	155	140	58	0.37	45/70	B2	2.0	70
11	TC-S	G23	155	L7/9/11.141	163148	230, 50	А	155	140	58	0.37	50/80	B2	2.0	80
13	TC-D	G24d-1	175	LN 13.143	163157	230, 50	С	155	140	58	0.37	45/70	B2	2.0	80
18	TC-D	G24d-2	220	LN 181.147	163170	230, 50	С	155	140	58	0.37	55/110	B2	2.0	110
26	TC-D	G24d-3	325	LN 18.220	526591	230, 50	С	215	200	116	0.64	55/80	В1	3.5	140
				LN 18.146	163180	230, 50	С	215	200	116	0.64	60/95	B2	3.5	140
240 V,	50 Hz														
5	TC-S	G23	180	L7/9/11.110	163007	240, 50	А	155	140	58	0.37	55/80	B2	2.0	50
2x5	TC-S	G23	180	L 13.111	163212	240, 50	В	155	140	58	0.37	55/85	B2	2.0	70
7	TC-S	G23	175	L7/9/11.110	163007	240, 50	А	155	140	58	0.37	55/80	B2	2.0	50
2x7	TC-S	G23	160	L 13.111	163212	240, 50	В	155	140	58	0.37	55/85	B2	2.0	70
9	TC-S	G23	170	L7/9/11.110	163007	240, 50	А	155	140	58	0.37	55/80	B2	2.0	60
2x9	TC-S	G23	140	L 13.111	163212	240, 50	В	155	140	58	0.37	55/85	B2	2.0	80
10	TC-D	G24d-1	190	L 13.111	163016	240, 50	С	155	140	58	0.37	55/85	B2	2.0	70
11	TC-S	G23	155	L7/9/11.110	163007	240, 50	А	155	140	58	0.37	55/80	B2	2.0	80
13	TC-D	G24d-1	175	L 13.111	163016	240, 50	С	155	140	58	0.37	55/85	B2	2.0	80
18	TC-D	G24d-2	220	L 18I.132	163033	240, 50	С	155	140	58	0.37	70/140	B2	2.0	110
26	TC-D	G24d-3	325	L 18.114	163024	240, 50	С	215	200	116	0.64	60/90	B2	3.5	140
220 V,	60 Hz														
5	TC-S	G23	180	L7/9/11.134	163036	220, 60	А	155	140	58	0.37	45/65	_	2.0	70
2x5	TC-S	G23	180	L 13.164	178627	220, 60	В	155	140	58	0.37	40/80	_	2.0	90
7	TC-S	G23	175	L7/9/11.134	163036	220, 60	А	155	140	58	0.37	45/65	_	2.0	70
2x7	TC-S	G23	160	L 13.164	178627	220, 60	В	155	140	58	0.37	40/80	_	2.0	90
9	TC-S	G23	170	L7/9/11.134	163036	220, 60	А	155	140	58	0.37	45/65	_	2.0	70
2x9	TC-S	G23	140	L 13.164	178627	220, 60	В	155	140	58	0.37	40/80	_	2.0	90
10	TC-D	G24d-1	190	L 13.164	163189	220, 60	С	155	140	58	0.37	40/80	_	2.0	80
11	TC-S	G23	155	L7/9/11.134	163036	220, 60	А	155	140	58	0.37	45/65	_	2.0	80
13	TC-D	G24d-1	165	L 13.164	163189	220, 60	С	155	140	58	0.37	40/80	_	2.0	80


^{*} Energy efficiency: EEI=B2 and EEI=B1, valid until 2017

Slim Ballasts 5-40 W, 230 V

For compact fluorescent lamps Shape: 28 x 28 mm

Vacuum-impregnated with polyester resin Push-in terminal for leads: $0.5-1 \ mm^2$ For the automatic luminaire wiring: IDC terminals for leads $H05V-U\ 0.5$ tw 130 Protection class I

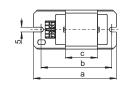
Lamp				Ballast									Сара	citor
Output	Туре	Base	Current	Туре	Ref. No.	Voltage	а	Ь	С	Weight	$\Delta t/\Delta t_{an.}$	Energy	C _P	Current
												efficiency*		
W			mA			V, Hz	mm	mm	mm	kg	K		μF	mA
230 V,	50 Hz													
5	TC-S	G23	180	L7/9/11.131	179409	230, 50	130	120	52	0.34	50/70	B2	2.0	50
2x5	TC-S	G23	180	LN 13.134	179466	230, 50	130	120	52	0.34	50/80	B2	2.0	70
7	TC-S	G23	175	L7/9/11.131	179409	230, 50	130	120	52	0.34	50/70	B2	2.0	50
2x7	TC-S	G23	160	LN 13.134	179466	230, 50	130	120	52	0,34	50/80	B2	2.0	70
9	TC-S	G23	170	L7/9/11.131	179409	230, 50	130	120	52	0.34	50/70	B1	2.0	60
2x9	TC-S	G23	140	LN 13.134	179466	230, 50	130	120	52	0.34	50/80	B2	2.0	80
10	TC-D	G24d-1	190	LN 13.134	179466	230, 50	130	120	52	0.34	50/80	B2	2.0	70
	TC-DD	GR10q	180	LN 13.134	179466	230, 50	130	120	52	0.34	50/80	B2	2.0	70
11	TC-S	G23	155	L7/9/11.131	179409	230, 50	130	120	52	0.34	50/70	B1	2.0	80
13	TC-D/TC-T	G24d-1/GX24d-1	175	LN 13.134	179466	230, 50	130	120	52	0.34	50/80	B2	2.0	80
16	TC-DD	GR8/GR10q	195	LN 16.135	505607	230, 50	130	120	52	0.34	50/125	B2	2.0	100
18	TC-D/TC-T	G24d-2/GX24d-2	220	LN 181.130	179231	230, 50	130	120	52	0.34	55/125	B1	2.0	110
	TC-F/TC-L	2G10/2G11	370	LN 18.127	526596	230, 50	190	180	120	0.70	45/80	B2	4.5	120
	T-U	2G13	370	LN 18.127	526596	230, 50	190	180	120	0.70	45/80	B2	4.5	190
2x18	TC-F/TC-L	2G10/2G11	400	LN 36.172	526597	230, 50	190	180	120	0.70	50/130	B2	4.0	210
24	TC-F/TC-L	2G10/2G11	345	LN 18.127	526596	230, 50	190	180	120	0.70	45/80	B2	4.5	150
26	TC-D/TC-T	G24d-3/GX24d-3	325	LN 18.127	526596	230, 50	190	180	120	0.70	45/80	B1	3.5	140
28	TC-DD	GR8/GR10q	320	LN 18.127	526596	230, 50	190	180	120	0.70	45/80	B1	3.5	155
36	TC-F/TC-L	2G10/2G11	430	LN 36.172	526597	230, 50	190	180	120	0.70	50/130	B2	4.5	210
36/40	T-U/T-R	2G13/G10q	430	LN 36.172	526597	230, 50	190	180	120	0.70	50/130	B2	4.0	210
38	TC-DD	GR10q	430	LN 36.172	526597	230, 50	190	180	120	0.70	50/130	B2	4.5	210

^{*} Energy efficiency: EEI=B2 and EEI=B1, valid until 2017

Slim Ballasts 5–58 W, 240/220 V

For compact fluorescent lamps Shape: 28 x 28 mm

Lamp				Ballast									Саро	citor
Output	Туре	Base	Current	Туре	Ref. No.	Voltage	а	Ь	С	Weight	$\Delta t/\Delta t_{an.}$	Energy efficiency*	СР	Current
W			mA			V, Hz	mm	mm	mm	kg	K	, , , ,	μF	mA
240 V,	50 Hz			·		100				0			Tr.	
5	TC-S	G23	180	L7/9/11.137	505609	240, 50	130	120	52	0.34	50/70	B2	2.0	50
2x5	TC-S	G23	180	L 13.129	179258	240, 50	130	120	52	0.34	55/80	B2	2.0	70
7	TC-S	G23	175	L7/9/11.137	505609	240, 50	130	120	52	0.34	50/70	B2	2.0	50
2x7	TC-S	G23	160	L 13.129	179258	240, 50	130	120	52	0.34	55/80	B2	2.0	70
9	TC-S	G23	170	L7/9/11.137	505609	240, 50	130	120	52	0.34	50/70	В1	2.0	60
2x9	TC-S	G23	140	L 13.129	179258	240, 50	130	120	52	0.34	55/80	B2	2.0	80
10	TC-D	G24d-1	190	L 13.129	179258	240, 50	130	120	52	0.34	55/80	B2	2.0	70
	TC-DD	GR10q	180	L 13.129	179258	240, 50	130	120	52	0.34	55/80	B2	2.0	70
11	TC-S	G23	155	L7/9/11.137	505609	240, 50	130	120	52	0.34	50/70	В1	2.0	80
13	TC-D/TC-T	G24d-1/GX24d-1	175	L 13.129	179258	240, 50	130	120	52	0.34	55/80	B2	2.0	80
16	TC-DD	GR8/GR10q	195	LN 16.146	505629	240, 50	130	120	52	0.34	55/125	B2	2.0	100
18	TC-D/TC-T	G24d-2/GX24d-2	220	LN 181.147	505630	240, 50	130	120	52	0.34	60/120	B2	2.0	110
	TC-F/TC-L	2G10/2G11	370	LN 18.173	529066	240, 50	190	180	120	0.70	45/80	B2	4.5	120
	T-U	2G13	370	LN 18.173	529066	240, 50	190	180	120	0.70	45/80	B2	4.5	190
2×18	TC-F/TC-L	2G10/2G11	400	LN 36.174	529071	240, 50	190	180	120	0.70	50/135	B2	4.0	210
24	TC-F/TC-L	2G10/2G11	345	LN 18.173	529066	240, 50	190	180	120	0.70	45/80	B2	4.5	150
26	TC-D/TC-T	G24d-3/GX24d-3	325	LN 18.173	529066	240, 50	190	180	120	0.70	45/80	В1	3.5	140
28	TC-DD	GR8/GR10q	320	LN 18.173	529066	240, 50	190	180	120	0.70	45/80	В1	3.5	150
36	TC-F/TC-L	2G10/2G11	430	LN 36.174	529071	240, 50	190	180	120	0.70	50/135	B2	4.5	210
36/40	T-U/T-R	2G13/G10q	430	LN 36.174	529071	240, 50	190	180	120	0.70	50/135	B2	4.5	210
38	TC-DD	GR10q	430	LN 36.174	529071	240, 50	190	180	120	0.70	50/135	B2	4.5	210
220 V,	60 Hz	1					-		-		· /		-	
5	TC-S	G23	180	L7/9/11.138	505610	220, 60	130	120	52	0.34	50/70	_	2.0	70
2×5	TC-S	G23	180	L 13.136	505608	220, 60	130	120	52	0.34	50/80	_	2.0	90
7	TC-S	G23	175	L7/9/11.138	505610	220, 60	130	120	52	0.34	50/70	_	2.0	70
2x7	TC-S	G23	160	L 13.136	505608	220, 60	130	120	52	0.34	50/80	_	2.0	90
9	TC-S	G23	170	L7/9/11.138	505610	220, 60	130	120	52	0.34	50/70	_	2.0	70
2x9	TC-S	G23	140	L 13.136	505608	220, 60	130	120	52	0.34	50/80	_	2.0	90
10	TC-D	G24d-1	190	L 13.136	505608	220, 60	130	120	52	0.34	50/80	_	2.0	80
	TC-DD	GR10q	180	L 13.136	505608	220, 60	130	120	52	0.34	50/80	_	2.0	80
11	TC-S	G23	155	L7/9/11.138	505610	220, 60	130	120	52	0.34	50/70	_	2.0	80
13	TC-D/TC-T	G24d-1/GX24d-1	165	L 13.136	505608	220, 60	130	120	52	0.34	50/80	_	2.0	110
16	TC-DD	GR8/GR10q	195	LN 16.188	539981	220, 60	150	140	52	0.34	55/110	-	2.0	100
18	TC-F/TC-L	2G10/2G11	370	L 20.148	505768	220, 60	150	140	102	0.60	55/85	_	4.0	150
	T-U	2G13	370	L 20.148	505768	220, 60	150	140	102	0.60	55/85	_	4.0	150
2x18	TC-F/TC-L	2G10/2G11	400	L 36.126	170009	220, 60	150	140	102	0.60	55/125	_	4.0	210
24	TC-F/TC-L	2G10/2G11	345	L 20.148	505768	220, 60	150	140	102	0.60	55/85	_	4.0	190
26	TC-D/TC-T	G24d-3/GX24d-3	325	L 20.148	505768	220, 60	150	140	102	0.60	55/85	-	3.0	160
28	TC-DD	GR8/GR10q	320	L 20.148	505768	220, 60	150	140	102	0.60	55/85	_	3.0	155
36	TC-F/TC-L	2G10/2G11	430	L 36.126	170009	220, 60	150	140	102	0.60	55/125	_	4.0	210
36/40	T-U/T-R	2G13/G10q	430	L 36.126	170009	220, 60	150	140	102	0.60	55/125	_	4.0	210
38	TC-DD	GR10q	430	L 36.126	170009	220, 60	150	140	102	0.60	55/125	_	4.0	220
58	T-U	2G13	670	L 58/65.149	507213	220, 60	230	220	178	1.00	60/140	_	6.0	320
				,		1				1	,			


^{*} Energy efficiency: EEI=B2 and EEI=B1, valid until 2017

Ballasts 5–20 W 120 V/60 Hz

For compact fluorescent lamps Shape: 28 x 41 mm

Vacuum-impregnated with polyester resin Push-in terminal for leads: 0.5–1 mm² For the automatic luminaire wiring: IDC terminals for leads H05V-U 0.5 tw 130 Protection class I

new

2

3

4

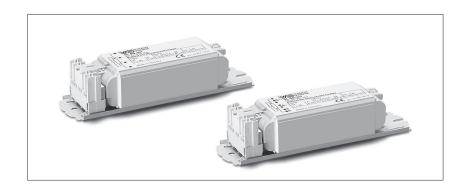
5

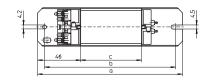
6

7

8

9

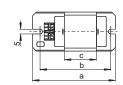

Lam)				Ballast								Capa	citor
Outp	out	Туре	Base	Current	Туре	Ref. No.	Voltage	а	Ь	С	Weight	$\Delta t/\Delta t_{an.}$	C _P	Current
W				mA			V, Hz	mm	mm	mm	kg	K	μF	mA
120	V, 60	Hz												
5		TC-S	G23	180	L 7/9.209	163318	120, 60	85	<i>7</i> 5	34	0.32	25/40	3.0	90
7		TC-S	G23	175	L 7/9.209	163318	120, 60	85	<i>7</i> 5	34	0.32	25/40	3.0	90
9		TC-S	G23	170	L 7/9.209	163318	120, 60	85	<i>75</i>	34	0.32	25/40	3.0	90
18		TC-F/TC-L	2G10/2G11	370	L 20.122	163256	120, 60	85	75	34	0.32	35/80	5.0	150
20		T-U	2G13	370	L 20.122	163256	120, 60	85	75	34	0.32	35/80	5.0	190


Operating Units 5–40 W 120 V/60 Hz

For compact fluorescent lamps Shape: 33 x 41 mm

Vacuum-impregnated with polyester resin Push-in terminal for leads: 0.5–1.5 mm² For the automatic luminaire wiring: IDC terminals for leads H05V-U 0.5 tw 130 Protection class I

These units are a combination of transformers/ballasts (high-reactance transformers) which supply the lamp with the necessary operating voltage. For these units a usual starter (220–240 V) is necessary.



Lamp				Ballast								Capa	citor
Output	Туре	Base	Current	Туре	Ref. No.	Voltage	а	b	С	Weight	$\Delta t/\Delta t_{an.}$	C _P	Current
W			mA			V, Hz	mm	mm	mm	kg	K	μF	mA
120 V, (60 Hz			-									-
2x5	TC-S	G23	180	SL 13.331	169496	120, 60	125	110	40	0.47	50/80	8.0	150
2x7	TC-S	G23	160	SL 13.331	169496	120, 60	125	110	40	0.47	50/80	7.0	170
2x9	TC-S	G23	145	SL 13.331	169496	120, 60	125	110	40	0.47	50/80	7.0	165
10	TC-D	G24d-1	190	SL 13.331	169496	120, 60	125	110	40	0.47	50/80	8.0	150
13	TC-D/TC-T	G24d-1/GX24d-1	165	SL 13.331	169496	120, 60	125	110	40	0.47	50/80	7.0	170
18	TC-D/TC-T	G24d-2/GX24d-2	220	SL 18I.334	169727	120, 60	125	110	40	0.47	45/95	7.0	280
2×18	TC-F/TC-L	2G10/2G11	410	SL 36.342	506405	120, 60	155	140	65	0.71	75/175	16.0	430
24	TC-F/TC-L	2G10/2G11	340	SL 24.335	168108	120, 60	155	140	65	0.71	55/120	12.0	350
26	TC-D/TC-T	G24d-3/GX24d-3	315	SL 24.335	168108	120, 60	155	140	65	0.71	55/120	12.0	310
28	TC-DD	GR8/GR10q	325	SL 24.335	168108	120, 60	155	140	65	0.71	55/120	12.0	320
36	TC-F/TC-L	2G10/2G11	410	SL 36.342	506405	120, 60	155	140	65	0.71	75/175	16.0	440
36/40	T-U/T-R	2G13/G10q	410	SL 36.342	506405	120, 60	155	140	65	0.71	75/175	16.0	470
38	TC-DD	GR10q	410	SL 36.342	506405	120, 60	155	140	65	0.71	75/175	16.0	460

Standard Ballasts 4–13 W 230/240/220 V

For fluorescent lamps Shape: 28 x 41 mm

Vacuum-impregnated with polyester resin Push-in terminal for leads: 0.5–1 mm² For the automatic luminaire wiring: IDC terminals for leads H05V-U 0.5 tw 130 Protection class I

1

2

3

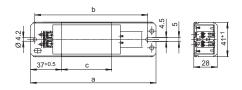
5

6

7

Ω

0


	Lamp				Ballast									Сар	acitor
	Output	Туре	Base	Current	Туре	Ref. No.	Voltage	а	Ь	С	Weight	$\Delta t/\Delta t_{an.}$	Energy efficiency*	СР	Curren
	W			mA			V, Hz	mm	mm	mm	kg	K		μF	mA
	230 V, 5	0 Hz										•			
V	4	T5 (T16)	G5	170	L 4/6/8.304	163683	230, 50	85	75	34	0.32	55/85	B2	2.0	40
V	2x4	T5 (T16)	G5	155	L 4/6/8.304	163683	230, 50	85	75	34	0.32	55/85	В1	2.0	50
V	6	T5 (T16)	G5	160	L 4/6/8.304	163683	230, 50	85	75	34	0.32	55/85	В1	2.0	50
	2x6	T5 (T16)	G5	175	LN 13.313	163711	230, 50	85	75	34	0.32	55/80	В1	2.0	65
V	8	T5 (T16)	G5	145	L 4/6/8.304	163683	230, 50	85	75	34	0.32	55/85	В1	2.0	60
	2x8	T5 (T16)	G5	155	LN 13.313	163711	230, 50	85	75	34	0.32	55/80	B1	2.0	85
	13	T5 (T16)	G5	165	LN 13.313	163711	230, 50	85	75	34	0.32	55/80	B1	2.0	80
	240 V, 5	0 Hz													
V	4	T5 (T16)	G5	170	L 4/6/8.404	164326	240, 50	85	75	34	0.32	55/80	B2	2.0	40
V	2x4	T5 (T16)	G5	155	L 4/6/8.404	164326	240, 50	85	75	34	0.32	55/80	B1	2.0	50
V	6	T5 (T16)	G5	160	L 4/6/8.404	164326	240, 50	85	75	34	0.32	55/80	B1	2.0	50
	2x6	T5 (T16)	G5	175	LN 13.413	164342	240, 50	85	75	34	0.32	60/90	B1	2.0	65
V	8	T5 (T16)	G5	145	L 4/6/8.404	164326	240, 50	85	75	34	0.32	55/80	B1	2.0	60
	2x8	T5 (T16)	G5	155	LN 13.413	164342	240, 50	85	75	34	0.32	60/90	B1	2.0	85
	13	T5 (T16)	G5	165	LN 13.413	164342	240, 50	85	75	34	0.32	60/90	B1	2.0	80
	220 V, 6	0 Hz													
	4	T5 (T16)	G5	170	L4/6/8.218	532644	220, 60	85	75	34	0.32	60/80	_	2.0	40
	2x4	T5 (T16)	G5	155	L4/6/8.218	532644	220, 60	85	75	34	0.32	60/80	_	2.0	50
	6	T5 (T16)	G5	160	L4/6/8.218	532644	220, 60	85	75	34	0.32	60/80	_	2.0	50
V	2x6	T5 (T16)	G5	1 <i>75</i>	L 13.210	520992	220, 60	85	75	34	0.32	45/80	_	2.0	65
	8	T5 (T16)	G5	145	L4/6/8.218	532644	220, 60	85	75	34	0.32	60/80	_	2.0	60
V	2x8	T5 (T16)	G5	155	L 13.210	520992	220, 60	85	75	34	0.32	45/80	_	2.0	85
V	13	T5 (T16)	G5	165	L 13.210	520992	220, 60	85	75	34	0.32	45/80	_	2.0	80

Standard Ballasts 14–65 W, 230 V

For fluorescent lamps Shape: 28 x 41 mm

Vacuum-impregnated with polyester resin Push-in terminal for leads: 0.5–1 mm² For the automatic luminaire wiring: IDC terminals for leads H05V-U 0.5 tw 130 Protection class I

Lamp				Ballast									Сарс	icitor
Output	Туре	Base	Current	Туре	Ref. No.	Voltage	a	Ь	С	Weight	$\Delta t/\Delta t_{an.}$	Energy efficiency*	Cp	Current
W			mA			V, Hz	mm	mm	mm	kg	K		μF	mA
230 V, 50) Hz													
14	T8 (T26)	G13	395	LN 18.510	164572	230, 50	155	140	92	0.80	40/65	B2	4.5	150
15	T8 (T26)	G13	310	LN 15.329	163861	230, 50	150	140	60	0.55	50/80	B2	3.5	120
2×15	T8 (T26)	G13	340	LN 30.801	169645	230, 50	150	140	60	0.55	55/110	B2	4.0	185
				L 30.347**	164033	230, 50	150	140	60	0.55	60/150	_	4.0	185
16	T8 (T26)	G13	200	LN 16.316	163730	230, 50	85	75	34	0.32	60/125	В1	2.0	90
18/20	T8 (T26)/T12 (T38)	G13	370	LN 18.510	164572	230, 50	155	140	92	0.80	40/65	В1	4.5	120
				LN 18.131	530941	230, 50	150	140	60	0.55	55/95	B2	4.5	120
				L 18.934**	534621	230, 50	150	140	45	0.43	70/150	-	4.5	120
2x18/20	T8 (T26)/T12 (T38)	G13	400	LN 2×18.135	532155	230, 50	150	140	45	0.43	65	В1	4.0	210
				L 36.334	530007	230, 50	150	140	60	0.55	60/155	В1	4.0	210
25	T12 (T38)	G13	290	L 25.346	164013	230, 50	150	140	60	0.55	45/80	В1	3.5	130
30	T8 (T26)	G13	365	LN 30.801	169645	230, 50	150	140	60	0.55	55/110	B2	4.5	180
36-1	T8 (T26)	G13	556	L 361.342	538072	230, 50	195	180	100	0.87	50/120	B2	6.5	250
36/40	T8 (T26)/T12 (T38)	G13	430	LN 36.570	169779	230, 50	155	140	92	0.80	35/90	В1	4.5	210
				LN 36.511	164590	230, 50	155	140	92	0.80	35/95	В1	4.5	210
				LN 36.130	527191	230, 50	150	140	60	0,55	50/140	B2	4.5	210
				LN 36.149	529029	230, 50	150	140	60	0.55	55/150	B2	4.5	210
				L 36.132**	535977	230, 50	150	140	45	0.43	65	_	4.5	210
38	T8 (T26)	G13	430	LN 36.570	169779	230, 50	155	140	92	0.80	35/90	B1	4.5	210
				LN 36.511	164590	230, 50	155	140	92	0.80	35/95	B1	4.5	210
				LN 36.149	529029	230, 50	150	140	60	0.55	55/150	B2	4.5	210
				L 36.132**	535977	230, 50	150	140	45	0.43	65	-	4.5	210
58/65	T8 (T26)/T12 (T38)	G13	670	LN 58.568	169389	230, 50	233	220	160	1.31	35/95	B1	7.0	320
				LN 58.189	537038	230, 50	190	180	100	0.87	50/125	B2	7.0	320
				LN 58.116	508186	230, 50	190	180	92	0.80	55/160	B2	7.0	320
				L 58.718**	169658	230, 50	190	180	92	0.80	60/170	-	7.0	320

^{*} Energy efficiency: EEI=B2 and EEI=B1, valid until 2017

^{**} Ballasts without CE mark for markets outside of the EU

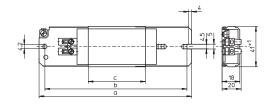
Standard Ballasts 15-75 W, 240/220 V

For fluorescent lamps **Shape: 28 x 41 mm**

Lamp	0				Ballast									Сарс	citor
Outp	out	Туре	Base	Current	Туре	Ref. No.	Voltage	а	Ь	С	Weight	$\Delta t/\Delta t_{an.}$	Energy	СР	Currer
													efficiency*		
W				mA			V, Hz	mm	mm	mm	kg	K		μF	mA
240	V, 50	Hz		·							•				
2×13	5	T8 (T26)	G13	340	LN 30.806	533067	240, 50	150	140	60	0.55	55/130	B2	4.0	185
16		T8 (T26)	G13	200	LN 16.417	164358	240, 50	85	75	34	0.32	60/130	В1	2.0	90
18/	20	T8 (T26)/T12 (T38)	G13	370	LN 18.507	164566	240, 50	155	140	92	0.80	35/60	B1	4.5	120
					LN 18.162	533043	240, 50	150	140	60	0.55	60/110	B2	4.5	120
					L 18.936**	534627	240, 50	150	140	45	0.43	70/140	_	4.5	120
2×18	8/20	T8 (T26)/T12 (T38)	G13	400	LN 2x18.135	535778	240, 50	150	140	45	0.43	65	B1	4.0	210
					L 36/40.443	530008	240, 50	150	140	60	0.55	65/155	B1	4.0	210
					LN 36.201	527196	240, 50	150	140	60	0.55	55/140	B1	4.0	210
					LN 36.505	164555	240, 50	155	140	92	0.80	40/95	B1	4.0	210
30		T8 (T26)	G13	365	LN 30.806	533067	240, 50	150	140	60	0.55	55/130	B2	4.5	180
36/	40	T8 (T26)/T12 (T38)	G13	430	LN 36.505	164555	240, 50	155	140	92	0.80	40/95	B1	4.5	210
					LN 36.201	527196	240, 50	150	140	60	0.55	55/140	B2	4.5	210
					L 36/40.443**	164438	240, 50	150	140	60	0.55	65/155	-	4.5	210
38		T8 (T26)	G13	430	LN 36.505	164555	240, 50	155	140	92	0.80	40/95	В1	4.5	210
					LN 36.201	527196	240, 50	150	140	60	0.55	55/140	B2	4.5	210
					L 36/40.443**	164438	240, 50	150	140	60	0.55	65/155	_	4.5	210
58/	65	T8 (T26)/T12 (T38)	G13	670	LN 58.506	164560	240, 50	233	220	160	1.31	35/85	B1	7.0	320
					LN 58.190	537056	240, 50	190	180	100	0.87	50/150	B2	7.0	320
					LN 58.722	534252	240, 50	190	180	92	0.80	60/180	B2	7.0	320
70/	75	T8 (T26)/T12 (T38)	G13	670	LN 75.170	538603	240, 50	190	180	100	0.87	55/160	B2	6.0	320
_	V, 50										1				
18/	20	T8 (T26)/T12 (T38)	G13	370	L 18.933	534624	220, 50	150	140	45	0.43	70/160	-	4.5	120
	8/20	T8 (T26)/T12 (T38)	G13	430	L 36.158	530252	220, 50	150	140	45	0.43	65	_	4.0	210
36/	40	T8 (T26)/T12 (T38)	G13	430	L 36.158	530252	220, 50	150	140	45	0.43	65	-	4.5	210
38		T8 (T26)	G13	430	L 36.158	530252	220, 50	150	140	45	0.43	65	-	4.5	210
58/		T8 (T26)/T12 (T38)	G13	670	L 58.625	164828	220, 50	190	180	92	0.80	55/155	-	7.0	320
	V, 60														
15		T8 (T26)	G13	310	L 15.007	537744	220, 60	150	140	45	0.43	55/80	_	3.0	120
2×13		T8 (T26)	G13	350	L 30.006	537750	220, 60	150	140	45	0.43	60/120	-	4.0	185
18/	20	T8 (T26)/T12 (T38)	G13	370	L 18.121	532149	220, 60	110	100	45	0.42	65/145	-	4.0	190
					L 18.121	528582	220, 60	150	140	45	0.43	65/145	-	4.0	190
					L 18.149	538801	220, 60	150	140	34	0.32	75/140	-	4.0	190
	8/20	T8 (T26)/T12 (T38)	G13	430	L 36.120	509373	220, 60	150	140	45	0.43	60/170	-	4.0	220
30		T8 (T26)	G13	365	L 30.006	537750	220, 60	150	140	45	0.43	60/120	_	4.0	180
36/	40	T8 (T26)/T12 (T38)	G13	430	L 36.120	509373	220, 60	150	140	45	0.43	60/170	-	4.0	220
38		T8 (T26)	G13	430	L 36.120	509373	220, 60	150	140	45	0.43	60/170	-	4.0	230
58/	65	T8 (T26)/T12 (T38)	G13	670	L 58.657	164870	220, 60	195	180	92	0.80	55/140	-	6.0	320

 ^{58/65} T8 (T26)/T12 (T38)
 G13
 670
 L 58.657

 * Energy efficiency: EEI=B2 and EEI=B1, valid until 2017


^{**} Ballasts without CE mark for markets outside of the EU

Super-thin Ballasts 4–40 W 230/240 V

For fluorescent lamps Shape: 18 x 41 mm

Vacuum-impregnated with polyester resin Push-in terminal for leads: 0.5–1.5 mm² With earth screw tw 130 Protection class I

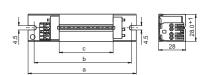
Lamp				Ballast									Сара	citor
Output	Туре	Base	Current	Туре	Ref. No.	Voltage	а	Ь	С	Weight	$\Delta t/\Delta t_{an.}$	Energy	СР	Current
												efficiency*		
W			mA			V, Hz	mm	mm	mm	kg	K		μF	mA
230 V, 50			1							1				
4	T5 (T16)	G5	170	L 4/6/8.142	163062	230, 50	155	140	58	0.37	45/65	B2	2.0	40
2x4	T5 (T16)	G5	155	L4/6/8.142	163062	230, 50	155	140	58	0.37	45/65	B2	2.0	50
6	T5 (T16)	G5	160	L 4/6/8.142	163062	230, 50	155	140	58	0.37	45/65	B2	2.0	50
2x6	T5 (T16)	G5	175	LN 13.143	163071	230, 50	155	140	58	0.37	45/70	B2	2.0	65
8	T5 (T16)	G5	145	L 4/6/8.142	163062	230, 50	155	140	58	0.37	45/65	B1	2.0	60
2x8	T5 (T16)	G5	155	LN 13.143	163071	230, 50	155	140	58	0.37	45/70	B2	2.0	85
13	T5 (T16)	G5	165	LN 13.143	163071	230, 50	155	140	58	0.37	45/70	B2	2.0	80
15	T8 (T26)	G13	310	LN 15.144	526594	230, 50	195	180	116	0.64	45/80	B2	3.5	120
2x15	T8 (T26)	G13	340	LN 30.148	525809	230, 50	195	180	116	0.64	45/95	B2	4.0	185
16	T8 (T26)	G13	200	LN 16.145	163084	230, 50	155	140	58	0.37	50/110	B2	2.0	90
18/20	T8 (T26)/T12 (T38)	G13	370	LN 18.220	526592	230, 50	195	180	116	0.70	55/80	B2	4.5	120
2x18/20	T8 (T26)/T12 (T38)	G13	400	LN 36.221	526593	230, 50	195	180	116	0.70	50/125	B2	4.0	210
30	T8 (T26)	G13	365	LN 30.148	525809	230, 50	195	180	116	0.64	45/95	B2	4.5	180
36/40	T8 (T26)/T12 (T38)	G13	430	LN 36.221	526593	230, 50	195	180	116	0.70	50/125	B2	4.5	210
38	T8 (T26)	G13	430	LN 36.221	526593	230, 50	195	180	116	0.70	50/125	B2	4.5	210
240 V, 50	Hz													
4	T5 (T16)	G5	170	L 4/6/8.109	169414	240, 50	155	140	58	0.37	55/75	B2	2.0	40
2x4	T5 (T16)	G5	155	L4/6/8.109	169414	240, 50	155	140	58	0.37	55/75	B2	2.0	50
6	T5 (T16)	G5	160	L 4/6/8.109	169414	240, 50	155	140	58	0.37	55/75	B2	2.0	50
2x6	T5 (T16)	G5	175	L 13.111	162966	240, 50	155	140	58	0.37	55/85	B2	2.0	65
8	T5 (T16)	G5	145	L 4/6/8.109	169414	240, 50	155	140	58	0.37	55/75	B1	2.0	60
2x8	T5 (T16)	G5	155	L 13.111	162966	240, 50	155	140	58	0.37	55/85	B2	2.0	85
13	T5 (T16)	G5	165	L 13.111	162966	240, 50	155	140	58	0.37	55/85	B2	2.0	80
15	T8 (T26)	G13	310	LN 15.119	529268	240, 50	195	180	116	0.64	50/70	B2	3.5	120
2×15	T8 (T26)	G13	340	LN 30.120	529269	240, 50	195	180	116	0.64	50/100	B2	4.0	185
16	T8 (T26)	G13	200	L 16.113	162976	240, 50	155	140	58	0.37	45/110	B2	2.0	90
18	T8 (T26)/T12 (T38)	G13	370	LN 18.121	529272	240, 50	195	180	116	0.64	50/85	B2	4.5	120
2x18/20	T8 (T26)/T12 (T38)	G13	400	LN 36.124	529273	240, 50	195	180	116	0.64	55/140	B2	4.0	210
30	T8 (T26)	G13	365	LN 30.120	529269	240, 50	195	180	116	0.64	50/100	B2	4.5	180
36/40	T8 (T26)/T12 (T38)	G13	430	LN 36.124	529273	240, 50	195	180	116	0.64	55/140	B2	4.5	210
38	T8 (T26)	G13	430	LN 36.124	529273	240, 50	195	180	116	0.64	55/140	B2	4.5	210

^{*} Energy efficiency: EEI=B2 and EEI=B1, valid until 2017

Super-thin Ballasts 6–40 W, 220 V

For fluorescent lamps Shape: 18 x 41 mm

Lamp				Ballast									Capa	citor
Output	Туре	Base	Current	Туре	Ref. No.	Voltage	а	Ь	С	Weight	$\Delta t/\Delta t_{an.}$	Energy efficiency*	СР	Current
W			mA			V, Hz	mm	mm	mm	kg	K		μF	mA
220 V, 60	Hz													
2x6	T5 (T16)	G5	175	L 13.164	163162	220, 60	155	140	58	0.37	40/80	_	2.0	65
2x8	T5 (T16)	G5	155	L 13.164	163162	220, 60	155	140	58	0.37	40/80	_	2.0	85
13	T5 (T16)	G5	165	L 13.164	163162	220, 60	155	140	58	0.37	40/80	-	2.0	80
15	T8 (T26)	G13	310	L 15.201	163234	220, 60	195	180	116	0.64	50/80	_	3.0	120
16	T8 (T26)	G13	200	L 16.202	163235	220, 60	155	140	58	0.37	45/110	-	2.0	90
18/20	T8 (T26)/T12 (T38)	G13	370	L 18.140	163045	220, 60	195	180	116	0.64	55/80	_	4.0	190
2x18/20	T8 (T26)/T12 (T38)	G13	400	L 36.188	163218	220, 60	195	180	116	0.64	45/110	_	4.0	210
36/40	T8 (T26)/T12 (T38)	G13	430	L 36.188	163218	220, 60	195	180	116	0.64	45/110	_	4.0	220
38	T8 (T26)	G13	430	L 36.188	163218	220, 60	195	180	116	0.64	45/110	_	4.0	230


^{*} Energy efficiency: EEI=B2 and EEI=B1, valid until 2017

Slim Ballasts 4–65 W 230/240/220 V

For fluorescent lamps Shape: 28 x 28 mm

Vacuum-impregnated with polyester resin Push-in terminal for leads: 0.5-1 mm² For the automatic luminaire wiring: IDC terminals for leads HO5V-U 0.5 tw 130 Protection class I

Lamp				Ballast									Сара	citor
Output	Туре	Base	Current	Туре	Ref. No.	Voltage	а	Ь	С	Weight	$\Delta t/\Delta t_{an.}$	Energy efficiency*	СР	Current
W			mA			V, Hz	mm	mm	mm	kg	K		μF	mA
230 V, 50	Hz													
4	T5 (T16)	G5	170	L4/6/8.132	505712	230, 50	130	120	52	0.34	50/70	B2	2.0	40
2x4	T5 (T16)	G5	155	L4/6/8.132	505712	230, 50	130	120	52	0.34	50/70	B2	2.0	50
6	T5 (T16)	G5	160	L4/6/8.132	505712	230, 50	130	120	52	0.34	50/70	B2	2.0	50
2x6	T5 (T16)	G5	175	LN 13.134	179466	230, 50	130	120	52	0.34	50/80	B2	2.0	65

^{*} Energy efficiency: EEI=B2 and EEI=B1, valid until 2017

1

2

3

4

5

6

7

8

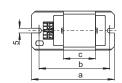
9

Slim Ballasts 4–65 W, 230/240/220 V

For fluorescent lamps Shape: 28 x 28 mm

Lamp				Ballast									Сара	acitor
Output	Туре	Base	Current	Туре	Ref. No.	Voltage	а	Ь	С	Weight	$\Delta t/\Delta t_{an.}$	Energy efficiency*	СР	Current
W			mA			V, Hz	mm	mm	mm	ka	K	elliciency	μF	mA
230 V, 5	0 H-z		IIIA			V, 11Z	mm	mm	mm	kg	K		Ihi	IIIA
8	T5 (T16)	G5	145	L 4/6/8.132	505712	230, 50	130	120	52	0.34	50/70	В1	2.0	60
2×8	T5 (T16)	G5	155	LN 13.134	179466	230, 50	130	120	52	0.34	50/80	B2	2.0	85
10	T8 (T26)	G13	170	LN 10.145	505628	230, 50	130	120	52	0.34	50/80	B2	2.0	75
13	T5 (T16)	G5	165	LN 13.134	179466	230, 50	130	120	52	0.34	50/80	B2	2.0	80
15	T8 (T26)	G13	310	L 15.107	162860	230, 50	150	140	102	0.60	50/80	B2	3.5	120
2x15	T8 (T26)	G13	340	LN 30.128	526595	230, 50	190	180	120	0.70	45/85	B2	4.0	185
16	T8 (T26)	G13	200	LN 16.135	505607	230, 50	130	120	52	0.34	50/125	B2	2.0	90
18/20	T8 (T26)/T12 (T38)	G13	370	LN 18.127	526596	230, 50	190	180	120	0.70	45/80	B2	4.5	120
2x18/20	T8 (T26)/T12 (T38)	G13	400	LN 36.172	526597	230, 50	190	180	120	0.70	50/130	B2	4.0	210
30	T8 (T26)	G13	365	LN 30.128	526595	230, 50	190	180	120	0.70	45/85	B2	4.5	180
36/40	T8 (T26)/T12 (T38)	G13	430	LN 36.172	526597	230, 50	190	180	120	0.70	50/130	B2	4.5	210
38	T8 (T26)	G13	430	LN 36.172	526597	230, 50	190	180	120	0.70	50/130	B2	4.5	210
58/65	T8 (T26)/T12 (T38)	G13	670	LN 58TD.120*		230, 50	190	180	120	0.70	30/100	B2	7.0	320
240 V, 5		10.0	0, 0	1.1.0012.1120	027000	200,00	1170	1.00	1.20	0., 0	00/100	102	7 .0	1020
4	T5 (T16)	G5	170	L 4/6/8.133	179414	240, 50	130	120	52	0.34	50/70	B2	2.0	40
2x4	T5 (T16)	G5	155	L 4/6/8.133	179414	240, 50	130	120	52	0.34	50/70	B2	2.0	50
6	T5 (T16)	G5	160	L 4/6/8.133	179414	240, 50	130	120	52	0.34	50/70	B1	2.0	50
2x6	T5 (T16)	G5	175	L 13.129	179258	240, 50	130	120	52	0.34	55/80	B2	2.0	65
8	T5 (T16)	G5	145	L 4/6/8.133	179414	240, 50	130	120	52	0.34	50/70	B1	2.0	60
2x8	T5 (T16)	G5	155	L 13.129	179258	240, 50	130	120	52	0.34	55/80	B2	2.0	85
13	T5 (T16)	G5	165	L 13.129	179258	240, 50	130	120	52	0.34	55/80	B2	2.0	80
15	T8 (T26)	G13	310	LN 15.116	528753	240, 50	150	140	102	0.60	50/80	B2	3.5	120
2x15	T8 (T26)	G13	340	LN 30.117	528755	240, 50	150	140	102	0.60	55/125	B2	4.0	185
ZXIO	10 (120)		0.0	LN 30.117	529632	240, 50	190	180	102	0.60	55/125	B2	4.0	185
16	T8 (T26)	G13	200	LN 16.146	505629	240, 50	130	120	52	0.34	55/125	B2	2.0	90
18	T8 (T26)	G13	200	LN 18.173	529066	240, 50	190	180	120	0.70	45/80	B2	4.5	120
2x18/20	T8 (T26)/T12 (T38)	G13	400	LN 36.174	529071	240, 50	190	180	120	0.70	50/135	B2	4.0	210
30	T8 (T26)	G13	365	LN 30.117	528755	240, 50	150	140	102	0.60	55/125	B2	4.5	180
	10 (120)			LN 30.117	529632	240, 50	190	180	102	0.60	55/125	B2	4,.5	180
36/40	T8 (T26)/T12 (T38)	G13	430	LN 36.174	529071	240, 50	190	180	120	0.70	50/135	B2	4.5	210
38	T8 (T26)	G13	430	LN 36.174	529071	240, 50	190	180	120	0.70	50/135	B2	4.5	210
58	T8 (T26)/T12 (T38)	G13	670	LN 58TD.175*	* 529689	240. 50	190	180	120	0.70	35/110	B2	7.0	320
220 V, 6	. , , , , ,	10.0	0, 0	1	027007	2 10,00	1.70		1.20	0., 0	00/ 110	02	17.0	1020
4	T5 (T16)	G5	170	L 4/6/8.493	539614	220, 60	130	120	52	0.34	45/60	_	2.0	40
2x4	T5 (T16)	G5	155	L 4/6/8.493	539614	220, 60	130	120	52	0.34	45/60	_	2.0	50
6	T5 (T16)	G5	160	L 4/6/8.493	539614	220, 60	130	120	52	0.34	45/60	_	2.0	50
2x6	T5 (T16)	G5	175	L 13.136	505608	220, 60	130	120	52	0.34	50/80	_	2.0	65
8	T5 (T16)	G5	145	L 4/6/8.493	539614	220, 60	130	120	52	0.34	45/60	_	2.0	60
2x8	T5 (T16)	G5	155	L 13.136	505608	220, 60	130	120	52	0.34	50/80	_	2.0	85
13	T5 (T16)	G5	165	L 13.136	505608	220, 60	130	120	52	0.34	50/80	_	2.0	80
16	T8 (T26)	G13	200	LN 16.188	539981	220, 60	150	140	52	0.34	55/110	_	2.0	90
18/20	T8 (T26)/T12 (T38)	G13	370	L 20.148	505768	220, 60	150	140	102	0.60	55/85	_	4.0	120
2x18/20	T8 (T26)/T12 (T38)	G13	400	L 36.126	170009	220, 60	150	140	102	0.60	55/125		4.0	210
36/40	T8 (T26)/T12 (T38)	G13	430	L 36.126	170009	220, 60	150	140	102	0.60	55/125		4.0	210
38	T8 (T26)	G13	430	L 36.126	170009		150	140	102	0.60			4.0	210
						220, 60					55/125			
58/65	T8 (T26)/T12 (T38)	G13	670	L 58/65.149	507213	220, 60	230	220	178	1.00	60/140	_	6.0	320

^{*} Energy efficiency: EEI=B2 and EEI=B1, valid until 2017


^{**} TD = halfchoke (two ballasts per lamp are necessary)

Ballasts 14–20 W 120 V/60 Hz

For fluorescent lamps Shape: 28 x 41 mm

new

Vacuum-impregnated with polyester resin Push-in terminal for leads: 0.5–1 mm² For the automatic luminaire wiring: IDC terminals for leads H05V-U 0.5 tw 130 Protection class I

1

2

3

4

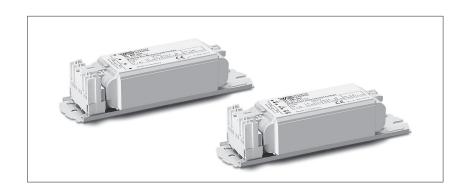
5

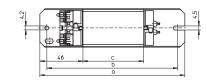
6

7

8

9


Lamp				Ballast								Capa	citor
Output	Туре	Base	Current	Туре	Ref. No.	Voltage	а	Ь	С	Weight	$\Delta t/\Delta t_{an.}$	СР	Current
W			mA			V, Hz	mm	mm	mm	kg	K	μF	mA
120 V, 60) Hz												
14	T8 (T26)	G13	395	L 14.139	1 <i>7</i> 011 <i>7</i>	120, 60	85	75	34	0.32	55/90	7.0	175
15	T8 (T26)	G13	350	L 15.308	163702	120, 60	85	75	34	0.32	35/65	7.0	170
18/20	T8 (T26)/T12 (T38)	G13	370	L 20.122	163256	120, 60	85	<i>7</i> 5	34	0.32	35/80	5.0	190


Operating Units 6–40 W 120 V/60 Hz

For fluorescent lamps Shape: 33 x 41 mm

Vacuum-impregnated with polyester resin Push-in terminal for leads: 0.5–1.5 mm² For the automatic luminaire wiring: IDC terminals for leads H05V-U 0.5 tw 130 Protection class I

These units are a combination of transformers/ballasts (high-reactance transformers) which supply the lamp with the necessary operating voltage. For these units a usual starter (220–240 V) is necessary.

Lamp			Ballast	Ballast						Capacitor			
Output	Туре	Base	Current	Туре	Ref. No.	Voltage	а	Ь	С	Weight	$\Delta t/\Delta t_{an.}$	СР	Current
W			mA			V, Hz	mm	mm	mm	kg	K	υF	mA
120 V,	60 Hz	·	·			,				10			
2x6	T5 (T16)	G5	155	SL 13.331	169496	120, 60	125	110	40	0.47	50/80	7.0	160
2x8	T5 (T16)	G5	155	SL 13.331	169496	120, 60	125	110	40	0.47	50/80	7.0	165
13	T5 (T16)	G5	165	SL 13.331	169496	120, 60	125	110	40	0.47	50/80	7.0	170
2x15	T8 (T26)	G13	330	SL 30.315	160374	120, 60	155	140	80	0.86	45/110	12.0	340
2x18	T8 (T26)	G13	370	SL 36.342	506405	120, 60	155	140	65	0.71	75/175	16.0	400
2x20	T12 (T38)	G13	370	SL 40.333	169546	120, 60	155	140	65	0.71	55/155	16.0	400
30	T8 (T26)	G13	365	SL 30.315	160374	120, 60	155	140	80	0.86	45/110	12.0	350
36	T8 (T26)	G13	430	SL 36.342	506405	120, 60	155	140	65	0.71	75/175	16.0	410
38	T8 (T26)	G13	430	SL 36.342	506405	120, 60	155	140	65	0.71	75/175	16.0	430
40	T12 (T38)	G13	430	SL 40.333	169546	120, 60	155	140	65	0.71	55/155	16.0	420

Electromagnetic Ballasts for TC and T Lamps

COMPACT AND VERSATILE

VS LAMPHOLDERS FOR COMPACT FLUORESCENT LAMPS

Vossloh-Schwabe provides a broad range of lampholders for singleended compact fluorescent lamps, with regard to which the numerous fixing methods make just about any luminaire design possible.

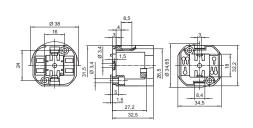
As compact fluorescent lamps generate considerably less heat in comparison to incandescent lamps, the advantages provided by thermoplastics can be fully utilized for lampholder design.

Almost all VS lampholders for compact fluorescent lamps are made of thermoplastic PBT and therefore bear the T marking T140, which refers to the maximum base temperature in accordance with EN 61199 (VDE 0715 T9). The use of this highly heat-resistant material was born of close cooperation between Vossloh-Schwabe and the world's leading lamp manufacturers that also use PBT for producing lamp bases. In connection with fatigue-resistant, stainless steel lamp mounting springs, harmonizing the casing material ensures a permanent and secure lamp fit

Lampholders and Accessories for TC Lamps

G24, GX24 lampholders	284-291
2G7 lampholders	292
2G8 lampholders	293
G23 lampholders	293-296
GR8, GR10q, GRY10q-3, GRZ10d, GRZ10t lampholders	296-297
2G10 lampholders	297
2G11/2GX11 lampholders	298-299
Accessories	300-302
GX53-1 lampholders, accessories	303-304
Technical details for fluorescent lamps	350-379
General technical details	533-540
Glossary	541 - 543

i

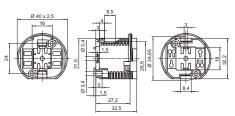

G24, GX24 Lampholders

For single-ended compact fluorescent lamps TC-D, TC-T, TC-DEL, TC-TEL

The drawings and photos contained in this chapter only show lampholders for lamps with base G24q-1. Further drawings of lamp bases can be found on page 373.

When mounting the lampholder it has to be considered that the TC-T and TC-TEL lamp is wider than the lampholder. When using the central hole for mounting additional depressions for anti-rotation pips have to be provided.

G24, GX24 lampholders
Plain casing
Casing: PBT GF, white, T140
Nominal rating: 2/500
Push-in twin terminals: 0.5-1 mm² (lamp circuit)
In addition for G24q, GX24q lampholders:
push-in terminals: 0.5-1 mm² (starter circuit)
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST4.2-C/F
Front fixing holes for screws M3
Central fixing hole for screw M3
Rotation stop
For cover caps (see p. 433-435)


Туре	Ref. No.	Base	Lamp	Output (W)	Weight (g)	Unit (pcs.)
71501	527735	G24d-1/GX24d-1	TC-D/TC-T	10, 13 / 13	13	500
71502	527736	G24d-2/GX24d-2	TC-D/TC-T	18 / 18	13	500
71503	527737	G24d-3/GX24d-3	TC-D/TC-T	26 / 26	13	500
71511	527739	G24q-1/GX24q-1	TC-DEL/TC-TEL	10, 13 / 13	14.5	500
71512	527740	G24q-2/GX24q-2	TC-DEL/TC-TEL	18 / 18	14.5	500
71513	527741	G24q-3/GX24q-3	TC-DEL/TC-TEL	26 / 26, 32	14.5	500
71519	527745	GX24q-3/-4*	TC-TEL	26, 32 / 42	14.5	500
71514	527742	GX24q-4	TC-TEL	42	14.5	500
71515	527743	GX24q-5	TC-TEL	57	15.1	500
71516	527744	GX24q-6	TC-TEL	70	15.1	500

^{*} Lampholder 527745 may only be used in luminaires that are operated with electronic ballasts that have been certified according to the applicable standards and that cover the luminaire performance range of 26, 32 and 42 W.

G24, GX24 lampholders External thread 40×2.5 IEC 60399 Casing: PBT GF, white, T140 Nominal rating: 2/500

Push-in twin terminals: 0.5-1 mm² (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: 0.5-1 mm² (starter circuit) Rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST4.2-C/F Front fixing holes for screws M3 Central fixing hole for screw M3

Rotation stop For cover caps (see p. 433-435) For screw rings (see p. 451)

0

Туре	Ref. No.	Base	Lamp	Output (W)	Weight (g)	Unit (pcs.)
71001	527502	G24d-1/GX24d-1	TC-D/TC-T	10, 13 / 13	12.7	500
71002	527503	G24d-2/GX24d-2	TC-D/TC-T	18 / 18	12.7	500
71003	527504	G24d-3/GX24d-3	TC-D/TC-T	26 / 26	12.7	500
71011	527506	G24q-1/GX24q-1	TC-DEL/TC-TEL	10, 13 / 13	15.2	500
71012	527507	G24q-2/GX24q-2	TC-DEL/TC-TEL	18 / 18	15.2	500
71013	527508	G24q-3/GX24q-3	TC-DEL/TC-TEL	26 / 26, 32	15.2	500
71019	527512	GX24q-3/-4*	TC-TEL	26, 32 / 42	15.2	500
71014	527509	GX24q-4	TC-TEL	42	15.2	500
71015	527510	GX24q-5	TC-TEL	57	15.8	500
71016	527511	GX24q-6	TC-TEL	70	15.8	500

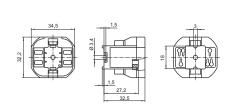
Lampholder 527512 may only be used in luminaires that are operated with electronic ballasts that have been certified according to the applicable standards and that cover the luminaire performance range of 26, 32 and 42 W.

6

G24, GX24 lampholders External thread 40×2.5 IEC 60399 Casing: PBT GF, white T140 Nominal rating: 2/500

Push-in twin terminals: 0.5–1 mm² (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: 0.5–1 mm² (starter circuit)

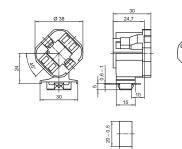
Front fixing holes for screws M3 Central fixing hole for screw M3


Rotation stop

For cover caps (see p. 433-435) For screw rings (see p. 451)

Туре	Ref. No.	Base	Lamp	Output (W)	Weight (g)	Unit (pcs.)
35812	101410	G24d-1/GX24d-1	TC-D/TC-T	10, 13 / 13	18	500
35842	106262	G24d-2/GX24d-2	TC-D/TC-T	18 / 18	18	500
35862	101448	G24d-3/GX24d-3	TC-D/TC-T	26 / 26	18	500
35912	106912	G24q-1/GX24q-1	TC-DEL/TC-TEL	10, 13 / 13	19.5	500
35942	502555	G24q-2/GX24q-2	TC-DEL/TC-TEL	18 / 18	19.5	500
35962	502556	G24q-3/GX24q-3	TC-DEL/TC-TEL	26 / 26, 32	19.5	500

G24, GX24 lampholders
Profiled shape
Casing: PBT GF, white, T140
Nominal rating: 2/500
Push-in twin terminals: 0.5 -1 mm² (lamp circuit)
In addition for G24q, GX24q lampholders:
push-in terminals: 0.5 -1 mm² (starter circuit)
Central fixing hole for screw M3
Rotation stop



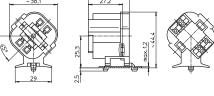
Туре	Ref. No.	Base	Lamp	Output (W)	Weight (g)	Unit (pcs.)
71101	527529	G24d-1/GX24d-1	TC-D/TC-T	10, 13 / 13	8.5	500
71102	527530	G24d-2/GX24d-2	TC-D/TC-T	18 / 18	8.5	500
71103	527531	G24d-3/GX24d-3	TC-D/TC-T	26 / 26	8.5	500
71111	527533	G24q-1/GX24q-1	TC-DEL/TC-TEL	10, 13 / 13	10.9	500
71112	527534	G24q-2/GX24q-2	TC-DEL/TC-TEL	18 / 18	10.9	500
71113	527535	G24q-3/GX24q-3	TC-DEL/TC-TEL	26 / 26, 32	10.9	500
71119	527539	GX24q-3/-4*	TC-TEL	26, 32 / 42	10.9	500
71114	527536	GX24q-4	TC-TEL	42	10.9	500
71115	527537	GX24q-5	TC-TEL	57	11.1	500
71116	527538	GX24q-6	TC-TEL	70	11.1	500

^{*} Lampholder 527539 may only be used in luminaires that are operated with electronic ballasts that have been certified according to the applicable standards and that cover the luminaire performance range of 26, 32 and 42 W.

G24, GX24 push-fit lampholders lamp position: 45°
Casing: PBT GF, white, T140
Nominal rating: 2/500
Push-in twin terminals: 0.5-1 mm² (lamp circuit)
In addition for G24q, GX24q lampholders: push-in terminals: 0.5-1 mm² (starter circuit)
Push-fit foot for cut-out 10x20 mm
for wall thickness 0.6-1 mm
Foot with facility for cable routing

Туре	Ref. No.	Base	Lamp	Output (W)	Weight (g)	Unit (pcs.)
71301	527585	G24d-1/GX24d-1	TC-D/TC-T	10, 13 / 13	10.2	500
71302	527586	G24d-2/GX24d-2	TC-D/TC-T	18 / 18	10.2	500
71303	527587	G24d-3/GX24d-3	TC-D/TC-T	26 / 26	10.2	500
71311	527589	G24q-1/GX24q-1	TC-DEL/TC-TEL	10, 13 / 13	12.1	500
71312	527590	G24q-2/GX24q-2	TC-DEL/TC-TEL	18 / 18	12.1	500
71313	527591	G24q-3/GX24q-3	TC-DEL/TC-TEL	26 / 26, 32	12.1	500
71319	527596	GX24q-3/-4*	TC-TEL	26, 32 / 42	12.1	500
71314	527592	GX24q-4	TC-TEL	42	12.1	500
71315	527594	GX24q-5	TC-TEL	57	12.6	500
71316	527595	GX24q-6	TC-TEL	70	12.6	500

Lampholder 527596 may only be used in luminaires that are operated with electronic ballasts that have been certified according to the applicable standards and that cover the luminaire performance range of 26, 32 and 42 W.



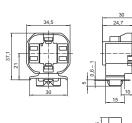
G24 push-fit lampholders Lamp position: 45° Casing: PBT GF, white, T140

Nominal rating: 2/500

Push-in twin terminals: 0.5-1 mm² (lamp circuit) In addition for G24q lampholders: push-in terminals: 0.5-1 mm² (starter circuit)

Split pins for wall thickness up to 1.2 mm

1


2

Туре	Ref. No.	Base	Lamp	Output (W)	Weight (g)	Unit (pcs.)
35814	106893	G24d-1	TC-D	10, 13	14.3	500
35844	107617	G24d-2	TC-D	18	14.3	500
35864	107618	G24d-3	TC-D	26	14.3	500
35914	107861	G24q-1	TC-DEL	10, 13	15	500
35944	108575	G24q-2	TC-DEL	18	15	500
35964	108576	G24q-3	TC-DEL	26	15	500

3

G24, GX24 push-fit lampholders Casing: PBT GF, white, T140 Nominal rating: 2/500

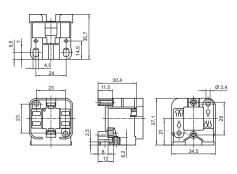
Push-in twin terminals: 0.5–1 mm² (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: 0.5–1 mm² (starter circuit) Push-fit foot for cut-out 10x20 mm for wall thickness 0.6–1 mm Foot with facility for cable routing

5

6

Туре	Ref. No.	Base	Lamp	Output (W)	Weight (g)	Unit (pcs.)
71801	528029	G24d-1/GX24d-1	TC-D/TC-T	10, 13 / 13	10.2	500
71802	528030	G24d-2/GX24d-2	TC-D/TC-T	18 / 18	10.2	500
71803	528031	G24d-3/GX24d-3	TC-D/TC-T	26 / 26	10.2	500
71811	528033	G24q-1/GX24q-1	TC-DEL/TC-TEL	10, 13 / 13	12.1	500
71812	528034	G24q-2/GX24q-2	TC-DEL/TC-TEL	18 / 18	12.1	500
71813	528035	G24q-3/GX24q-3	TC-DEL/TC-TEL	26 / 26, 32	12.1	500
71819	528039	GX24q-3/-4*	TC-TEL	26, 32 / 42	12.1	500
71814	528036	GX24q-4	TC-TEL	42	12.1	500
71815	528037	GX24q-5	TC-TEL	57	12.7	500
71816	528038	GX24q-6	TC-TEL	70	12.7	500

7

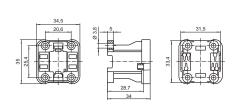

Lampholder 528039 may only be used in luminaires that are operated with electronic ballasts that have been certified according to the applicable standards and that cover the luminaire performance range of 26, 32 and 42 W.

0

9

G24, GX24 surface-mounted lampholders
Casing: PBT GF, white, T140, Nominal rating: 2/500
Push-in twin terminals: 0.5-1 mm² (lamp circuit)
In addition for G24q, GX24q lampholders:
push-in terminals: 0.5-1 mm² (starter circuit)
Base fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST4.2-C/F
Base oblong holes for self-tapping screws
ARear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
and ST4.2-C/F

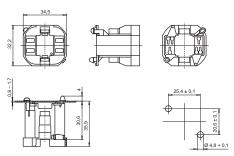
Front fixing holes for screws M3



Туре	Ref. No.	Base	Lamp	Output (W)	Weight (g)	Unit (pcs.)
71 <i>7</i> 01	527790	G24d-1/GX24d-1	TC-D/TC-T	10, 13 / 13	13.2	500
71702	527791	G24d-2/GX24d-2	TC-D/TC-T	18 / 18	13.2	500
71703	527792	G24d-3/GX24d-3	TC-D/TC-T	26 / 26	13.2	500
71711	527794	G24q-1/GX24q-1	TC-DEL/TC-TEL	10, 13 / 13	15.2	500
71712	527795	G24q-2/GX24q-2	TC-DEL/TC-TEL	18 / 18	15.2	500
71713	527796	G24q-3/GX24q-3	TC-DEL/TC-TEL	26 / 26, 32	15.2	500
71719	527800	GX24q-3/-4*	TC-TEL	26, 32 / 42	15.2	500
71714	527797	GX24q-4	TC-TEL	42	15.2	500
71715	527798	GX24q-5	TC-TEL	57	15.8	500
71716	527799	GX24q-6	TC-TEL	70	15.8	500

^{*} Lampholder 527800 may only be used in luminaires that are operated with electronic ballasts that have been certified according to the applicable standards and that cover the luminaire performance range of 26, 32 and 42 W.

G24, GX24 surface-mounted lampholders Casing: PBT GF, white, T140 Nominal rating: 2/500 Push-in twin terminals: 0.5-1 mm² (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: 0.5-1 mm² (starter circuit) Front fixing holes for screws M3

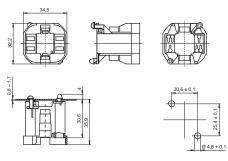

Туре	Ref. No.	Base	Lamp	Output (W)	Weight (g)	Unit (pcs.)
71201	527556	G24d-1/GX24d-1	TC-D/TC-T	10, 13 / 13	12	500
71202	527557	G24d-2/GX24d-2	TC-D/TC-T	18 / 18	12	500
71203	527558	G24d-3/GX24d-3	TC-D/TC-T	26 / 26	12	500
<i>7</i> 1211	527560	G24q-1/GX24q-1	TC-DEL/TC-TEL	10, 13 / 13	12.9	500
<i>7</i> 1212	527561	G24q-2/GX24q-2	TC-DEL/TC-TEL	18 / 18	12.9	500
71213	527562	G24q-3/GX24q-3	TC-DEL/TC-TEL	26 / 26, 32	12.9	500
<i>7</i> 1219	527566	GX24q-3/-4*	TC-TEL	26, 32 / 42	12.9	500
71214	527563	GX24q-4	TC-TEL	42	12.9	500
71215	527564	GX24q-5	TC-TEL	57	13.5	500
71216	527565	GX24q-6	TC-TEL	70	13.5	500

^{*} Lampholder 527566 may only be used in luminaires that are operated with electronic ballasts that have been certified according to the applicable standards and that cover the luminaire performance range of 26, 32 and 42 W.

G24, GX24 push-fit lampholders Casing: PBT GF, white, T140 Nominal rating: 2/500

Push-in twin terminals: 0.5-1 mm² (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: 0.5-1 mm² (starter circuit) Base split pins for wall thickness 0.8-1.7 mm

2


Туре	Ref. No.	Base	Lamp	Output (W)	Weight (g)	Unit (pcs.)
71601	527762	G24d-1/GX24d-1	TC-D/TC-T	10, 13 / 13	10.5	500
71602	527763	G24d-2/GX24d-2	TC-D/TC-T	18 / 18	10.5	500
71603	527764	G24d-3/GX24d-3	TC-D/TC-T	26 / 26	10.5	500
71611	527766	G24q-1/GX24q-1	TC-DEL/TC-TEL	10, 13 / 13	12	500
71612	527768	G24q-2/GX24q-2	TC-DEL/TC-TEL	18 / 18	12	500
71613	527769	G24q-3/GX24q-3	TC-DEL/TC-TEL	26 / 26, 32	12	500
71619	527773	GX24q-3/-4*	TC-TEL	26, 32 / 42	12	500
71614	527770	GX24q-4	TC-TEL	42	12	500
71615	527771	GX24q-5	TC-TEL	57	12.6	500
71616	527772	GX24q-6	TC-TEL	70	12.6	500

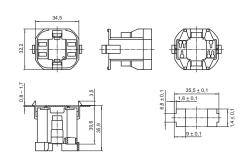
4

5

G24, GX24 push-fit lampholders Casing: PBT GF, white, T140 Nominal rating: 2/500

Push-in twin terminals: 0.5 -1 mm² (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: 0.5 -1 mm² (starter circuit) Base split pins for wall thickness 0.8 -1.7 mm

	0	
		ĥ

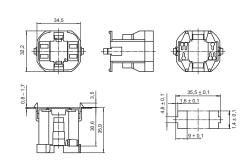

Туре	Ref. No.	Base	Lamp	Output (W)	Weight (g)	Unit (pcs.)
72201	530458	G24d-1/GX24d-1	TC-D/TC-T	10, 13 / 13	10.5	500
72202	530459	G24d-2/GX24d-2	TC-D/TC-T	18 / 18	10.5	500
72203	530460	G24d-3/GX24d-3	TC-D/TC-T	26 / 26	10.5	500
72211	530462	G24q-1/GX24q-1	TC-DEL/TC-TEL	10, 13 / 13	12	500
72212	530463	G24q-2/GX24q-2	TC-DEL/TC-TEL	18 / 18	12	500
72213	530464	G24q-3/GX24q-3	TC-DEL/TC-TEL	26 / 26, 32	12	500
72219	530468	GX24q-3/-4*	TC-TEL	26, 32 / 42	12	500
72214	530465	GX24q-4	TC-TEL	42	12	500
72215	530466	GX24q-5	TC-TEL	57	12.6	500
72216	530467	GX24q-6	TC-TEL	70	12.6	500

Lampholder 530468 may only be used in luminaires that are operated with electronic ballasts that have been certified according to the applicable standards and that cover the luminaire performance range of 26, 32 and 42W.

VSSLOH SCHWABE

^{*} Lampholder 527773 may only be used in luminaires that are operated with electronic ballasts that have been certified according to the applicable standards and that cover the luminaire performance range of 26, 32 and 42W.

G24, GX24 push-fit lampholders
Casing: PBT GF, white, T140
Nominal rating: 2/500
Push-in twin terminals: 0.5-1 mm² (lamp circuit)
In addition for G24q, GX24q lampholders: push-in terminals: 0.5-1 mm² (starter circuit)
Rear split pins for wall thickness 0.8-1.7 mm
Width of split pin: 6.5 mm



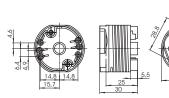
Туре	Ref. No.	Base	Lamp	Output (W)	Weight (g)	Unit (pcs.)
72001	528089	G24d-1/GX24d-1	TC-D/TC-T	10, 13 / 13	10.4	500
72002	528090	G24d-2/GX24d-2	TC-D/TC-T	18 / 18	10.4	500
72003	528091	G24d-3/GX24d-3	TC-D/TC-T	26 / 26	10.4	500
72011	528093	G24q-1/GX24q-1	TC-DEL/TC-TEL	10, 13 / 13	12.3	500
72012	528094	G24q-2/GX24q-2	TC-DEL/TC-TEL	18 / 18	12.3	500
72013	528095	G24q-3/GX24q-3	TC-DEL/TC-TEL	26 / 26, 32	12.3	500
72019	528099	GX24q-3/-4*	TC-TEL	26, 32 / 42	12.3	500
72014	528096	GX24q-4	TC-TEL	42	12.3	500
72015	528097	GX24q-5	TC-TEL	57	12.9	500
72016	528098	GX24q-6	TC-TEL	70	12.9	500

^{*} Lampholder 528099 may only be used in luminaires that are operated with electronic ballasts that have been certified according to the applicable standards and that cover the luminaire performance range of 26, 32 and 42 W.

G24, GX24 push-fit lampholders
Casing: PBT GF, white, T140
Nominal rating: 2/500
Push-in twin terminals: 0.5-1 mm² (lamp circuit)
In addition for G24q, GX24q lampholders: push-in terminals: 0.5-1 mm² (starter circuit)
Rear split pins for wall thickness 0.8-1.7 mm
Width of split pin: 4.5 mm

Туре	Ref. No.	Base	Lamp	Output (W)	Weight (g)	Unit (pcs.)
72101	528116	G24d-1/GX24d-1	TC-D/TC-T	10, 13 / 13	10.4	500
72102	528117	G24d-2/GX24d-2	TC-D/TC-T	18 / 18	10.4	500
72103	528118	G24d-3/GX24d-3	TC-D/TC-T	26 / 26	10.4	500
72111	528120	G24q-1/GX24q-1	TC-DEL/TC-TEL	10, 13 / 13	12.3	500
72112	528121	G24q-2/GX24q-2	TC-DEL/TC-TEL	18 / 18	12.3	500
72113	528122	G24q-3/GX24q-3	TC-DEL/TC-TEL	26 / 26, 32	12.3	500
72119	528126	GX24q-3/-4*	TC-TEL	26, 32 / 42	12.3	500
72114	528123	GX24q-4	TC-TEL	42	12.3	500
72115	528124	GX24q-5	TC-TEL	57	12.9	500
72116	528125	GX24q-6	TC-TEL	70	12.9	500

^{*} Lampholder 528126 may only be used in luminaires that are operated with electronic ballasts that have been certified according to the applicable standards and that cover the luminaire performance range of 26, 32 and 42 W.



G24, GX24 rotary lock lampholders External thread 40x2.5 IEC 60399 Casing: PBT GF, white, T120

Nominal rating: 1/500

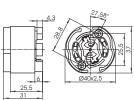
Push-in twin terminals: 0.5–0.75 mm 2 (lamp circuit) Push-in terminals: 0.5-0.75 mm² (starter circuit)

Front fixing holes for screws M3 For screw rings (see p. 451)

Туре	Ref. No.	Base	Lamp	Output (W)	Weight (g)	Unit (pcs.)
45940	507993	G24q-2/GX24q-2	TC-DEL/TC-TEL	18 / 18	20.2	500
45960	507994	G24q-3/GX24q-3	TC-DEL/TC-TEL	26 / 26, 32	20.2	500
45930	507992	G24q-3/GX24q-3/-4*	TC-DEL/TC-TEL	26 / 26, 32 / 42	20.2	500
45980	507995	GX24q-4	TC-TEL	42	20.2	500

Lampholder 507992 may only be used in luminaires that are operated with electronic ballasts that have been certified according to the applicable standards and that cover the luminaire performance range of 26, 32 and 42 W.

GX24q-5 rotary lock lampholder for TC-TEL lamps 57 W Plain casing


Casing: PPS, black, T150 Nominal rating: 1/500

Push-in twin terminals: $0.5-0.75 \text{ mm}^2$ (lamp circuit) Push-in terminals: 0.5-0.75 mm² (starter circuit)

Front fixing holes for screws M3 Weight: 28 g, unit: 500 pcs.

Type: 45990 Ref. No.: 508159

2G7 Lampholders

For single-ended compact fluorescent lamps TC-SEL

2G7 push-fit lampholder
Casing: PBT GF, white, T140, nominal rating: 2/250
Push-in twin terminals: 0.5-1 mm² (lamp circuit)
Push-in terminals: 0.5-1 mm² (starter circuit)
Rear fixing hole for self-tapping screw
acc. to ISO 1481/7049-ST4.2-C/F

Front fixing holes for screws M3 Locking of the lampholder by a 15° turn

Weight: 13.7 g, unit: 500 pcs.

Type: 35610

Ref. No.: 109235

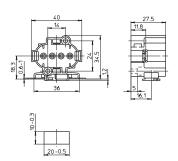
2G7 push-fit lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: 0.5-1 mm² (lamp circuit)
Push-in terminals: 0.5-1 mm² (starter circuit)
Push-fit foot for cut-out 10x20 mm
for wall thickness 0.6-1 mm
Weight: 18 g, unit: 500 pcs.

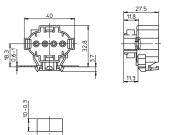
Type: 35613 **Ref. No.: 500574**

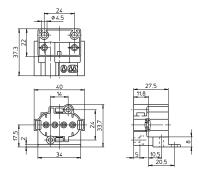
2G7 surface-mounted lampholder Casing: PBT GF, white, T140, nominal rating: 2/250 Push-in twin terminals: 0.5–1 mm² (lamp circuit) Push-in terminals: 0.5–1 mm² (starter circuit)

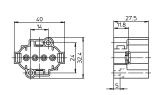
Fixing holes for screws M4
Lateral and rear fixing holes for self-tapping

screws acc. to ISO 1481/7049-ST4.2-C/F Front fixing holes for screws M3


Weight: 18.1 g, unit: 500 pcs. Type: 35611

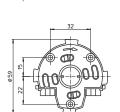

Ref. No.: 109238


2G7 surface-mounted lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: 0.5-1 mm² (lamp circuit)
Push-in terminals: 0.5-1 mm² (starter circuit)
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST4.2-C/F
Front fixing holes for screws M3


Weight: 14 g, unit: 500 pcs. Type: 35612

Ref. No.: 109240

2G8 Lampholder


For single-ended compact fluorescent lamps TC-TEL

2

2G8 surface-mounted lampholder Casing: PBT GF, white, T140 Nominal rating: 2/500 Push-in twin terminals: 0.5-1 mm² (

Push-in twin terminals: 0.5-1 mm² (lamp circuit) Push-in terminals: 0.5-1 mm² (preheat circuit) Rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST4.2-C/F Front fixing holes for screws M3 Weight: 19.6 g, unit: 250 pcs.

Type: 59000 **Ref. No.: 526755**

3

4

G23 Lampholders

For single-ended compact fluorescent lamps TC-S

If the central hole is used for mounting, make sure there is no risk of rotation.

G23 surface-mounted lampholder Casing: PBT GF, white, T140 Nominal rating: 2/250 Push-in twin terminals: 0.5-1 mm² Rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST2.9-C/F Central fixing hole for screw M3 Weight: 11.6 g, unit: 500 pcs.

Type: 35002 **Ref. No.: 101290**

36.5 97.6 XX

7

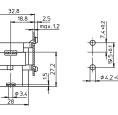
8

G23 lampholder Casing: PBT GF, white, T140 Nominal rating: 2/250 Push-in twin terminals: 0.5-1 mm²

Front and rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST2.9-C/F

Central fixing hole for screw M3 Weight: 9 g, unit: 500 pcs.

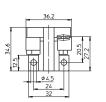
Type: 35003 **Ref. No.: 101294**

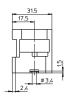

9

10

G23 push-fit lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: 0.5-1 mm²
Split pins for wall thickness up to 1.2 mm
Central fixing hole for screw M3
Weight: 12 g, unit: 500 pcs.

Type: 35004 **Ref. No.: 101298**

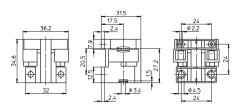

36.2





G23 surface-mounted lampholder Casing: PBT GF, white, T140 Nominal rating: 2/250 Push-in twin terminals: 0.5-1 mm² Fixing holes for screws M4 Central fixing hole for screw M3 Weight: 12.4 g, unit: 500 pcs.

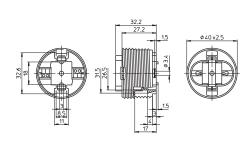
Type: 35006 **Ref. No.: 101306**



G23 lampholder
For push-fit on track
Casing: PBT GF, white, T140, nominal rating: 2/250
Push-in twin terminals: 0.5–1 mm²
Lateral fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Fixing holes for screws M4
Central fixing hole for screw M3
Weight: 14 g, unit: 500 pcs.

Type: 35007 **Ref. No.: 101310**

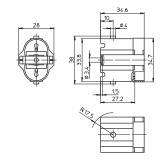
G23 surface-mounted lampholder Casing: PBT GF, white, T140 Nominal rating: 2/250 Push-in twin terminals: 0.5-1 mm² Fixing holes for screws M4 Central fixing hole for screw M3 Weight: 11.1 g, unit: 500 pcs.


Type: 35008 **Ref. No.: 101314**

G23 lampholder, for cover caps (see p. 433-435) External thread 40x2.5 IEC 60399
Casing: PBT GF, white, T140, nominal rating: 2/250
Push-in twin terminals: 0.5-1 mm²
Central fixing hole for screw M3
When using the central hole for mounting additional depressions for anti-rotation pips have to be provided.
For screw rings (see p. 451)
Weight: 16.3 g, unit: 500 pcs.

Type: 35010 **Ref. No.: 101320**

G23 lampholder


Casing: PBT GF, white, T140 Nominal rating: 2/250

Push-in twin terminals: 0.5-1 mm²

Lateral pivots for bracket 105820 (see p. 300)

Central fixing hole for screw M3 Weight: 11 g, unit: 500 pcs.

Type: 35011 Ref. No.: 101324

G23 surface-mounted lampholder Casing: PBT GF, white, T140 Nominal rating: 2/250 Push-in twin terminals: 0.5-1 mm² Front fixing holes for screws M3 Rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST4.2-C/F Weight: 11.9 g, unit: 500 pcs.

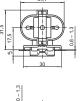
Type: 35012

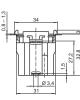
Ref. No.: 108898

G23 push-fit lampholder Casing: PBT GF, white, T140 Nominal rating: 2/250 Push-in twin terminals: 0.5-1 mm² Push-fit foot for wall thickness 0.8-1.3~mmCentral fixing hole for screw M3 Weight: 11 g, unit: 500 pcs.

Type: 35051

Ref. No.: 101344





G23 push-fit lampholder Casing: PBT GF, white, T140 Nominal rating: 2/250 Push-in twin terminals: $0.5-1 \text{ mm}^2$ Front split pins for wall thickness 0.8-1.3 mm Central fixing hole for screw M3 Weight: 12 g, unit: 500 pcs.

Type: 35052

Ref. No.: 101346

G23 lampholder Casing: PBT GF, white, T140 Nominal rating: 2/250 Push-in terminals: 0.5 – 1 mm² Central fixing hole for screw M3 Particularly suitable for narrow mounting (e.g. for insertion into tube systems) Weight: 8 g, unit: 500 pcs.

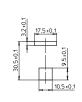
Type: 35201 Ref. No.: 101364

G23 lampholder

Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in terminals: 0.5-1 mm²
Central fixing hole for screw M3
Particularly suitable for narrow mounting (e.g. for insertion into tube systems)
Weight: 8.2 g, unit: 500 pcs.

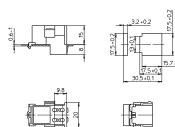
Type: 35202 **Ref. No.: 101367**

GR8, GR10q, GRY10q-3, GRZ10d, GRZ10t Lampholders

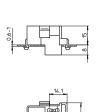

For single-ended compact fluorescent lamps TC-DD

GR8 push-fit lampholder
Casing: PC, white
Nominal rating: 2/250
Base and front push-in terminals: 0.5-1 mm²
Fixing clips for wall thickness up to 1 mm
Weight: 5.4 g, unit: 500 pcs.

Type: 35100 **Ref. No.: 101358**



GR 10q push-fit lampholder Casing: PC, white, T110 Nominal rating: 2/250 Base push-in terminals: 0.5-1 mm² Base fixing clip for wall thickness 0.6-1 mm Weight: 6.2 g, unit: 1000 pcs.


Type: 35500 **Ref. No.: 108927**

GR 10q push-fit lampholder Casing: PC, white, T110 Nominal rating: 2/250 Base push-in terminals: 0.5–1 mm² Base split pins for wall thickness 0.6–1 mm Weight: 6.2 g, unit: 1000 pcs.

Type: 35510 **Ref. No.: 108928**

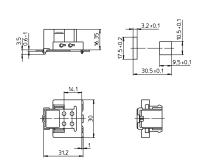
GR 10q push-fit lampholder Material: PBT, white, T110 Nominal rating: 2/250 Lateral push-in terminals: 0.5-1 mm² Base fixing clip for wall thickness 0.6-1 mm

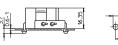
Weight: 7.2 g, unit: 1000 pcs.

Type: 35530 Ref. No.: 108932

GR 10q push-fit lampholder Material: PBT, white, T110 Nominal rating: 2/250 Lateral push-in terminals: 0.5-1 mm²

Base split pins for wall thickness 0.6-1 mm

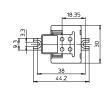

Weight: 7.2 g, unit: 1000 pcs.


Type: 35540 Ref. No.: 108933

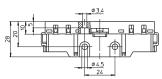
GR 10q surface-mounted lampholder Material: PBT, white, T110 Nominal rating: 2/250 Lateral push-in terminals: 0.5-1 mm²

Fastening slots for screws M3 Weight: 7.4 g, unit: 1000 pcs.

Type: 35550 Ref. No.: 108934



2G10 Lampholders


For single-ended compact fluorescent lamps TC-F

2G10 surface-mounted lampholder, with lamp lock Casing: PBT GF, white, T140, nominal rating: 2/250 Push-in twin terminals: 0.5-1 mm² Lateral lamp insertion Front fixing holes for cheese-head screws M3 Rear fixing holes for self-tapping screws

acc. to ISO 1481/7049-ST4.2-C/F Base fixing holes for screws M4 Weight: 25.5 g, unit: 250 pcs.

Type: 36300 Ref. No.: 101521

2G11/2GX11 Lampholders

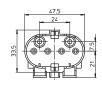
For single-ended compact fluorescent lamps TC-L

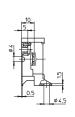
2G11 surface-mounted lampholder Casing: PBT GF, white, T140, nominal rating: 2/500 Push-in twin terminals: 0.5-1 mm² (lamp circuit) Push-in terminals: 0.5-1 mm² (starter circuit) Lateral pivots for bracket 105824 (see p. 300) Base fixing holes for screws M4 Rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST4.2-C/F Front fixing holes for screws M3 Weight: 13.7 g, unit: 500 pcs.

Type: 36050 Ref. No.: 101485

2G11 surface-mounted lampholder Casing: PBT GF, white, T140, nominal rating: 2/500Push-in twin terminals: 0.5-1 mm² (lamp circuit) Push-in terminals: 0.5-1 mm² (starter circuit) Lateral pivots for bracket 105824 (see p. 300) Rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST4.2-C/F Front fixing holes for screws M3 Weight: 12.7 g, unit: 500 pcs.

Type: 36051 Ref. No.: 101489


2GX11 surface-mounted lampholder Casing: PBT GF, white, T140, nominal rating: 2/500 Push-in twin terminals: 0.5 – 1 mm² (lamp circuit) Push-in terminals: 0.5-1 mm² (starter circuit) Lateral pivots for bracket 105824 (see p. 300) Base fixing holes for screws M4 Rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST4.2-C/F Front fixing holes for screws M3 Weight: 13.7 g, unit: 500 pcs.


Type: 36020 new Ref. No.: 546609

> 2GX11 surface-mounted lampholder Casing: PBT GF, white, T140, nominal rating: 2/500 Push-in twin terminals: 0.5-1 mm² (lamp circuit) Push-in terminals: 0.5-1 mm² (starter circuit) Lateral pivots for bracket 105824 (see p. 300) Rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST4.2-C/F Front fixing holes for screws M3 Weight: 12.7 g, unit: 500 pcs.

Type: 36021

new Ref. No.: 546612

2G11 push-fit lampholder

Casing: PBT GF, white, T140, nominal rating: 2/500 Push-in twin terminals: 0.5–1 mm² (lamp circuit) Push-in terminals: 0.5–1 mm² (starter circuit)

Lamp position: vertical

Rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST4.2-C/F Front fixing holes for screws M3 Weight: 14.3 g, unit: 500 pcs.

Type: 36052 **Ref. No.: 101491**

2G11 push-fit lampholder

Casing: PBT GF, white, T140, nominal rating: 2/500 Push-in twin terminals: 0.5-1 mm² (lamp circuit) Push-in terminals: 0.5-1 mm² (starter circuit) Rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST4.2-C/F Front fixing holes for screws M3 Option for base wiring Weight: 14.1 g, unit: 500 pcs.

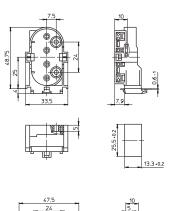
Type: 36053

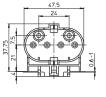
Ref. No.: 101493

2G11 push-fit lampholder For the automatic luminaire wiring Casing: PBT GF, white, T140 Nominal rating: 2/250 IDC terminals for leads H05V-U 0.5

The lampholder is wired in its horizontal position before being brought into its vertical service position, to assist lamp changes, it can be swiveled by $25\,^\circ$

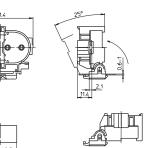
Weight: 12 g, unit: 500 pcs.

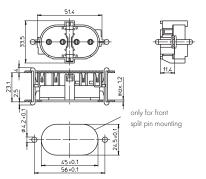

Type: 36010


Ref. No.: 500105

2G11 built-in lampholder
For the automatic luminaire wiring
Casing: PBT GF, white, T140
Nominal rating: 2/250
IDC terminals for leads H05V-U 0.5
Front and rear split pins
for wall thickness up to 1.2 mm
Weight: 10.5 g, unit: 500 pcs.

Type: 36011


Ref. No.: 500106



wiring position

3

4

5

6

7

8

9

10

Accessories

For single-ended compact fluorescent lamps

The luminaire manufacturer is responsible for the right choice of accessories. Cover caps for G24/GX24 lampholders (see p. 433-435)

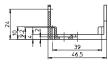
Bracket

For G23 lampholder 101324 (see p. 295) To swivel the lampholder when changing the lamp Material: PC, white Oblong holes for screws M4

Weight: 3.1 g, unit: 500 pcs. Type: 97515

Ref. No.: 105820

Bracket


For 2G11 lampholders 101485 and 101489 (see p. 298) To swivel the lampholder when changing the lamp Material: PC, white Oblong holes for screws M4 Base fixing holes for self-tapping screws acc. to ISO 1481/7049-ST2.9-C/F Weight: 3.7 g, unit: 500 pcs.

Type: 97516 Ref. No.: 105824

Lamp support for TC-D, TC-DEL lamps Material: PC, white, UV-stabilised Lamp position: 45° Fixing foot with slot for screw M3.5

Weight: 1.5 g, unit: 500 pcs. Type: 97031

Ref. No.: 105448

Ref. No.: 105775 foot, PC, white

Ref. No.: 105776 bracket, PC, crystal-clear,

UV-stabilised

Ref. No.: 106416 bracket, PC, white, UV-stabilised

Lamp supports for TC-S, TC-SEL lamps Height adjustable H: 27.5/30.5/33.5 mm Push-fit foot for cut-out \varnothing 5.5 mm for wall thickness up to 1 mm Weight: 0.7/0.8/0.8 g, unit: 500 pcs.

Type: 35061

Ref. No.: 105931 foot, PC, white Ref. No.: 105776 bracket, PC, crystal-clear,

UV-stabilised

Ref. No.: 106416 bracket, PC, white,

UV-stabilised

Lamp supports for TC-L lamps Height adjustable H: 21/24/27 mm Push-fit foot for cut-out \varnothing 5.5 mm for wall thickness up to 1 mm Weight: 0.4/1.3/1.1 g, unit: 500 pcs.

Type: 35760

Ref. No.: 105775 foot, PC, white

Ref. No.: 105777 bracket, PC, crystal-clear,

UV-stabilised

bracket, PC, white, Ref. No.: 106417

UV-stabilised

Lamp supports for TC-L lamps Height adjustable H: 31/34/37 mm Push-fit foot for cut-out \varnothing 5.5 mm for wall thickness up to 1 mm

Weight: 0.7/1.3/1.1 g, unit: 500 pcs.

Type: 35761

Ref. No.: 105931 foot, PC, white

Ref. No.: 105777 bracket, PC, crystal-clear,

UV-stabilised

Ref. No.: 106417 bracket, PC, white,

UV-stabilised

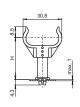
Lamp supports for TC-S, TC-SEL lamps

Material: stainless steel Weight: 1.3 g, unit: 500 pcs.

Type: 93056 push-fit foot for \varnothing 5.5 mm

Ref. No.: 509522

Type: 93057 push-fit foot for 8.5×10.5 mm


Ref. No.: 509521

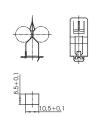
Lamp supports for TC-F, TC-L lamps Material: stainless steel Weight: 1.5 g, unit: 500 pcs. Type: 93058 push-fit foot for \varnothing 5.5 mm

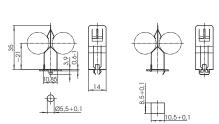
Ref. No.: 509520

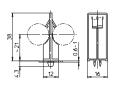
Type: 93059 push-fit foot for 8.5×10.5 mm

Ref. No.: 509519



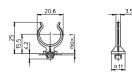






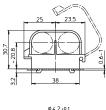
Lamp supports for TC-F, TC-L lamps
For wall thickness 0.6-1 mm
Material: PC, white, UV-stabilised
Weight: 1.3 g, unit: 500 pcs.
Type: 97638 push-fit foot for ∅ 5.5 mm

Ref. No.: 105981



Lamp support for TC-L lamps Material: PC, white, UV-stabilised Push-fit foot for cut-out \varnothing 5.5 mm for wall thickness up to 1 mm Weight: 0.7 g, unit: 500 pcs.

Type: 36060 **Ref. No.: 108878**



Lamp support for TC-L lamps Material: PC, crystal-clear, UV-stabilised Lockable Base split pins for wall thickness 0.6–1 mm

Weight: 4 g, unit: 500 pcs.

Type: 36061

Ref. No.: 101497

GX53-1 Lampholders, Accessories

For single-ended compact fluorescent lamps with integrated ballasts

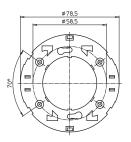
GX53-1 lampholder

Casing: PC, white, T100, nominal rating: 2/250

Push-in terminals for through-wiring for single-core leads: 0.5-1 mm²

for stranded leads:

0.75 mm², tinned lead ends


Fixing holes for screws M3

Weight: 12.8 g, unit: 200 pcs.

Type: 11000

Ref. No.: 530878

GX53-1 lampholder

Fixing springs for installation into furniture panels Casing: PC, white, T100, nominal rating: 2/250

Push-in terminals for through-wiring for single-core leads: 0.5-1 mm²

for stranded leads:

 $0.75\ \text{mm}^2$, tinned lead ends

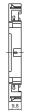
Cut-out: Ø 78+0.2 mm

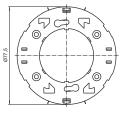
Weight: 13.2 g, unit: 200 pcs.

Type: 11010

Ref. No.: 530879

Cord grip/cover plate for GX53-1 lampholders For leads HO3VVH2-F 2XO.75, tinned lead ends


For luminaires of protection class II


Material: PC, white

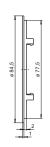
Weight: 1.6 g, unit: 200 pcs.

Type: 97278

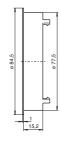
Ref. No.: 504939

Surface-mounted installation ring For wood or furniture panels Material: PC, white Weight: 10.4 g, unit: 100 pcs.

Type: 97277 Ref. No.: 504938



Surface-mounted installation ring, flat For built-in into furniture panels Material: PC, white Weight: 2.1 g, unit: 200 pcs.

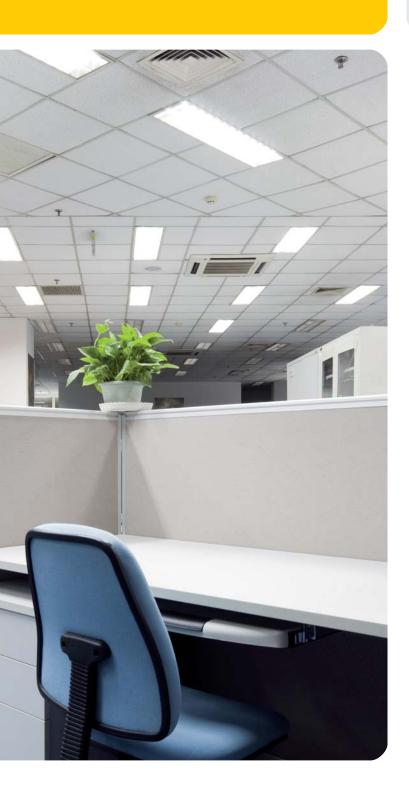

Type: 97272

Ref. No.: 504933

Surface-mounted installation ring, high For built-in into furniture panels Material: PC, white Weight: *5.7* g, unit: 100 pcs.

Type: 97281 **Ref. No.: 505118**

Surface-mounted installation ring For built-in into furniture panels Material: PC, transparent Weight: 12.5 g, unit: 100 pcs. Type: 97280


Ref. No.: 505003

LAMPHOLDERS FOR T5, T8, T12 AND T2 LAMPS

VS LAMPHOLDERS FOR DOUBLE-ENDED FLUORESCENT LAMPS

Vossloh-Schwabe's comprehensive range of lampholders for doubleended fluorescent lamps covers all major fixing methods. Push-through, push-fit and built-in lampholders with split pins or catches are available just as models with screw and push fittings.

High-grade materials for the contacts and thermoplastics for the casings guarantee reliable contacts and a long service life of the components.

Special G13 lampholders for the USA and Canada can be found under **www.unvlt.com**.

Lampholders and Accessories for T Lamps

G5 lampholders	308-315
G5 lampholders, accessories	308-312
G5 twin lampholder	313
G5 lampholders, degree of protection IP54/IP65/IP67	313-314
2GX13 lampholders, accessories	315
G13 lampholders	316-336
G13 push-through lampholders	316-318
G13 push-fit lampholders	319-321
G 13 push-fit twin lampholders, accessories	322-323
G13 built-in lampholders	323-327
G13 surface-mounted lampholders	327-328
Accessories for T8 and T12 lamps	328-330
G13 lampholders, degree of protection IP54/IP65/IP67, accessories	331 - 335
G10q lampholders, accessories	336
W4.3×8.5d lampholders	337
Technical details for fluorescent lamps	350-379
General technical details	533-540
Glossary	.541543

G5 Lampholders, Accessories

For fluorescent lamps T5 (T16)

Max. permitted temperature T_m on the rear side of the lampholder: 110 $^{\circ}\text{C}$

G5 push-through/surface-mounted lampholder Lamp axis push-through lampholder: 13.2 mm Lamp axis surface-mounted lampholder: 15.2 mm

Casing: PC, white, T110 Nominal rating: 2/500 Push-in terminals: 0.5-1 mm²

Lateral fixing clips for wall thickness 0.5-1.5 mm

Fixing slot for screw M3 Weight: 3.2 g, unit: 1000 pcs.

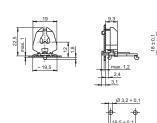
Type: 09105 **Ref. No.: 100305**

G5 built-in lampholder Casing: PC, white, T110 Nominal rating: 2/500 Push-in terminals: 0.5-1 mm² Rear split pins for wall thickness up to 1.2 mm

Weight: 2.6 g, unit: 1000 pcs.

Type: 09205

Ref. No.: 100310



G5 built-in/push-fit lampholder lamp axis: 12 mm Casing: PC, white, T110 Nominal rating: 2/500 Push-in terminals: 0.5-1 mm²

Rear split pins for wall thickness up to 1.2 mm Base split pins for wall thickness up to 1 mm

Weight: 2.9 g, unit: 1000 pcs.

Type: 09210 **Ref. No.: 106455**

G5 push-through lampholders
For the automatic luminaire wiring
Casing: PBT GF, white, frontplate: PC, white
Rotor: PBT GF, white, T140, lamp axis: 15 mm
Nominal rating: 2/500
IDC terminals for leads H05V-U 0.5
Lateral fixing clips for wall thickness 0.5–1.5 mm

Weight: 5 g, unit: 1000 pcs. Type: 09420/09421

Ref. No.: 532377 with stop **Ref. No.: 532378** without stop

G5 push-through lampholders For the automatic luminaire wiring

Casing: PBT GF, white, frontplate: PC, white Rotor: PBT GF, white, T140, lamp axis: 20 mm

Nominal rating: 2/500

IDC terminals for leads H05V-U 0.5

Lateral fixing clips for wall thickness 0.5-1.5 mm

Weight: 5.6 g, unit: 1000 pcs. Type: 09422/09423

Ref. No.: 532379 Ref. No.: 532380 without stop

G5 push-fit lampholder For the automatic luminaire wiring

Lamp axis: 18 mm

Casing: PC, white, rotor: PBT GF, white, T130

Nominal rating: 2/500

IDC terminals for leads H05V-U 0.5 Lateral push-in twin terminals: 0.5-1 mm²

Weight: 5.5 g, unit: 1000 pcs.

Type: 09900

Ref. No.: 534644

For the automatic luminaire wiring

Casing: PC, white, rotor: PBT GF, white, T130

Nominal rating: 2/500

IDC terminals for leads $H05V-U\ 0.5$ Rear split pins for wall thickness up to 1.2 mm

Weight: 3.7/4.1 g, unit: 1000 pcs.

Type: 09145

Ref. No.: 501533

Type: 09146 with spring adjustment

Ref. No.: 501534

G5 built-in lampholder

Casing: PBT GF, white, rotor: PBT GF, white

T140, nominal rating: 2/500 Push-in twin terminals: 0.5 - 1 mm²

Lateral fixing clips

Weight: 2.8 g, unit: 1000 pcs.

Type: 09404

Ref. No.: 505732

Casing: PBT GF, white, rotor: PBT GF, white

T140, nominal rating: 2/500 Push-in twin terminals: 0.5-1 mm²

Rear split pins for wall thickness up to 1.2 mm

Weight: 2.9/3.3 g, unit: 1000 pcs.

Type: 09405

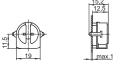
Ref. No.: 505733

Type: 09406 with spring adjustment

Ref. No.: 505734

G5 built-in lampholder

Lampholder thickness: 12.5 mm


Casing: PBT GF, white, rotor: PBT GF, white

T140, nominal rating: 2/500 Push-in twin terminals: 0.5-1 mm²

Rear split pins for wall thickness up to 1 $\ensuremath{\mathsf{mm}}$

Weight: 3 g, unit: 1000 pcs.

Type: 09407 **Ref. No.: 508590**

G5 built-in lampholders

Casing: PBT GF, white, rotor: PBT GF, white

T140, nominal rating: 2/500 Push-in twin terminals: 0.5-1 mm²

Rear split pins for wall thickness up to 1.2 mm

Weight: 2.9/3.2 g, unit: 1000 pcs.

Type: 09415

Ref. No.: 505735

Type: 09416 with spring adjustment

Ref. No.: 505736

G5 push-through lampholders

Lamp axis: 15 mm

Casing: PBT GF, white, rotor: PBT GF, white

T140, nominal rating: 2/500 Push-in twin terminals: 0.5-1 mm²

Lateral fixing clips for wall thickness 0.5 – 1.5 mm

Weight: 3.5/3.4 g, unit: 1000 pcs.

Type: 09420/09421

Ref. No.: 505737 with stop Without stop

G5 push-through lampholders

Lamp axis: 20 mm

Casing: PBT GF, white, rotor: PBT GF, white

T140, nominal rating: 2/500 Push-in twin terminals: 0.5-1 mm²

Lateral fixing clips for wall thickness 0.5 - 1.5 mm

Weight: 4.1 g, unit: 1000 pcs. Type: 09432/09433

new Ren Res.

new Ref. No.: 545933 with stop

new Ref. No.: 545935 without stop

G5 push-through lampholders Lamp axis: 25 mm

Casing: PBT GF, white, rotor: PBT GF, white T140, nominal rating: 2/500

T140, nominal rating: 2/500 Push-in twin terminals: 0.5-1 mm²

Lateral fixing clips for wall thickness $0.5-1.5\ \mathrm{mm}$

Weight: 4.5 g, unit: 1000 pcs. Type: 09434/09435

newRef. No.: 545937with stopnewRef. No.: 545939without stop

G5 push-through lampholders

Lamp axis: 35 mm

Casing: PBT GF, white, rotor: PBT GF, white

T140, nominal rating: 2/500 Push-in twin terminals: 0.5-1 mm²

Lateral fixing clips for wall thickness 0.5-1.5 mm

Weight: 4.6 g, unit: 1000 pcs. Type: 09426/09427

G5 push-fit lampholder Lamp axis: 14 mm

Base or lateral wiring Weight: 3.3 g, unit: 1000 pcs.

Type: 09440 Ref. No.: 505747

T140, nominal rating: 2/500 Push-in twin terminals: 0.5-1 mm²

Ref. No.: 505745 Ref. No.: 505746 without stop

Casing: PBT GF, white, rotor: PBT GF, white

Rear fixing clips for wall thickness 0.6-1 mm

7,15 ±0,1

G5 push-fit lampholder Lamp axis: 18 mm

Casing: PBT GF, white, rotor: PBT GF, white

T140, nominal rating: 2/500Push-in twin terminals: 0.5-1 mm²

Rear fixing clips for wall thickness 0.6-1 mm

Base or lateral wiring Weight: 3.9 g, unit: 1000 pcs.

Type: 09446

new Ref. No.: 545894

G5 push-fit lampholder Lamp axis: 23 mm

Casing: PBT GF, white, rotor: PBT GF, white

T140, nominal rating: 2/500 Push-in twin terminals: 0.5-1 mm²

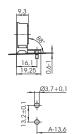
Rear fixing clips for wall thickness 0.6-1 mm

Base or lateral wiring

Weight: 4.2 g, unit: 1000 pcs. Type: 09447

new Ref. No.: 545896

G5 push-fit lampholder Lamp axis: 15 mm


Casing: PBT GF, white, rotor: PBT GF, white

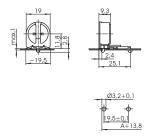
T140, nominal rating: 2/500Push-in twin terminals: 0.5-1 mm² Base split pins for wall thickness 0.6-1 mm Weight: 3.4 g, unit: 1000 pcs.

Type: 09450

Ref. No.: 505750

G5 push-fit lampholder Lamp axis: 11.8 mm

Casing: PBT GF, white, rotor: PBT GF, white

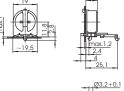

T140, nominal rating: 2/500 Push-in twin terminals: $0.5-1 \ \text{mm}^2$

Base split pins for wall thickness up to 1 mm

Lateral wiring

Weight: 3.1 g, unit: 1000 pcs.

Type: 09460 Ref. No.: 505751



G5 built-in/push-fit lampholder Lamp axis: 11.8 mm Casing: PBT GF, white, rotor: PBT GF, white T140, nominal rating: 2/500 Push-in twin terminals: 0.5-1 mm² Rear split pins for wall thickness up to 1.2 mm Base split pins for wall thickness up to 1 mm

Lateral wiring

Weight: 3.2 g, unit: 1000 pcs.

Type: 09465

Ref. No.: 508314

G5 lampholder For push-fit onto the lamp Casing: PBT GF, white, T130 Nominal rating: 2/500 Push-in twin terminals: $0.5-1 \ \text{mm}^2$ Pin support for reliable contact Lamp support 109685 (see below) Weight: 3.7 g, unit: 1000 pcs.

Type: 09170 Ref. No.: 109686

Lamp support for lamps \varnothing 16 mm Material: zinc-coated polished steel Fixing hole for screw M3.5 Weight: 1.3 g, unit: 1000 pcs. Type: 94088

Ref. No.: 109685

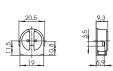
Lamp support for lamps Ø 16 mm Material: PC, white, UV-stabilised Push-fit foot for cut-out \varnothing 5.5 mm Weight: 1 g, unit: 500 pcs.

Type: 84001 Ref. No.: 500757

G5 Twin Lampholder

For fluorescent lamps T5 (T16)

Max. permitted temperature T_m on the rear side of the lampholder: 110 $^{\circ}\text{C}$


G5 built-in lampholder Casing: PBT GF, white, rotor: PBT GF, white T140, nominal rating: 2/500

Push-in twin terminals: 0.5-1 mm² Lateral fixing clips

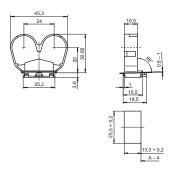
Weight: 2.8 g, unit: 1000 pcs.

Ref. No.: 505732

Type: 09404

Push-fit bracket

For two G5 built-in lampholders 505732


Material: PC, white Lamp axis: 20 mm

Distance between two lamp axes: 24~mm Push-fit foot for wall thickness 0.5--1~mm

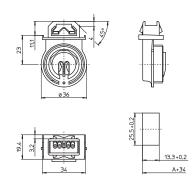
Weight: 3.5 g, unit: 1000 pcs.

Type: 97677

Ref. No.: 507562

G5 Lampholders, Degree of Protection IP54/IP65/IP67

For fluorescent lamps T5 (T16) For luminaires of protection class I and II


Lampholders protected against dust and splashing water (IP54) Lampholders protected against dust and jet of water (IP65)

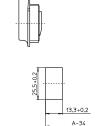
Dust and watertight lampholders (IP67)

G5 push-fit lampholder for metal casing Casing: PC, white, interior part: PBT GF T140, nominal rating: 2/500
Push-in twin terminals: 0.5-1 mm²
Push-fit foot for wall thickness: 1.4-2 mm
Weight: 11.3 g, unit: 250 pcs.

Type: 84101 system 153 **Ref. No.: 529832**

Pin support for reliable contact With spring adjustment Max. permitted temperature T_m on the rear side of the lampholder: 110 °C

6

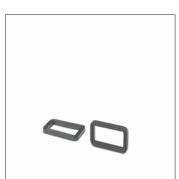

8

9

10

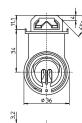
G5 push-fit lampholder for plastic casing Casing: PC, white, interior part: PBT GF T140, nominal rating: 2/500Push-in twin terminals: 0.5-1 mm² Push-fit foot for wall thickness: 0.4-1 mm Weight: 11.6 g, unit: 250 pcs.

Type: 84104 system 154 Ref. No.: 530535


Foot gaskets for systems 153 and 154

Weight: 0.5/0.7/0.7 g Unit: 1000 pcs.

Type: 98002 degree of protection IP67 Ref. No.: 108947 material: PE foam Type: 98087 degree of protection IP67 Ref. No.: 503773 material: EPDM, black Type: 98003 degree of protection IP54 Ref. No.: 108266 material: EPDM, black



G5 push-fit lampholder

Casing: PC, white, interior part: PBT GF T140, nominal rating: 2/500Push-in twin terminals: 0.5-1 mm² Push-fit foot for wall thickness: 1.4-2 mm

Weight: 12.7 g, unit: 250 pcs. Type: 84108 system 151 Ref. No.: 534073

Foot gaskets for system 151 Weight: 1/1.1/1.1 g Unit: 1000 pcs.

Type: 98004 degree of protection IP65

Ref. No.: 108267 material: cellular rubber,

black

Type: 98011 degree of protection IP67

Ref. No.: 504078 material: silicone, transparent

Type: 98008 degree of protection IP67 **new Ref. No.: 546254** profiled foot gasket,

material: EPDM, black

Screw ring for systems 151, 153 and 154 Ring: PBT GF, white, gasket: silicone Weight: 11.8 g, unit: 250 pcs.

Type: 84103 Ref. No.: 529836

2GX13 Lampholders, Accessories

For fluorescent lamps T-R5 (T-R16)

2GX13 push-fit lampholder Lamp axis: 15 mm Casing: PC, white, T110 Nominal rating: 2/500 Push-in terminals: 0.5-1 mm² Base push-fit studs for wall thickness up to 1.2 mm Weight: 10 g, unit: 500 pcs.

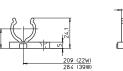
2GX13 surface-mounted lampholder

Rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST2.9-C/F Lateral fixing holes for screws M3 Weight: 10.6 g, unit: 500 pcs.

Type: 58110

new Ref. No.: 546656

Lamp axis: 15 mm Casing: PC, white, T110 Nominal rating: 2/500 Push-in terminals: 0.5 – 1 mm²



Type: 58100 new Ref. No.: 546655

> Lamp support for lamps \varnothing 16 mm Material: PC, white, UV-stabilised Fixing hole for screw M3 Fixing hole for self-tapping screw acc. to ISO 1481/7049-ST4.2-C/F Weight: 1 g, unit: 500 pcs.

Type: 84000 Ref. No.: 109532

Lamp support for lamps Ø 16 mm Material: PC, white, UV-stabilised Push-fit foot for cut-out \varnothing 5.5 mm Weight: 1 g, unit: 500 pcs. Type: 84001

Ref. No.: 500757

G13 Push-through Lampholders

For fluorescent lamps T8 (T26), T12 (T38)

Lampholders with integrated starter holder have push-in twin terminals for the lamp circuit and push-in terminals for the the starter circuit. Pin support for reliable contact Max. permitted temperature T_m on the rear side of the lampholder: 110 °C

G13 push-through lampholders for lamps T8 and T12 $\,$

Lamp axis: 23 mm

Casing: PC, white, frontplate: PBT GF, white

T140, nominal rating: 2/500 Push-in terminals: 0.5-1 mm²

Lateral fixing clips for wall thickness 0.4-2 mm

Weight: 6 g, unit: 1000 pcs. Type: 27700/27701

Ref. No.: 109330 with stop **Ref. No.: 109331** without stop

25 8.7 6.7 · 0.7 6.

G13 Rotoclic push-through lampholders for lamps T8 and T12

Lamp axis: 23 mm

Casing: PC, white, frontplate: PBT GF, white

T140, nominal rating: 2/500 Push-in terminals: 0.5-1 mm²

Lateral fixing clips for wall thickness 0.4-2 mm

Weight: 6.8 g, unit: 1000 pcs. Type: 27700/27701

 new
 Ref. No.: 546641
 with stop

 new
 Ref. No.: 546642
 without stop

25-10.15 8.7-0.2 29-10.15 8.7-0.2 29-10.15 6.7-10.1 20-10.1

G13 push-through lampholders for lamps T8

With starter attachment Lamp axis: 23 mm

Casing: PC, white, frontplate: PBT GF, white

T140, nominal rating: 2/500 Push-in terminals: 0.5-1 mm²

Lateral fixing clips for wall thickness 0.4-2 mm

Weight: 10.4 g, unit: 500 pcs. Type: 27800/27801

Ref. No.: 109332 with stop
Ref. No.: 109335 without stop

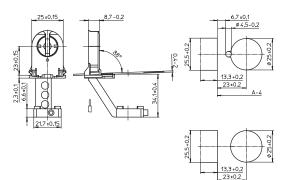
87 67-0.1 645-0.2 70 13.3-0.2 23.0.2 A-4

G13 Rotoclic push-through lampholders for lamps T8, with starter attachment

Lamp axis: 23 mm

Casing: PC, white, frontplate: PBT GF, white

T140, nominal rating: 2/500 Push-in terminals: 0.5-1 mm²


Lateral fixing clips for wall thickness 0.4-2 mm

Weight: 10.4 g, unit: 500 pcs.

Type: 27800/27801

 new
 Ref. No.: 546647
 with stop

 new
 Ref. No.: 546648
 without stop

G13 push-through lampholders for lamps T8

Lamp axis: 16 mm

Casing: PC, white, frontplate: PBT GF, white

T140, nominal rating: 2/500Push-in terminals: 0.5 – 1 mm²

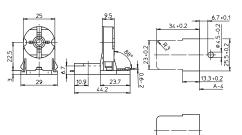
Lateral fixing clips for wall thickness 0.4-2 mm

Weight: 4.6/4.4 g, unit: 1000 pcs.

Ref. No.: 509135

Type: 29300/29301 Ref. No.: 509134 with stop without stop

G13 push-through lampholders for lamps T8 and T12


With starter attachment Lamp axis: 22.5 mm

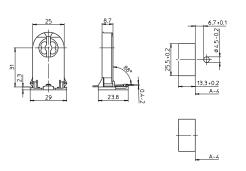
Casing: PC, white, rotor: PBT, white T130, nominal rating: 2/500 Push-in terminals: 0.5-1 mm²

Lateral fixing clips for wall thickness 0.6-2 mm

Weight: 9.5 g, unit: 500 pcs. Type: 27820/27821

Ref. No.: 100579 with stop Ref. No.: 100581 without stop

G13 push-through lampholders for lamps T8 and T12 Lamp axis: 31 mm


Casing: PC, white, frontplate: PBT GF, white

T 140, nominal rating: 2/500 Push-in terminals: 0.5 – 1 mm²

Lateral fixing clips for wall thickness 0.4-2 mm

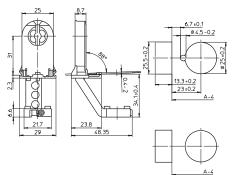
Weight: 7.8 g, unit: 1000 pcs. Type: 28500/28501

Ref. No.: 109338 with stop Ref. No.: 109339 without stop

G13 push-through lampholders for lamps T8 and T12

With starter attachment Lamp axis: 31 mm

Casing: PC, white, frontplate: PBT GF, white


T140, nominal rating: 2/500 Push-in terminals: 0.5 – 1 mm²

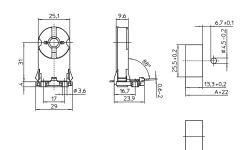
Lateral fixing clips for wall thickness 0.4-2 mm

Weight: 10.3/10.1 g, unit: 500 pcs.

Type: 28600/28601

Ref. No.: 109340 with stop Ref. No.: 109341 without stop

G13 push-through lampholders for lamps T8 and T12


Lamp axis: 31 mm Casing: PC, white, rotor: PBT GF, white

T130, nominal rating: 2/500Push-in terminals: 0.5-1 mm²

Lateral fixing clips for wall thickness 0.6-2 mm

Weight: 9.6 g, unit: 500 pcs. Type: 28740/28741

Ref. No.: 542983 with stop Ref. No.: 542984 without stop

G13 push-through lampholders for lamps T8 and T12 $\,$

Lamp axis: 31 mm

Casing: PC, white, rotor: PBT, white T130, nominal rating: 2/500 Push-in terminals: 0.5-1 mm²

Lateral fixing clips for wall thickness $0.6-2 \ \text{mm}$

Weight: 9.9 g, unit: 1000 pcs.

Type: 28500/28501

Ref. No.: 100591 with stop **Ref. No.: 100593** without stop

25 112 6.7 · 0.1 7 · 1 9 · 1 9 · 1 13.3 · 0.2 A · 4

G13 push-through lampholders for lamps T8 and T12

For the automatic luminaire wiring $% \left(1\right) =\left(1\right) \left(1$

Lamp axis: 23 mm

Casing: PC, white, frontplate: PBT GF, white

T140, nominal rating: 2/500 IDC terminals for leads H05V-U 0.5 Lateral fixing clips for wall thickness 0.4-2 mm Weight: 7.7/7.5 g, unit: 1000 pcs.

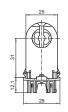
Type: 27780/27781

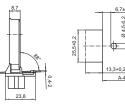
Ref. No.: 526019 with stop **Ref. No.: 526020** without stop

25 8.7 20 23.8 23.8

G13 push-through lampholders for lamps T8 and T12

For the automatic luminaire wiring


Lamp axis: 31 mm


Casing: PC, white, frontplate: PBT GF, white

T140, nominal rating: 2/500 IDC terminals for leads H05V-U 0.5 Lateral fixing clips for wall thickness 0.4-2 mm Weight: 8.8/8.6 g, unit: 1000 pcs.

Type: 28580/28581

Ref. No.: 526021 with stop **Ref. No.: 526022** without stop

G13 Push-fit Lampholders

For fluorescent lamps T8 (T26), T12 (T38)

Lampholders with integrated starter holder are equipped with big rotor and have push-in twin terminals for the lamp circuit and push-in terminals for the the starter circuit.

Pin support for reliable contact

Casing: PC, white, frontplate/rotor: PBT GF, white Max. permitted temperature T_m on the rear side of the lampholder: 110 °C T-Marking acc. to IEC IP50 version: push-fit foot with gasket

G 13 Rotoclic push-fit lampholders for lamps T8 and T12 T140, nominal rating: 2/500, suitable for Top Test Lateral push-in terminals: 0.5–1 mm² Push-fit foot for luminaire cut-out 13.3×25.5 mm with wall thickness 0.6–1 mm

Lampholder foot/luminaire: IP40 (537135: IP50)

Weight: 5.9/5.9/6/6 g, unit: 1000 pcs. Type: 24100/24110/24170/24150 **Ref. No.: 537132** lamp axis H: 25

 Ref. No.: 537132
 lamp axis H: 25 mm

 Ref. No.: 537135
 lamp axis H: 25 mm, IP50

 Ref. No.: 537144
 lamp axis H: 21 mm

 lamp axis H: 18 mm

G13 push-fit lampholders with starter attachment for lamps T8 and T12, lamp axis H: 25 mm T130, nominal rating: 2/500 Lateral push-in terminals: 0.5–1 mm² Push-fit foot for luminaire cut-out 13.3×25.5 mm with wall thickness 0.6–1 mm Lampholder foot/luminaire: IP40 (100540: IP50) Weight: 10.4/12 g, unit: 1000/500 pcs.

Type: 27200/27201 **Ref. No.: 100536 Ref. No.: 100540**IP50

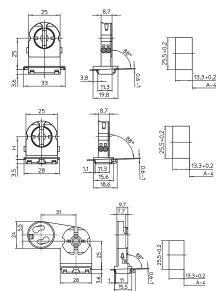
G 13 Rotoclic push-fit lampholders for lamps T8 and T12 T140, nominal rating: 2/500, suitable for Top Test Lateral push-in terminals: 0.5-1 mm² Push-fit foot for luminaire cut-out 10x20 mm with wall thickness 0.6-1 mm Lampholder foot/luminaire: IP40 Weight: 5.7/6 g, unit: 1000 pcs.

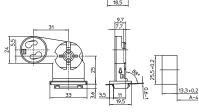
Type: 24120/24160

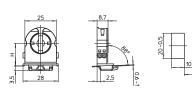
Ref. No.: 537138 lamp axis H: 25 mm lamp axis H: 21 mm

G13 push-fit lampholders for lamps T8

Lamp axis: 18 mm


T130, nominal rating: 2/500 Push-in terminals: 0.5-1 mm²


Push-fit feet for luminaire cut-out $13.3 \times 25.5 \ \text{mm}$


with wall thickness 0.7 mm Weight: 6 g, unit: 1000 pcs.

Type: 27151

Ref. No.: 100532

1

2

3

4

5

6

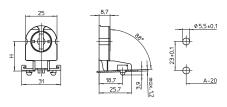
7

8

9

10

G13 Rotoclic push-fit lampholders for lamps T8


T140, nominal rating: 2/500 Base push-in terminals: 0.5-1 mm²

Base split pins for wall thickness up to 1.2 mm Lampholder foot/luminaire: IP40

Weight: 5.9/5.7 g, unit: 1000 pcs.

Type: 24360/24350

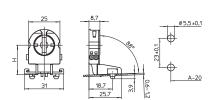
Ref. No.: 537155 lamp axis H: 30 mm lamp axis H: 23.5 mm

G13 Rotoclic push-fit lampholders for lamps T8

T 140, nominal rating: 2/500

Suitable for Top Test

Lateral push-in terminals: 0.5 – 1 mm²


Base split pins for wall thickness up to 1.2 $\ensuremath{\text{mm}}$

Lampholder foot/luminaire: IP40 Weight: 6/5.8/5.3 g, unit: 1000 pcs. Type: 23360/23350/23370

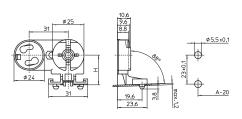
 Ref. No.: 537160
 lamp axis H: 30 mm

 Ref. No.: 537157
 lamp axis H: 23.5 mm

 Ref. No.: 539128
 lamp axis H: 18 mm

 $G\,13$ push-fit lampholders with starter attachment for lamps T8

T130, nominal rating: 2/250

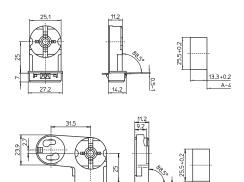

Base push-in terminals: 0.5 – 1 mm²

Base split pins for wall thickness up to 1.2 mm

Lampholder foot/luminaire: IP40 Weight: 9.7/9.5 g, unit: 1000 pcs.

Type: 27460/27450

Ref. No.: 100559 lamp axis H: 30 mm lamp axis H: 23.5 mm



G13 push-fit lampholders for lamps T8 and T12 Lamp axis H: 25 mm T130, nominal rating: 2/500 Base push-in terminals: 0.5-1 mm² Push-fit foot for luminaire cut-out 13.3×25.5 mm with wall thickness 0.5-1 mm Lampholder foot/luminaire: IP40

Weight: 5/11 g, unit: 500 pcs. Type: 28100/28200 **Ref. No.: 100585**

Ref. No.: 100588 with starter attachment

G13 push-fit lampholder for lamps T8 For the automatic luminaire wiring Lamp axis: 21 mm T130, nominal rating: 2/250IDC terminals for leads H05V-U 0.5 Base split pins for wall thickness up to 1 mm The lampholder is wired in its horizontal position before being brought into its vertical service position Weight: 6.7 g, unit: 1000 pcs.

Type: 48230

Ref. No.: 108730

G 13 push-fit lampholder for lamps T8 For the automatic luminaire wiring Lamp axis: 31 mm T130, nominal rating: 2/500 IDC terminals for leads H05V-U 0.5 Base split pins for wall thickness up to 1 mm Weight: 7.2 g, unit: 1000 pcs.

Type: 28310

Ref. No.: 506007

Type: 28315

Ref. No.: 504202

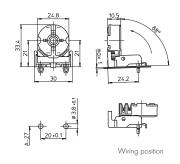
G 13 push-fit lampholder for lamps T8 For the automatic luminaire wiring Lamp axis: 31 mm T130, nominal rating: 2/500 IDC terminals for leads H05V-U 0.5 Lateral push-in twin terminals: 0.5-1 mm² Base split pins for wall thickness up to 1 mm Front cable holder for up to 3 individual conductors Weight: 8 g, unit: 1000 pcs.

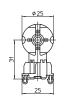
Type: 28330

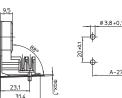
Ref. No.: 508423

G13 push-fit lampholders Lamp axis: 25 mm T130, nominal rating: 5/500

Lateral and base push-in terminals: 0.5-1 mm² Push-fit foot for luminaire cut-out 10x20 mm

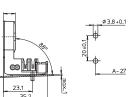

for wall thickness 0.4-1 mm Weight: 6/8.5 g, unit: 500 pcs.

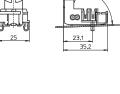

Type: 28921/28920

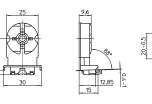

Ref. No.: 108438 for lamps T8 and T12 Ref. No.: 108437

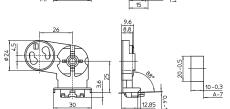
for lamps T8

with starter attachment









G13 Push-fit Twin Lampholders, Accessories

For fluorescent lamps T8 (T26), T12 (T38)

Casing: PC, white, rotor: PBT GF, white Pin support for reliable contact Max. permitted temperature T_{m}

on the rear side of the lampholder: 110 °C

G13 twin lampholder for lamps T8

Lamp axis: 22 mm

Distance between two lamp axes: 50 mm

T130, nominal rating: 2/500

Base wiring

Push-in terminals: 0.5-1 mm² Push-fit foot for wall thickness 1 mm

Weight: 14 g, unit: 400 pcs. Type: 22900

Ref. No.: 108984

G13 twin lampholders for lamps T8 and T12

Lamp axis: 25 mm

Distance between two lamp axes: $76~\mathrm{mm}$

T130, nominal rating: 2/500

Base push-in twin terminals: 0.5-1 mm² (lamp circuit) Base push-in terminals: 0.5-1 mm² (starter circuit)

Push-fit foot for wall thickness 0.6-1 mm

Weight: 21 g, unit: 200/500 pcs.

Type: 22604/22602 without starter attachment

Ref. No.: 108816 with stop Ref. No.: 100487 without stop Type: 22600/22601 with starter attachment

Ref. No.: 100484 with stop Ref. No.: 100486 without stop

G13 twin lampholders for lamps T8 and T12

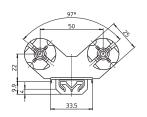
Lamp axis: 31.5 mm

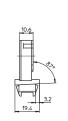
Distance between two lamp axes: 76 mm

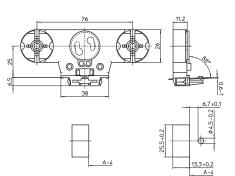
T130, nominal rating: 2/500 For wiring inserts 108777/108778

and 545261/545262 Weight: 17 g, unit: 250 pcs.

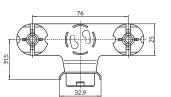
Type: 22800/22801

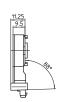

Ref. No.: 108773 with starter attachment Ref. No.: 108775 without starter attachment

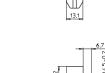

Wiring inserts with push-fit foot

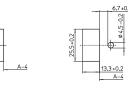

For G13 twin lampholders 108773/108775

Material: PC, white Push-in terminals: 0.5 mm² For the automatic luminaire wiring: IDC terminals for leads H05V-U 0.5 Weight: 5.3 g, unit: 500 pcs.


Ref. No.: 108777 with stop Ref. No.: 108778 without stop







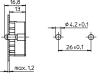
Type: 22850/22851

Wiring inserts with push-fit foot For G13 twin lampholders 108773/108775 Material: PC, white Push-in terminals: 0.5-1 mm² Weight: 4.4 g, unit: 500 pcs. Type: 22860/22861

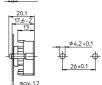
new Ref. No.: 545261 with stop new Ref. No.: 545262 without stop

G13 Built-in Lampholders

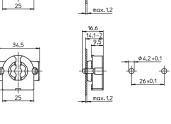
For fluorescent lamps T8 (T26), T12 (T38)


Lampholders with integrated starter holder are equipped with big rotor and have push-in twin terminals for the lamp circuit and push-in terminals for the the starter circuit. Pin support for reliable contact (except for type 485)

G13 built-in lampholders for lamps T8 and T12 Lampholder thickness: 13 mm T140, nominal rating: 2/500 Push-in terminals: 0.5 – 1 mm² Rear split pins for wall thickness up to 1.2 mm Weight: 4.6/5.4 g, unit: 1000 pcs.


Type: 47105/47106 Ref. No.: 509152

Ref. No.: 509154 with spring adjustment Casing: PC, white, frontplate/rotor: PBT GF, white Max. permitted temperature T_{m} on the rear side of the lampholder: 110 °C T-Marking acc. to IEC



G13 built-in lampholders for lamps T8 and T12 Lampholder thickness: 9.5 mm T140, nominal rating: 2/500 Push-in terminals: 0.5 – 1 mm² Rear split pins for wall thickness up to 1.2 mm Weight: 4.4/5.1 g, unit: 1000 pcs.

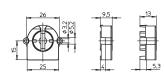
Ref. No.: 509164 with spring adjustment

Type: 47505/47506 Ref. No.: 509162

G13 built-in lampholder for lamps T8 and T12 Lampholder thickness: 10.5 mm

T140, nominal rating: 2/500Push-in terminals: 0.5-1 mm² Weight: 4.6 g, unit: 1000 pcs.

Type: 47304 Ref. No.: 509156

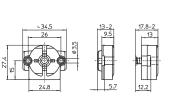


G13 Rotoclic built-in lampholders for lamps T8 and T12

T140, nominal rating: 2/500 Base push-in terminals: 0.5-1 mm²

Fixing holes Ø 3.2 mm Weight: 5 g, unit: 1000 pcs. Type: 49100/49500

Ref. No.: 537165 lampholder thickness: 13 mm lampholder thickness: 9.5 mm


G13 built-in lampholders with spring adjustment

for lamps T8 and T12 $\,$

T130, nominal rating: 2/500
Base push-in terminals: 0.5-1 mm²
Fixing holes for screws M3
Weight: 6/5.5 g, unit: 1000 pcs.

Type: 47102/47502

Ref. No.: 101681 lampholder thickness: 13 mm lampholder thickness: 9.5 mm

G13 Rotoclic built-in lampholders for lamps T8 and T12

T140, nominal rating: 2/500 Lateral push-in terminals: 0.5-1 mm²

Suitable for Top Test Fixing holes \varnothing 3.2 mm

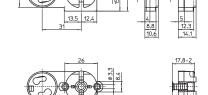
Weight: 5/4.7 g, unit: 1000 pcs.

Type: 59100/59500

Ref. No.: 537181 lampholder thickness: 13 mm lampholder thickness: 9.5 mm

G13 built-in lampholders with starter attachment

for lamps T8 and T12 T130, nominal rating: 2/500 Base push-in terminals: 0.5-1 mm² Fixing holes for screws M3


Weight: 8.7/10.3/8 g, unit: 1000 pcs.

Type: 47200/47402 lampholder thickness: 13 mm

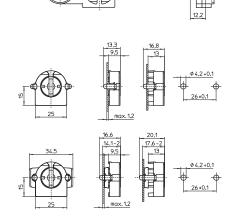
Ref. No.: 101706

Ref. No.: 101708 with spring adjustment Type: 47600 lampholder thickness: 9,5 mm

Ref. No.: 101765

G13 Rotoclic built-in lampholders for lamps T8 and T12

T140, nominal rating: 2/500 Base push-in terminals: 0.5-1 mm²


Rear split pins for wall thickness up to 1.2 mm Weight: 5.1/5.9/5/5.5 g, unit: 1000 pcs. Type: 49105/49106 lampholder thickness: 13 mm

Best.-Nr.: 537166

Best.-Nr.: 537167 with spring adjustment Type: 49505/49506 lampholder thickness: 9.5 mm

Best.-Nr.: 537174

Best.-Nr.: 537175 with spring adjustment

G13 Rotoclic built-in lampholders for lamps T8 and T12

T140, nominal rating: 2/500

Lateral push-in terminals: 0.5-1 mm², suitable for Top Test Rear split pins for wall thickness up to 1.2 mm

Weight: 5.1/5.9/5/5.5 g, unit: 1000 pcs. Type: 59105/59106 lampholder thickness: 13 mm

Ref. No.: 537182

Ref. No.: 537183 with spring adjustment Type: 59505/59506 lampholder thickness: 9.5 mm

Ref. No.: 537206

Ref. No.: 537207 with spring adjustment

G13 built-in lampholders with starter attachment for lamps T8 and T12, T130, nominal rating: 2/500Base push-in terminals: 0.5-1 mm²

Rear split pins for wall thickness up to 1.2 mm Weight: 9/9.5/8/8.5 g, unit: 1000 pcs.

Type: 47205/47206 lampholder thickness: 13 mm

Ref. No.: 101712

Ref. No.: 101716 with spring adjustment Type: 47605/47606 lampholder thickness: 9.5 mm

Ref. No.: 101769

Ref. No.: 101773 with spring adjustment

G13 built-in lampholders for lamps T8 For the automatic luminaire wiring

Nominal rating: 2/500, lampholder thickness: $10.5~\mbox{mm},$ IDC terminals for leads H05V-U $0.5~\mbox{}$ Rear split pins for wall thickness up to 1.2 mm

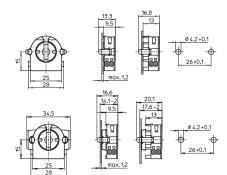
Weight: 5/5.5 g, unit: 1000 pcs. Type: 48205/48206

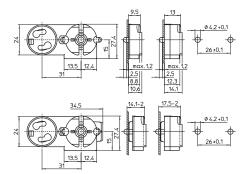
Ref. No.: 507133

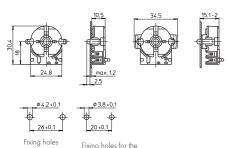
Ref. No.: 507134 with spring adjustment

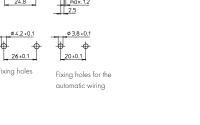
G13 built-in lampholder for lamps T8 and T12 Lampholder thickness: 10.7 mm

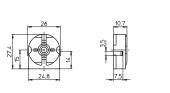
T130

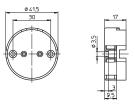

Nominal rating: 2/500 Push-in terminals: 0.5 – 1 mm² Lateral fixing clips


Weight: 4.7 g, unit: 1000 pcs.


Type: 47504 Ref. No.: 101745


G13 lampholder For push-fitting onto lamps T12 Lampholder thickness: 9.5 mm Casing: PC, white, T110 Front cover plate: PBT GF, white Nominal rating: 2/250 Push-in terminals: 0.5 – 1 mm² Fixing holes for screws M3 Weight: 10.5 g, unit: 1000 pcs.


Type: 47700 Ref. No.: 101781



G13 lampholder

For push-fitting onto lamps T8 Lampholder thickness: 9.5 mm Casing: PC, white, T110 Front cover plate: PBT GF, white Nominal rating: 2/500 Push-in terminals: 0.5-1 mm² Fixing hole for screw M3 Weight: 5.3 g, unit: 1000 pcs.

Type: 47900 Ref. No.: 101784

G13 lampholder with starter attachment For push-fitting onto lamps T8 Lampholder thickness: 9.5 mm Casing: PC, white, T110 Front cover plate: PBT GF, white Nominal rating: 2/250 Push-in terminals: 0.5-1 mm² Fixing hole for screw M3

Type: 47920 Ref. No.: 101785

Weight: 8.1 g, unit: 1000 pcs.

Endbox with integrated G13 lampholder for lamps T8 and T12 For recessed luminaires in modular ceilings T130, nominal rating: 2/500Push-in terminals: 0.5-0.75 mm², single-core For the automatic luminaire wiring: IDC terminals for leads H05V-U 0.5 Clip fixing for wall thickness up to 1 mm Weight: 20.8 g, unit: 200 pcs.

Type: 48300 Ref. No.: 109487

G13 built-in lampholder with lamp lock for lamps T8 and T12 Contacts on both sides

Casing: PBT GF, white, T130, nominal rating: 2/500

Screw terminals: 0.5-2.5 mm² Fixing holes for screws M3 Weight: 12.9/18 g, unit: 500 pcs.

Type: 46100/46101 Ref. No.: 101643

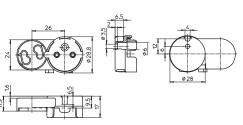
Ref. No.: 101647 with spring adjustment

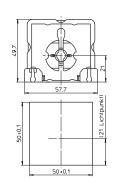
G13 built-in lampholders for lamps T8 and T12 Casing: PC, white, T110

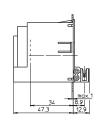
Nominal rating: 2/500 Screw terminals: 0.5-2.5 mm² Fixing holes for screws M3 5 rotation stops

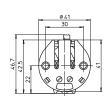
Weight: 9/10.6 g, unit: 1000 pcs.

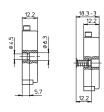
Type: 48500/48501 Ref. No.: 101787


Ref. No.: 101789 with spring adjustment










G13 built-in lampholder with spring adjustment

for lamps T8 and T12
Contacts on both sides
Casing: PBT GF, white, T130
Nominal rating: 2/500
Screw terminals: 0.5-2.5 mm²
Fixing holes for screws M3
Front lamp insertion

Weight: 14 g, unit: 500 pcs.

Type: 49401 **Ref. No.: 101812**

1

2

G13 Surface-mounted Lampholders

For fluorescent lamps T8 (T26), T12 (T38)

Pin support for reliable contact (except for type 485)

Max. permitted temperature T_{m}

on the rear side of the lampholder: 110 $^{\circ}\text{C}$

G13 surface-mounted lampholder for lamps T8 and T12 $\,$

Lamp axis: 25.5 mm

Casing: PC, white, rotor: PBT GF, white, T130

Nominal rating: 2/500

Push-in twin terminals: 0.5 – 1 mm²

Fixing hole: \varnothing 3.8 mm Weight: 7.2 g, unit: 500 pcs.

Type: 27722

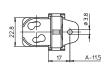
Ref. No.: 100572

5

6

 $\ensuremath{\mathsf{G13}}$ surface-mounted lampholder with starter attachment

for lamps T8 and T12 Lamp axis: 25.5 mm


Casing: PC, white, rotor: PBT GF, white, T130

Nominal rating: 2/500 Push-in twin terminals: 0.5-1 mm² Fixing hole: Ø 3.8 mm Weight: 9.5 g, unit: 500 pcs.

Type: 27822 **Ref. No.: 100583**

7

8

G13 surface-mounted lampholder for lamps T8

Lamp axis: 17 mm

Casing: PC, white, rotor: PBT GF, white, T130 $\,$

Nominal rating: 2/250 Push-in twin terminals: 0.5–1 mm² Fixing hole for self-tapping screw acc. to ISO 1481/7049-ST3.5-C/F Weight: 5.4 g, unit: 1000 pcs.

Type: 27356 **Ref. No.: 100551**

9

 $G\,13$ surface-mounted lampholders with lamp lock

for lamps T8 and T12, lamp axis: 25 mm

Contacts on both sides Casing: PBT GF, white, T130

Screw terminals: 0.5 – 2.5 mm 2 , nominal rating: 2/500

Bracket: zinc-coated polished steel Fixing slots for screws M4 Weight: 35/36 g, unit: 500 pcs.

Type: 46102/46103 **Ref. No.: 101651**

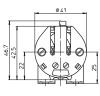
Ref. No.: 101655 with spring adjustment

G13 surface-mounted lampholders

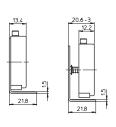
for lamps T8 and T12 $\,$

Lamp axis: 25 mm, casing: PC, white, T110

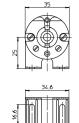
Screw terminals: $0.5-2.5 \text{ mm}^2$, nominal rating: 2/500


Bracket: zinc-coated polished steel Fixing slots for screws M4

5 rotation stops


Weight: 26/28.1 g, unit: 500 pcs.

Type: 48502/48503 **Ref. No.: 101791**


Ref. No.: 101793 with spring adjustment

Accessories

For lampholders for fluorescent lamps T8 (T26), T12 (T38)

The luminaire manufacturer is responsible for the right choice of accessories.

Lamp supports

Fixing hole for screw M4

Weight: 4.3/6.8 g, unit: 500 pcs. Type: 20400 for lamps T8

Ref. No.: 100442 material: zinc-coated

polished steel

Type: 20401 for lamps T12

Ref. No.: 100444 material: CrNi-steel

Lamp supports for lamps T8 Material: PC, crystal-clear Fixing hole for screw M4 Weight: 2 g, unit: 1000 pcs.

Type: 20501 **Ref. No.: 100448**

Push-fit bracket

For G13 built-in lampholder 537174, 537206 (see p. 324-325) and starter holder 101627 and 109792 (see p. 341 - 342), material: PC, white Lamp axis optional: 46/51/56 mm or 43 mm (lateral lamp insertion) Push-fit foot for wall thickness 0.5-1 mm

Option for lateral or base wiring Weight: 5.3 g, unit: 1000 pcs.

Type: 97532

Ref. No.: 105843

Push-fit bracket

For G13 built-in lampholder 537181, 537166, 537174 (see p. 324), 537206 and 507133 (see p. 325)

Material: PC, grey

Lamp axis optional: 33/40/46/51/56 or 43 mm (lateral lamp insertion) Push-fit foot for wall thickness 0.5-1 mm

Weight: 6 g, unit: 1000 pcs.

Type: 97044

Ref. No.: 108780

Foot gasket for degree of protection IP50 For push-fit bracket 108780 Material: EPDM, black Weight: 0.7 g

Type: 98003

Ref. No.: 108266

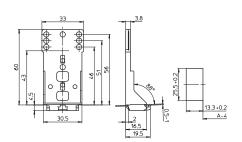
Push-fit bracket, right For G13 built-in lampholders 101769, 537174 and 537206 (see p. 324-325) Material: PC, white

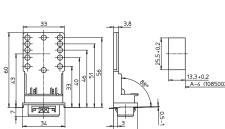
Lamp axis optional: 25/45 mm, distance between two lamp axes optional: 30/35 mm Push-fit foot for wall thickness 0.5-1 mm Option for lateral or base wiring

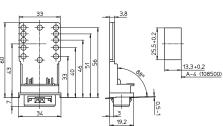
Weight: 6.6 g, unit: 1000 pcs.

Type: 97533

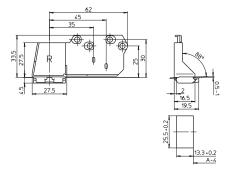
Ref. No.: 105845

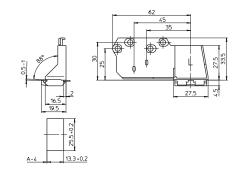

Push-fit bracket, left For G13 built-in lampholders 537174, 537206

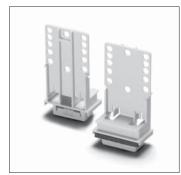

(see p. 324-325) Material: PC, white

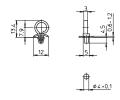

Lamp axis optional: 25/45 mm, distance between two lamp axes optional: 30/35 mmPush-fit foot for wall thickness 0.5 - 1 mm

Option for lateral or base wiring Weight: 6.7 g, unit: 1000 pcs.

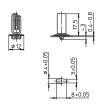

Type: 97534 Ref. No.: 105847







Cable holder
Material: PA, white
Push-fit foot for cut-out Ø 4 mm
for wall thickness 0.6–1.2 mm
Weight: 0.2 g, unit: 5000 pcs.


Type: 97147 **Ref. No.: 109086**

Cable holder
For the automatic luminaire wiring and manual wiring
Material: PC, white
Degree of protection IP50
Weight: 0.5 g, unit: 5000 pcs.

Type: 97117 **Ref. No.: 108845**

Cable holder
For the automatic luminaire wiring and manual wiring
Material: PA, white
Weight: 2.1 g, unit: 7500 pcs.

Type: 0607

Ref. No.: 159968

G13 Lampholders, Degree of Protection IP54

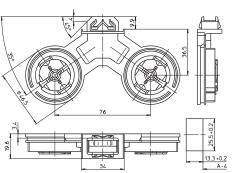
For fluorescent lamps T8 (T26), T12 (T38) For luminaires of protection class I and II

Lampholders protected against dust and splashing water (IP54) To convert luminaires from IP20 to IP54 Pin support for reliable contact With spring adjustment

G13 push-fit lampholder for lamps T8/T12
Casing: PC, white, interior part: PBT GF, white
Rotor: PBT GF, white, T140
Nominal rating: 2/500
Push-in terminals: 0.5-1 mm²
Fixing clips for wall thickness 0.7 mm
Screw rings see page 335
Weight: 17.1 g, unit: 500 pcs.
Type: 84171 system 161

Ref. No.: 107957

G13 push-fit twin lampholder for lamps T8/T12 Casing: PC, white, interior part: PBT GF, white Rotor: PBT GF, white, T140 Nominal rating: 2/500 Push-in terminals: 0.5-1 mm² Fixing clips for wall thickness 0.7 mm Screw rings see page 335 Weight: 33.6 g, unit: 250 pcs. Type: 84173 system 162


Ref. No.: 107959

Food gasket for degree of protection IP54 For lampholder systems 161, 162 Material: EPDM, black Weight: 0.7 g Type: 98003

Ref. No.: 108266

Max. permitted temperature T_m on the rear side of the lampholder: 110 $^{\circ}\text{C}$

1

2

3

4

5

6

7

8

9

G13 Lampholders, Degree of Protection IP65/IP67

For fluorescent lamps T8 (T26), T12 (T38) For luminaires of protection class I and II

Lampholders protected against dust and jet of water (IP65)

Dust and watertight lampholders (IP67)

Pin support for reliable contact with spring adjustment

G13 push-fit lampholders for lamps T8/T12
Casing: PC, interior part: PBT GF
Rotor: PBT GF, white, T140
Nominal rating: 2/500
Push-in terminals: 0.5-1 mm²
Fixing clips for wall thickness 1.4-2 mm

Screw rings see page 335 Weight: 17.3 g, unit: 500 pcs. Type: 84172 system 163

Ref. No.: 107958 casing white casing grey

G13 push-fit twin lampholders for lamps T8/T12

Casing: PC, interior part: PBT GF Rotor: PBT GF, white, T140 Nominal rating: 2/500 Push-in terminals: 0.5-1 mm²

Fixing clips for wall thickness 1.4-2 mm

Screw rings see page 335 Weight: 34.2 g, unit: 250 pcs. Type: 84174 system 164

Ref. No.: 107960 casing white **Ref. No.: 108669** casing grey

G13 push-fit lampholders for lamps T8/T12 Casing: PC, interior part: PBT GF, T140

Nominal rating: 2/500 Push-in terminals: 0.5-1 mm²

Fixing clips for wall thickness $1.4-2 \ \text{mm}$

With slot insertion

Screw rings see page 335 Weight: 14.5 g, unit: 250 pcs. Type: 84175 system 165

Ref. No.: 108608 casing white **Ref. No.: 108614** casing grey

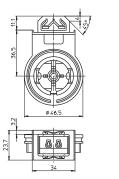
Foot gaskets

For lampholder systems 163, 164, 165

Weight: 1/1.1 g

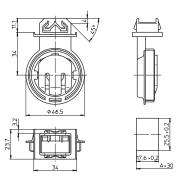
For degree of protection IP65 Material: cellular rubber

Type: 98004

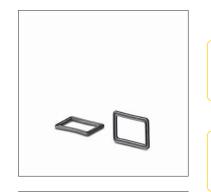

Ref. No.: 108267

For degree of protection IP67 Material: silicone, transparent

Type: 98011


Ref. No.: 504078

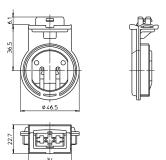
Max. permitted temperature T_m on the rear side of the lampholder: 110 $^{\circ}\text{C}$



Profiled foot gasket
For degree of protection IP67
For lampholder systems 163, 164, 165
Material: EPDM, black
Weight: 1.1 g, unit: 1000 pcs.

Type: 98008

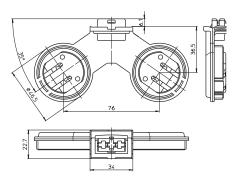
new Ref. No.: 546254



2

G13 lampholder for lamps T8/T12 Casing: PC, interior part: PBT GF, T140 Nominal rating: 2/500 With slot insertion For wiring insert 108819 Screw rings see page 335 Weight: 15.1 g, unit: 500 pcs.

Type: 84180 system 167 **Ref. No.: 108948** casing white



_

G 13 twin lampholder for lamps T8/T12 Casing: PC, interior part: PBT GF, T140 Nominal rating: 2/500 With slot insertion

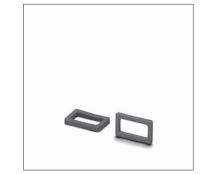
With slot insertion
For wiring insert 108819
Screw rings see page 335
Weight: 30.6 g, unit: 250 pcs.
Type: 84181 system 168

Ref. No.: 108994 casing white

6

Wiring insert with push-fit foot
For lampholder systems 167, 168
Material: PC, grey
Push-in terminals: 0.5 mm²
For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5
Push-fit foot for wall thickness 1.4-2 mm
Weight: 5.1 g, unit: 500 pcs.

Type: 22852 **Ref. No.: 108819**

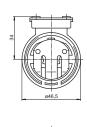

0

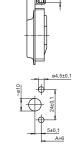
Foot gasket for degree of protection IP67 For lampholder systems 167, 168 Material: PE foam

Weight: 0.5 g Type: 98002

Ref. No.: 108947

9


Foot gasket, profiled shape For degree of protection IP67 For lampholder systems 167, 168 Material: EPDM, black Weight: 0.7 g, unit: 1000 pcs.


Type: 98087 **Ref. No.: 503773**

G13 lampholder for lamps T8/T12 Casing: PC, white, interior part: PBT GF, T140 Nominal rating: 2/500 Screw fixing foot with tapped holes M4 Screw rings see page 335 With slot insertion

Weight: 14 g, unit: 250 pcs. Type: 84105 system 152 **Ref. No.: 521123**

Foot gasket for degree of protection IP65/IP67 For lampholder system 152 Material: EPDM, black Weight: 1.4 g, unit: 1000 pcs. Type: 98085

Ref. No.: 106094

Screw Rings for G13 Lampholders, Degree of Protection IP54, IP65, IP67

For lampholder systems 152, 161, 162, 163, 164, 165, 167, 168

Screw rings

Ring: PBT GF, gasket: silicone Weight: 17/20 g, unit: 500/250 pcs.

Type: 84122 for lamps T8 Ref. No.: 103710 Ref. No.: 103709 Type: 84123 for lamps T12 or

for lamps T8 with protection tube \varnothing 38 mm

Ref. No.: 103712 white Ref. No.: 103711 grey

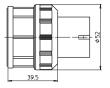
Screw rings with heat dissipator For lamps T8 with plastic protection tube \varnothing 38 mm

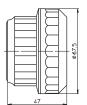
Ring: PBT GF Gasket: silicone, shell: aluminium

Weight: 40 g, unit: 250 pcs. Type: 84154

Screw rings

Ring: PBT GF Gasket: EPDM


Ref. No.: 103744 white Ref. No.: 103743


For protection tube \varnothing 50 mm

Weight: 43.8 g, unit: 125 pcs. Type: 84159 not suitable for system 152

grey

Ref. No.: 103750 Ref. No.: 103749

G10q Lampholders, Accessories

For fluorescent lamps T-R

G 10q push-fit lampholder
Casing: PC, white, T110
Spring bracket Ø 32 mm: CrNi-steel
Nominal rating: 2/500
Push-in terminals: 0.5-1 mm²
Lamp axis: 23 mm
Push-fit foot for wall thickness up to 1.2 mm
Weight: 8.4 g, unit: 500 pcs.

Type: 40100

Ref. No.: 101528

Lamp support for T-R lamps
For lampholder 101528
Material: PC, white
Spring bracket Ø 32 mm: CrNi-steel
Lamp axis: 23 mm

Push-fit foot for wall thickness up to 1.2 $\ensuremath{\mathsf{mm}}$

Weight: 4.4 g, unit: 500 pcs. Type: 40150

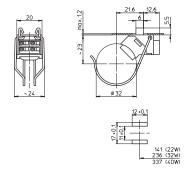
Ref. No.: 101532

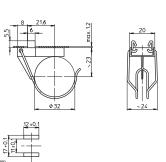
G 10q surface-mounted lampholder Casing: PC, white, T110 Spring bracket Ø 32 mm: CrNi-steel Nominal rating: 2/250 Connection leads: H05V2-U 1X0.75,

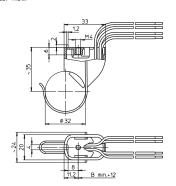
Connection leads: HU5V2-U TXU./5 max. 105 °C, length: 270 mm

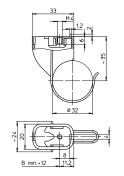
Lamp axis: 35 mm

Fixing plates with tapped holes M4 Weight: 25 g, unit: 250 pcs.


Type: 58016


Ref. No.: 102409


Lamp support for T-R lamps
For lampholder 102409
Material: PC, white
Spring bracket Ø 32 mm: CrNi-steel
Lamp axis: 35 mm
Fixing plates with tapped holes M4
Weight: 8 g, unit: 500 pcs.


Type: 58001

Ref. No.: 102407

W4.3 x 8.5d Surface-mounted Lampholder

For fluorescent lamps T2 (T7)

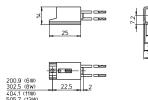
2

W4.3 x 8.5d surface-mounted lampholder

Casing: PC, white, T110 Nominal rating: 2/250

Leads: H05V-K 1X0.5 max. 90 °C,

length: 450 mm, ferrules on bare end of core


Fixing hole: \varnothing 2.6 mm

Spring-mounted insert for reliable contact

Weight: 10.3 g, unit: 500 pcs.

Туре: 09000

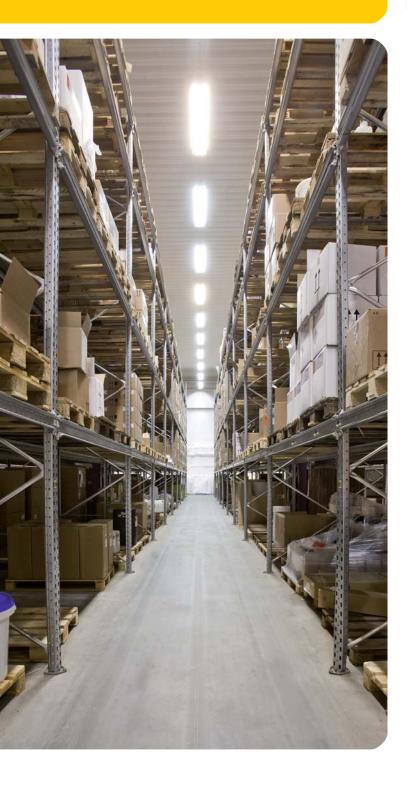
Ref. No.: 107536

3

4

5

6


7

8

9

OPTIMUM START WITH COMPONENTS MADE BY VS

STARTER HOLDERS AND TERMINAL BLOCKS, ACCESSORIES

Vossloh-Schwabe provides a comprehensive range of miscellaneous accessories for operating fluorescent lamps.

Starter holders

Starters are needed for lamp circuits operated with electromagnetic ballasts. VS provides a number of starter holders with various designs for this purpose. Almost all starter holders are made of polycarbonate and qualify for a T110 temperature rating.

Terminal blocks

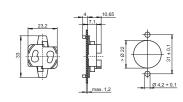
Furthermore, Vossloh-Schwabe's product range also includes connection terminals, some of which feature the VDE-approved IDC method in addition to the well-known and installation-friendly push-in connectors. The connection terminals therefore make it possible to automate luminaire wiring and thus wire up several terminals using a single cable.

The range is rounded off by built-in rocker switches.

Starter Holders and Terminal Blocks, Accessories

Starter holders, accessories	340–343
Terminal blocks, accessories	344-348
Built-in rocker switches	349
Technical details for fluorescent lamps	350-379
General technical details	533-540
Glossary	541 - 543

Starter Holders, Accessories

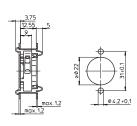

For starters acc. to DIN VDE 0712 part 101, IEC 60155

Starter holders with central studs, suitable for luminaires of protection class II, are available on request.

Starter holder
Material: PC, white
T110, nominal rating: 2/250
Push-in terminals: 0.5-1 mm²
Rear split pins for wall thickness up to 1.2 mm

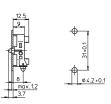
Weight: 2.1 g, unit: 1000 pcs.

Type: 02113 **Ref. No.: 535131**



Starter holder
Material: PC, white
T110, nominal rating: 2/250
Push-in terminals: 0.5-1 mm², single-core
Front and rear split pins for wall thickness
up to 1.2 mm
Rear of starter holder/luminaire: IP40
Weight: 2.8 g, unit: 1000 pcs.

Type: 02110 **Ref. No.: 109784**



Starter holder
Material: PC, white
T110, nominal rating: 2/250
Push-in terminals: 0.5-1 mm²
Rear split pins for wall thickness up to 1.2 mm
Lateral split pins for wall thickness up to 1.25 mm
Rear of starter holder/luminaire: IP40
Weight: 3.7 g, unit: 1000 pcs.

Type: 02120 **Ref. No.: 100064**

21.1 \$\frac{5}{5}\frac{1}{5}\fra

Starter holder Material: PC, white T110, nominal rating: 2/250 Push-in terminals: 0.5-1 mm² Fixing holes for screws M3 Weight: 3.8 g, unit: 1000 pcs.

Type: 02150 **Ref. No.: 100069**

Starter holder
Material: PC, white
T110, nominal rating: 2/250
Push-in terminals: 0.5-1 mm²
Front split pins, flat
for wall thickness 0.6-1 mm
Weight: 3.1 g, unit: 1000 pcs.
Type: 02170

Ref. No.: 106818

1

2

Starter holder
Material: PC, white
T110, nominal rating: 2/250
Push-in terminals: 0.5-1 mm²
Rear split pins for wall thickness up to 1.2 mm
Rear of starter holder/luminaire: IP40
Weight: 3.3 g, unit: 1000 pcs.

Type: 43000 **Ref. No.: 101627**

3

Starter holder
Material: PC, white
T110, nominal rating: 2/250
Push-in terminals: 0.5-1 mm²
Lateral split pins for wall thickness up to 1 mm
Rear of starter holder/luminaire: IP40
Weight: 3.4 g, unit: 1000 pcs.

Type: 43010

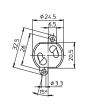
Ref. No.: 101629

5

6

Starter holder
Material: PC, white
T110, nominal rating: 2/250
Push-in terminals: 0.5-1 mm²
Rear and lateral split pins
for wall thickness up to 1 mm
Rear of starter holder/luminaire: IP40
Weight: 3.5 g, unit: 1000 pcs.

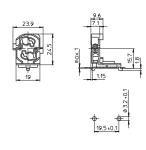
Type: 43020 **Ref. No.: 108671**



8

Starter holder Material: PC, white T110, nominal rating: 2/250 Push-in terminals: 0.5-1 mm² Fixing holes for screws M3 Weight: 3.7 g, unit: 1000 pcs.

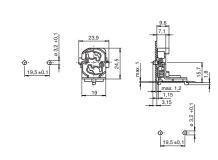
Type: 43100 **Ref. No.: 101631**



9

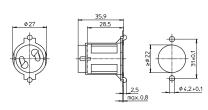
Starter holder
Material: PC, white
T110, nominal rating: 2/250
Push-in terminals: 0.5-1 mm², single-core
Lateral split pins for wall thickness up to 1 mm
Rear of starter holder/luminaire: IP40

Weight: 3.7 g, unit: 1000 pcs.


Type: 43200 **Ref. No.: 109790**

Starter holder
Material: PC, white
T110, nominal rating: 2/250
Push-in terminals: 0.5-1 mm², single-core
Rear split pins for wall thickness up to 1.2 mm
Lateral split pins for wall thickness up to 1 mm
Rear of starter holder/luminaire: IP40
Weight: 3.7 g, unit: 1000 pcs.

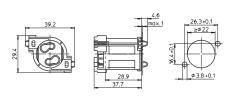
Type: 43210 **Ref. No.: 109792**



Starter holder with integrated extension piece Material: PC, white 1110, nominal rating: 2/250 Push-in terminals: 0.5-1 mm² Front split pins for wall thickness up to 0.8 mm

Weight: 5.4 g, unit: 1000 pcs.

Type: 43300


Ref. No.: 101636

Starter holder with integrated extension piece Material: PC, white
For the automatic luminaire wiring
T110, nominal rating: 2/250
IDC terminals for leads H05V-U 0.5
Front split pins for wall thickness up to 1 mm
Weight: 5.4 g, unit: 1000 pcs.

Type: 43500 **Ref. No.: 108454**

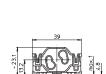
Starter holder
Material: PC, white
For the automatic luminaire wiring
T110, nominal rating: 2/250
IDC terminals for leads H05V-U 0.5
Rear split pins for wall thickness up to 1 mm

Weight: 3.2 g, unit: 1000 pcs.

Type: 43510 **Ref. No.: 107723**

Starter holder Material: PC, white T110, nominal rating: 2/250 Push-in terminals: 0.5 – 1 mm² For the automatic luminaire wiring: IDC terminals for leads H05V-U 0.5 Rear split pins for wall thickness up to 1 mm

Weight: 3 g, unit: 1000 pcs.


Type: 43520

Ref. No.: 530079

Starter holder Material: PA, white T110, nominal rating: 2/250 For the automatic luminaire wiring: IDC terminals for leads H05V-U 0.5 Lateral split pins for wall thickness up to 1 mm

Weight: 3 g, unit: 1000 pcs.

Type: 43410 Ref. No.: 107445

Extension piece

For front clip-in fixing into luminaire metal sheets For use with starter holder 109784 (see p. 340)

For screw caps type 97065

Material: PC, white

Weight: 3.5 g, unit: 500 pcs.

Type: 97064

Ref. No.: 105482

Cut-out for wall thickness 0.7-1.2 mm

Cut-out for wall thickness 15-2 mm

Screw caps for degree of protection IP54/IP65/IP67

For extension piece 105482

Material: PP

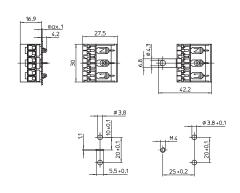
Gasket: EPDM cellular rubber

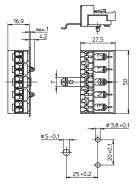
Weight: 3.2/4/3.2/0.3 g, unit: 500 pcs.

Type: 97065 screw cap

Ref. No.: 105483 Ref. No.: 109575 grey Ref. No.: 105484 black

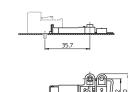
Type: 98086 gasket Ref. No.: 106095




Terminal Blocks, Accessories

Suitable only for solid conductors on the secondary connection

Terminal blocks
Casing: PC, white, T85
Nominal rating: 450 V
Primary connection with release button:
 push-in twin terminals 0.5-2.5 mm²/16 A
Secondary connection:
 push-in twin terminals 0.5-1.5 mm²/16 A
 and 0.5-2.5 mm²/16 A
Connection for X2 RFI-suppression capacitor:
 0.5-0.75 mm², capacitor's pins must be insulated (stripped lead ends: 8+1 mm)
For the automatic luminaire wiring:
 IDC terminals for leads H05V-U 0.5/6 A
Base split pins for wall thickness 0.6-1 mm



Туре	Ref. No.	Number of poles	Earth-contact connection	Mark	Weight (g)	Unit (pcs.)
41500	533312	3-poles	not earthed	N, L2, L1	9.2	500
41510	533313	3-poles	earth spike	N, PE, L1	9.4	500
41520	533314	3-poles	earth strap M4	N, PE, L1	10	500
41530	534948	3-poles	earth finger	N, PE, L1	10	500
41540	533315	5-poles	not earthed	L3, L2, L4, N, L1	15.1	500
41550	533316	5-poles	earth spike	L3, L2, PE, N, L1	15.3	500
41560	53331 <i>7</i>	5-poles	earth strap M4	L3, L2, PE, N, L1	16	500
41570	534954	5-poles	earth finger	L3, L2, PE, N, L1	16	500

Push-in cord grip
For terminal blocks type 415
For leads with insulation max. Ø 10.5 mm
Conductor fixed with self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Material: PA, white

Weight: 2.2 g, unit: 500 pcs.

Type: 97734 **Ref. No.: 535474**

Terminal blocks Casing: PC, white, T85 Nominal rating: 450 V Primary connection:

screw terminals 2.5 mm²

Secondary connection:

push-in twin terminals 1.5 mm² (with IDC contacts: 1 mm²) push-in terminal $0.5\ mm^2$

For the automatic luminaire wiring: IDC terminals for leads H05V-U 0.5

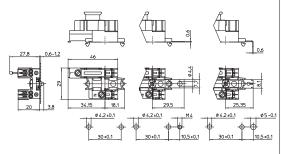
Base split pins for wall thickness 0.6-1.2 mm

Туре	Ref. No.	IDC	Number of poles	Earth-contact connection	Weight (g)	Unit (pcs.)
40660	543793	no	3-poles	not earthed	5.7	1000
40662	543795	no	3-poles	earth strap M4	8.4	1000
40666	543800	no	3-poles	earth finger	8.3	1000
40661	543794	yes	3-poles	not earthed	6	1000
40663	543796	yes	3-poles	earth strap M4	8.7	1000
40667	547801	yes	3-poles	earth finger	8.6	1000

Terminal blocks with fuse holder Material: PC, white, T70 nominal rating: 250 V

Primary connection: screw terminals 2.5 mm²

Secondary connection:


push-in twin terminals 1.5 mm² (with IDC contacts: 1 mm²) push-in terminal 0.5 mm²

For the automatic luminaire wiring: IDC terminals for leads H05V-U 0.5

With retaining clip for fuses $5 \times 20 \text{ mm}$

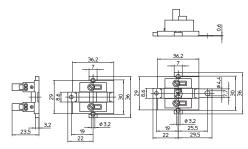
With integrated fuse on request

Base split pins for wall thickness 0.6-1.2 mm

Туре	Ref. No.	IDC	Number of poles	Earth-contact connection	Weight (g)	Unit (pcs.)
40670	543802	no	3-poles	not earthed	8.7	1000
40672	543805	no	3-poles	earth strap M4	11.5	1000
40676	543809	no	3-poles	earth finger	14.1	1000
40671	543803	yes	3-poles	not earthed	9.0	1000
40673	543806	yes	3-poles	earth strap M4	11.8	1000
40677	543810	yes	3-poles	earth finger	14.4	1000

Terminal blocks

Material: PC, white, T85, nominal rating: $400\ V$ Primary connection: screw terminals $2.5\ \mathrm{mm}^2$


Secondary connection:

push-in twin terminals 1.5 mm² push-in terminal 0.5 mm² Fixing holes for screws M3

Weight: 7.7/10.6 g, unit: 1000 pcs.

Type: 40650/40651 Ref. No.: 533860

Ref. No.: 533861 with earth strap for screw M4

Terminal blocks with fuse holder

Material: PC, white, T70, nominal rating: 250 $\rm V$

Primary connection: screw terminals 2.5 mm²

Secondary connection:

push-in twin terminals 1.5 mm² push-in terminal 0.5 mm²

Fixing holes for screws M3

Weight: 11.2/14.1 g, unit: 1000 pcs.

Type: 40655/40656 **Ref. No.: 533865**

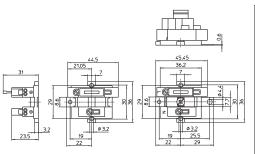
Ref. No.: 533866 with earth strap for screw M4

Terminal blocks

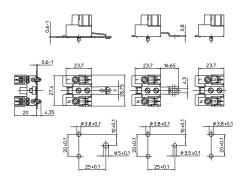
Casing: PC, grey, T85 Nominal rating: 450 V

Primary connection:

screw terminals 2.5 mm²


Secondary connection:

push-in twin terminal 1.5 mm² (with IDC contacts: 1 mm²) push-in terminal 0.5 mm²


For the automatic luminaire wiring:

IDC terminals for leads H05V-U 0.5

Base split pins for wall thickness 0.6-1.2 mm

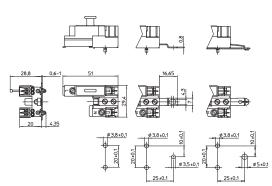
Туре	Ref. No.	IDC	Number of poles	Earth-contact connection	Weight (g)	Unit (pcs.)
40560	543770	no	3-poles	not earthed	8	1000
40562	543772	no	3-poles	earth strap M4	8.7	1000
40566	543777	no	3-poles	earth finger	8.8	1000
40561	543771	yes	3-poles	not earthed	8.3	1000
40563	543773	yes	3-poles	earth strap M4	9	1000
40567	543778	yes	3-poles	earth finger	9.1	1000

Terminal blocks with fuse holder Material: PBT, grey, T70 Nominal rating: 250 V

Primary connection: screw terminals 2.5 mm²

Secondary connection:

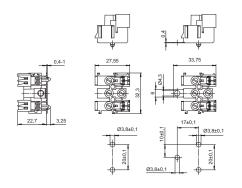
push-in twin terminals 1.5 mm² (with IDC contacts: 1 mm²) push-in terminal 0.5 mm²


For the automatic luminaire wiring:

IDC terminals for leads H05V-U 0.5

With retaining clip for fuses $6 \times 25 \text{ mm}$

With integrated fuse on request


Base split pins for wall thickness 0.6-1.2 mm

Туре	Ref. No.	IDC	Number of poles	Earth-contact connection	Weight (g)	Unit (pcs.)
40570	543781	no	3-poles	not earthed	11	500
40572	543783	no	3-poles	earth strap M4	11 <i>.</i> 7	500
40576	543787	no	3-poles	earth finger	11.8	500
40571	543782	yes	3-poles	not earthed	11.3	500
40573	543784	yes	3-poles	earth strap M4	12	500
40577	543788	yes	3-poles	earth finger	12.1	500

Terminal blocks (modular system) Casing: PC, white, T85 Nominal rating: 450 V Primary connection: screw terminals 2.5 mm² Secondary connection: push-in twin terminals 1 mm² For the automatic luminaire wiring: IDC terminals for leads H05V-U 0.5

Туре	Ref. No.	Number of poles	With earth strap	Weight (g)	Unit (pcs.)
40505	526709	1-pole	no	3.4	2000
40520	526711	4-poles	no	14.6	500
40521	526712	4-poles	yes	14.9	500

If required, the number of available lines (i.e. poles) can be extended by simply linking up the requisite number of luminaire terminal blocks.

Terminal blocks (modular system) Casing: PBT, white, T70

Nominal rating: $250\ V$ Primary connection:

screw terminals 2.5 mm²

Secondary connection:

push-in twin terminals 1 $\,\mathrm{mm}^2$

For the automatic luminaire wiring:

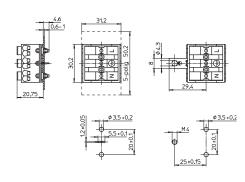
IDC terminals for leads H05V-U 0.5 With retaining clip for fuses $6 \times 25 \text{ mm}$

With integrated fuse on request

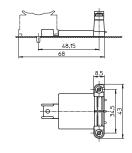
27,8 0,4-1	48	*	
22,7 3,25		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	Ø3,8±0,1	Ø3,5±0,1	2

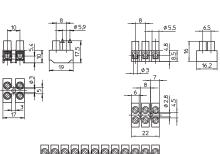
	4		
			h
4	b	d	

Туре	Ref. No.	Number of poles	With earth strap	Weight (g)	Unit (pcs.)
40506	526710	1-pole	no	9	1000
40530	526713	4-poles	no	22.3	500
40531	526714	4-poles	yes	22.6	500


If required, the number of available lines (i.e. poles) can be extended by simply linking up the requisite number of luminaire terminal blocks.

Terminal blocks
Casing: PC, white, T95
Nominal rating: 16/250
Primary and secondary connection
with release button:
 push-in twin terminals 0.5-2.5 mm²
 push-in terminals 0.5-0.75 mm²
Fixing holes for screws M3
Base split pins


Туре	Ref. No.	Number of poles	Earth-contact connection	Mark	Weight (g)	Unit (pcs.)
40710	509534	3-poles	earth spike	N PE L	13.2	500
40711	530829	3-poles	with earth strap M4	N PE L	14.8	500
40712	529596	3-poles	not earthed	N PE L	13	500
40730	509535	5-poles	earth spike	L3 N PE L1 L2	17.4	500
40731	530831	5-poles	with earth strap M4	L3 N PE L1 L2	19	500


Push-in cord grip
For terminal blocks type 407
For leads with insulation Ø 9.5-12.5 mm
Conductor fixed with screws
Material: PC, white
Weight: 6.2 g, unit: 500 pcs.

Type: 80016

Ref. No.: 525893

Terminal blocks
Casing: PA, white
Primary and secondary connection:
screw terminals

Туре	Ref. No.	Number of poles	Nominal rating	Cconnection	T-Marking	Weight	Unit
				primary/secondary		g	pcs.
41600	537484	2-poles	24 A / 450 V	0.5-2.5 mm ²	T85	5.2	2000
41600	544000	2-poles	24 A / 450 V	0.5-2.5 mm ²	T180	5.6	2000
41663	542503	3-poles	24 A / 450 V	0.5-2.5 mm ²	T110	5.3	2000
41672	544011	12-poles	24 A / 450 V	0.5-2.5 mm ²	T110	21.3	2000

Built-in Rocker Switches

Built-in rocker switch 1-pole
For cut-out 16×26 mm
Casing: PC, white, T100
Contact pillar and rocker: PBT, white
Terminal: nichrome steel
Nominal rating: 6(2)/250~
Push-in terminals: 0.5-1 mm²
Lateral fixing clips for wall thickness 0.6-1 mm
Weight: 7.2 g, unit: 500 pcs.

Type: 20200

Ref. No.: 100437

Components for Fluorescent Lamps

1		
	ì	

lectronic ballasts	351–35
Assembly instructions for mounting and installing - Electronic ballasts	352-359
PALI system information	359-36
Circuit diagrams – Electronic ballasts	362-36
:lectromagnetic ballasts	360
Assembly instructions for mounting and installing - Electromagnetic ballasts	367-370
Circuit diagrams – Electromagnetic ballasts	370
Connection terminals	37
ampholders for fluorescent lamps	37
amp table	373-37
inergy efficiency classification	376-378
Key to lamp designations	379
General technical details	533-54
Glossary	541 - 541

Ballasts for fluorescent lamps

The operation of a fluorescent lamp depends on a ballast that stabilises the lamp's preheat current after connection to the mains and, in conjunction with the starter, also supplies the required lamp ignition voltage after preheating. After ignition, the ballast then serves to limit the lamp current. As fluorescent lamps are characterised by a negative characteristic current-voltage curve, lamp current stabilisation is essential with regard to both the lamp's stable operation and a long service life, which is also dependent on compliance with the starting conditions (preheat current and ignition voltage). Unfavourable starting conditions cause damage to the electrodes every time the lamp is started and thus reduce the lamp's service life. Furthermore, care should be taken to prevent crossdischarge in the electrode area during preheating, which also shortens lamp service life.

Electromagnetic (inductive) ballasts have to be operated in conjunction with starters for lamp ignition and capacitors for blind current compensation. In addition, capacitors for RFI suppression will also be required for certain circuits. Electronic ballasts do not require any additional components.

Electronic ballasts (EB)

VS electronic ballasts are designed for mains voltages of 220 V to 240 V (exceptions are devices for the North American market where the nominal mains voltage is 127 V or 277 V) and are used to operate fluorescent lamps at high frequencies. The lamps are ignited with an internally generated ignition voltage, thereby removing the need for an external starter. The power factor (λ) > 0.95 also removes the need for compensation, unlike with electromagnetic ballasts. The only exceptions are low-output ELXs models, which attain a power factor of 0.6. Luminaires fitted with electronic ballasts are characterised by low energy consumption as they draw substantially less system power than conventional, inductive applications. This is firstly because the lamp consumes less power to achieve the same luminous flux and secondly because the internal loss of an electronic ballast only amounts to approx. 8% to 10% of the lamp's output. Furthermore, thanks to their modern circuitry, the power input of VS electronic ballasts remains constant even in the event of mains voltage fluctuations, thus ensuring permanently low energy consumption.

VS electronic ballasts permit a broad range of applications. For instance, the VS product range includes many ballast types for multiple lamp operation. These ballasts reduce installation and component costs and thus enable particularly efficient luminaires. Twin-lamp electronic ballasts permit so-called master-slave operation. The lamps of two single-lamp luminaires are operated by a twin-lamp electronic ballast that is built into the so-called master luminaire. The lamp of the slave luminaire is electrically connected to the electronic ballast.

Multi-lamp electronic ballasts also provide an interesting advantage in that several lamps of different ratings can be connected. Electronic ballasts of this kind simplify storage and logistics.

1

7

3

4

5

6

7

8

9

The use of electronic ballasts makes a lighting system both more convenient and efficient to operate:

- reduced power consumption (up to 30%) at undiminished light output
- 50% longer service life
- stabilised lamp output
- overvoltage protection
- no stroboscopic effect
- flicker-free lamp start
- no need for a starter or capacitor
- low wiring effort
- no radiated electromagnetic interference
- low self-heating due to minimal power loss
- automatic shutdown of defective lamps
- automatic restart once the lamp has been changed (except ELXe series)

Vossloh-Schwabe electronic ballasts are developed on the basis of the latest technological and component standards and are produced using state-of-the-art technology, whereby consideration is taken of our customers' quality standards in our quality assurance system.

Assembly Instructions for Electronic Ballasts

For mounting and installing of electronic ballasts for fluorescent lamps

Mandatory regulations

EN 61347-1	Lamp controlgear - part 1: general and safety requirements
EN 61347-2-3	Lamp controlgear - part 2-3: particular requirements for a.c. supplied electronic ballasts for fluorescent lamps
EN 60929	AC-supplied electronic ballasts for tubular fluorescent lamps
DIN VDE 0100	Erection of low voltage installations
EN 60598-1	Luminaires – part 1: general requirements and tests
EN 61000-3-2	Electromagnetic compatibility (EMC) – part 3: maximum values – main section part 2: maximum values for mains harmonics (device input current up to and including 16 A per conductor)
EN 55015	Maximum values and methods of measurement for RFI suppression in electrical lighting installations and similar electrical appliances
EN 61547	Installations for general lighting purposes - EMC immunity requirements

Descriptions of VS electronic ballasts (EBs)

ELXs ballasts

The family of ELXs ballasts forms a perfect alternative to magnetic ballasts. ELXs ballasts have the same fixing hole centres as standard electromagnetic ballasts. The lamp is ignited after a preheating time (warm start) of 1.5 seconds. These ballasts are dimensioned to take system outputs (lamp output plus power loss of the electronic ballast) of up to 25 W. The power factor of these ballasts amounts to approx. 0.6. The average service life of these ballasts totals 30,000 hours with a failure rate of \leq 0.2% per 1,000 operating hours.

ELXe ballasts (instant start)

With this ballast family, the lamps ignite immediately after connection to the mains by applying an ignition voltage of max. 1,500 V to the gas discharge path of the lamp. The ignition time totals approx. 0.5 seconds. As this puts a severe strain on the electrodes, the realistic number of lamp starts is limited to max. 10,000 ignitions up to the end of the lamp's service life. For that reason, ELXe ballasts should only be used for applications demanding fewer than five lamp ignitions per day (e.g. in production sites, warehouses or department stores). The power factor of this device is approx. 0.98. As there is no need for preheating, ELXe ballasts usually require one connection per electrode for lamp operation. This makes them suitable for use in explosion protected luminaires. In addition, they are very energy-efficient as there are no lamp electrode losses. The average service life of these ballasts totals 50,000 hours with a failure rate of $\leq 0.2\%$ per 1,000 operating hours.

ELXc ballasts (warm start)

In contrast to the ELXs series, ELXc ballasts have a power factor of better than 0.95 and cover the complete capacity range.

ELXc ballasts ensure the lamp is started following a defined lamp electrode preheating period of approx. 1–2.5 seconds using a fixed ignition voltage. This particularly gentle lamp start makes over 20,000 lamp starts possible. ELXc ballasts should be used for applications with high switching frequencies (e.g. hotels or offices) where energy savings as well as low maintenance costs are desired. The average service life of these ballasts totals 50,000 hours (for EffectLine ballasts of first generation: 40,000 hrs.) with a failure rate of ≤ 0.2% per 1,000 operating hours.

ELXd ballasts (dimmable)

These are warm start ballasts with an additional dimming function that is controlled via an interface fitted to the ballast. The interface of these ballasts can be either analogue (1–10 Volt) or digital (DALI; PUSH); the interface enables lighting to be ideally adjusted to suit the given need. Control components can also be used as long as they comply with the respective standard (Annex to IEC/EN 60929). The power factor for these ballasts is > 0.95 at 100% lamp operation. When using ELXd ballasts in a lighting system, an energy saving of 75% can be achieved if, for instance, the control inputs of the ballasts are coupled with movement detectors and light sensors. The average service life of these ballasts totals 50,000 hours with a failure rate of $\le 0.2\%$ per 1,000 operating hours.

To guarantee trouble-free operation and a long service life of the various types of electronic ballast, attention should be paid to the regulations and mounting instructions (page 354-359). In addition, the installation instructions for lighting systems must be observed when installing luminaires with electronic ballasts.

Mounting and installation instructions can be obtained from Vossloh-Schwabe on request or can be found online at **www.vossloh-schwabe.com**.

1

2

3

4

5

6

7

8

9

Mechanical mounting

Surface Solid, flat surface for good heat dissipation required.

Avoid mounting on protruding surfaces.

Mounting location

Electronic ballasts must be protected against moisture and heat. Installation in external luminaires: water protection rate of ≥ 4

(e.g. IP54 required)

Fastening With M4 screws in the designated holes

Heat transfer If the ballast is destined for installation in a luminaire, sufficient heat transfer must be ensured

between the ballast and the luminaire casing.

Electronic ballasts should be mounted with the greatest possible clearance to heat sources or lamps. During operation, the temperature measured at the $t_{\rm c}$ point of the ballast must not

exceed the specified maximum value.

Supplement for independent electronic ballasts

Mounting position Any

Clearance Min. of 0.10 m from walls, ceilings, insulation

Min. of 0.10 m from other electronic ballasts Min. of 0.25 m from sources of heat (lamp)

Surface Solid; device must not be allowed to sink into insulation materials

Technical specifications

Operating voltage range

AC: 220 to 240 V (±10%)

DC: please observe the specifications on the individual product pages

Ignition time ELXe ballasts t < 0.5 seconds (instant start)

Preheat time ELXc, ELXs and ELXd ballasts t = 0.5 or 1.5 to 2.5 seconds (warm start)

Leak current ≤ 0.5 mA per electronic ballast

Product features

Overheating VS EBs for fluorescent lamps are not protected against overheating

Overvoltage protection

AC: up to 48 hours at U_{NAC} = 320 V and up to 2 hours at U_{NAC} = 350 V **DC**: no disorders occur with input voltages of up to U_{NDC} 285 V. U_{NDC} voltages

in excess of 288 V destroy the ballast.

Shutdown of defective lamps

During starting operation, the electronic ballast will detect whether a lamp is connected. If no lamp is present, the ballast will cancel the starting operation. Deactivated lamps or interrupted electrodes are detected and lead to the high-frequency supply being switched off after an unsuccessful ignition attempt. Changing a lamp during operation will lead to the high-frequency supply being switched off.

EOL effect

Up to now, it has not been possible to conclusively reproduce the end-of-life effect under laboratory conditions. However, it can be qualitatively described for fluorescent lamps as follows: when the emitter material of the cathode (i.e. the filament in conventional bi-pin lamps) has been fully consumed or has otherwise lost its emitting power, the emission of electrons is hampered, which leads to a voltage drop at the cathode. Frequent cold starts accelerate active emitter loss.

Operating a lamp with a constant current (an electronic ballasts (EB) provides a near-constant current) results in high dissipation losses that also cause the lamp base and lampholder to heat up and can even cause damage to both. This is often referred to as the EOL effect; from an electrical point of view, this is manifested in the so-called "partial rectifier effect".

The EOL cut-out ensures that a ballast is safely switched off and the lamp base does not overheat at the end of a lamp's service life.

EN 61347-2-3 (A1:2004) describes three possible tests.

The first are now in widespread use and are described in more detail here. The third test is not conducted at VS.

- 1. EOL Test 1 (61347-2-3:2000 + A1:2004 + A2:2006 17.2) Asymmetric pulse test
- 2. EOL Test 2 (61347-2-3:2000 + A1:2004 + A2:2006 17.3) Asymmetric power test
- 3. EOL Test 3 (61347-2-3:2000 + A1:2004 + A2:2006 17.4) Exposed filament test

The first two tests attempt to simulate the rectifier effect:

- Test 1 pulse switching of rectifing effect
- Test 2 by applying a DC voltage that is constantly higher than required by the lamp.

VS EBs are capable of suitably assessing the altered voltage signal in comparison to normal operation so as to meet EOL requirements.

Protection against transient mains peaks

Values are in compliance with EN 61547 (interference immunity) (1 kV for AC and 0.5 kV for DC and control conductors).

Electrical installation

Wiring

The wiring between the mains, electronic ballast and lamp must comply with the respective circuit diagram. Note: with ELXe models, one side of the lamp electrode is never connected to the electronic ballast.

The electronic ballast must be earthed using a toothed washer or similar (protection class I, ignition help, compliance with RFI/BCI standards).

To ensure compliance with RFI-suppression limits, mains conductors should not be wired in parallel to high-frequency carrying lamp conductors; maximum clearance should be ensured and all conductors marked with an * must be kept short. As a general rule, a maximum conductor length should not be exceeded when using conventional conductors (see table on page 363–365 for precise details). Luminaire must be tested for compliance with the RFI suppression limits stipulated by EN 55015.

Conductors must not exceed 3 m in length in the event of master-slave operation.

Dimmable electronic ballasts are unsuitable for master/slave operation.

1

2

3

4

5

6

7

8

g

Through-wiring of mains voltage

ELXc 257.836 (188400) devices permit through-wiring of mains voltage The following list specifies the maximum No. of devices that may be connected to the first device:

- 2 x 57 W = max. 3 devices
- 2 x 42 W = max. 4 devices
- 2×32 W = max. 5 devices
- 2 x 26 W = max. 7 devices

Mains power can be through-wired with the following devices:

- ELXc 213.874: max. 39 devices
- ELXc 218.875: max. 31 devices
- ELXc 142.876: max. 23 devices
- ELXc 242.877: max. 11 devices

The number of devices always refers to maximum-load operation. In addition, the maximum number of devices per installed automatic fuse must be strictly observed.

It is permissible to connect the protective conductor of the ballast by attaching the ballast to metal conductors that are connected to the protective conductor. In doing so, care must be taken to ensure the protective conductor is contacted in accordance with EN 60598. If, however, a ballast is fitted with a connection terminal for a protective conductor without through-wiring and if this is to be used to connect the protective conductor, this connection terminal may only be used for the ballast itself.

Cord grip

EBs with cord grip can be used with the following conductors, for instance:

Designation	Lead type	
Mains lead	H03VV-F 3X0.75 mm ² or NYM 3X1.5 mm ²	
Control lead	H03VV-F 2X0.5 mm ²	
Mains and control lead in one lead	H03VV-F 5X0.75 mm ²	
Lamp lead	H05VV-F 4X1 mm ² or 5X1 mm ²	

Connection terminals for automatic luminaire wiring (ALF connections)

- Use copper (not stranded) wire
- Rquired diameter for push-in connection 0.5-1 mm²
- Stripped lead length 8-9 mm
- Required diameter for IDC 0.5 mm², max. Ø 2 mm including insulation, no wire stripping required; mounting requires a special tool

Push-in terminals

The integrated terminals can be used with flexible or rigid leads with a crosssection of $0.5-1.5 \, \text{mm}^2$. The stripped lead length ranges between $8.5-9.5 \, \text{mm}$ for a $3.5 \, \text{mm}$ terminal grid.

Error current

Impulse-resistant leak-current protection must be installed. Distribute the luminaires to phases L1, L2 and L3; install tri-phase FI switches. If permissible, install FI switches with 30 mA leak current; connect no more than 15 luminaires as FI switches can be triggered at half the leak current value.

Tri-phase connection of luminaires with EB

- Prior to operating newly installed lighting systems: check the mains voltage is appropriate to the electronic ballast's mains voltage range (AC, DC).
- The N-type conductor must be properly connected to all luminaires or ballasts.
- Conductors can only be connected or disconnected if the ballast is disconnected from the mains. Attention: N-type conductors must never be disconnected individually or as the first element.
- Insulation resistance test: from L to PE (L and N must not be connected)
- The neutral conductor must be reconnected after completion of the test.

Power factor/compensation

Luminaires with electronic ballasts do not require compensation: power factor \geq 0.95 (ELXc 113.392: power factor \geq 0.9). For ELXc ballast models 116.900, 116.903, 117.908, 121.901, 121.904, 124.902, 124.905, 126.906 and 126.907: power factor \geq 0.6.

1

Selection of automatic cut-outs

Dimensioning automatic cut-outs

High transient currents occur when an EB is switched on because the capacitors have to load. Lamp ignition occurs almost simultaneously. This also causes a simultaneous high demand for power. These high currents when the system is switched on put a strain on the automatic conductor cut-outs, which must be selected and dimensioned to suit.

Release reaction The release reaction of the automatic conductor cut-outs comply with VDE 0641, part 11, for B and C characteristics.

3

No. of electronic ballasts (see the table on pages 363-365)

The maximum number of VS ballasts applies to cases where the devices are switched on simultaneously. Specifications apply to single-pole fuses. The number of permissible ballasts must be reduced by 20% for multi-pole fuses. The considered circuit impedance equals 400 m Ω (approx. 20 m of conductor [2.5 m²] from the power supply to the distributor and a further 15 m to the luminaire). Doubling circuit impedance to 800 m Ω increases the possible number of ballasts by 10%.

4

EB output voltage Electronic ballasts bear the information "U_{OUT}" on their type plates. All subsequently connected components must be designed for this EB output voltage. When using T5 lamps, any components connected to the output side of the EB must be approved for a voltage of ≥ 430 V (especially lampholders). This also applies to dimmable T5 EBs.

5

Lamps and dimmed operation

For lighting systems with dimmable electronic ballasts, Vossloh-Schwabe recommends that fluorescent lamps always be replaced as a full complement to maintain uniform lighting levels and colour impressions. New lamps must be burnt in at maximum brightness for approx. 100 hours.

6

Without restrictions, VS electronic ballasts can be used to operate ECO T5 fluorsecent lamps (except for with types ELXc 135.856 and ELXc 235.857) and T8 fluorescent lamps. A two-lamp dimmable electronic ballast can only be used with lamps of a single lamp manufacturer. The following EBs are restricted in their suitability for dimmer operation of amalgam lamps: ELXd 118.802, 218.803, 142.806, 242.807.

7

Dimming interface

DC 1-10 V according to EN 60929 with power source 0.5 mA (protected in the event of mains voltage connection); designed to enable connection of control and regulation units. Dimming range: 3-100% of lamp power

8

DALI (Digital Addressable Lighting Interface) dimming interface

Polarity reversible dimmer interface – protected in accordance with EN 60929 given mains voltage supply – for connecting control devices that work according to the standard digital protocol. Dimming range: 1–100% of the lamp's rating

Potential interference with IR systems

Operating lamps at frequencies of 20 to 50 kHz can cause interference with infrare systems (remote controls, sound transmission, personal pager systems). Countermeasures: optical filters, switching to infrared systems with higher carrier frequencies (over 400 kHz).

9

Electromagnetic Compatibility (EMC)

Vossloh-Schwabe's electronic ballast range was developed in accordance with valid EMC standards (interference, interference immunity and mains harmonics) and specially designed to ensure safe compliance with the limiting values.

It is assumed that that any remarks regarding conductor wiring and conductor length in the instructions for installing electronic ballasts in luminaires or for independent ballasts will be observed.

Vossloh-Schwabe electronic ballasts are also tested in commercially available luminaires in addition to the CISPR 30 sample luminaires.

ELXs devices: The ELXs device family was developed for system ratings of ≤ 25 W on
the basis of the limiting values prescribed for this in EN 61000-3-2. Vossloh-Schwabe's
ELXs devices all bear the VDE EMC mark and comply with the limiting values laid down
by EN 61000-3-2.

It is possible to use several ELXs ballasts in a luminaire if a separate connection terminal is available for each lamp circuit.

Mains harmonics: the maximum values laid down in EN 61547 (Interference Immunity) are satisfied.

Additional information

Information on the installation of electronic ballasts for optimising EMC

To ensure good radio interference suppression and the greatest possible operating safety, the following points should be observed when installing electronic ballasts:

- Conductors between the EB and the lamp (HF conductors) must be kept short (reduction
 of electromagnetic interference). High-potential lamp conductors must be kept as short as
 possible, in particular with tubular lamps. Lamp conductors of this kind are labelled with
 an * in the wiring diagram on the type plate (see page 363-365).
- Mains and lamp conductors must be kept separate and if possible should not be laid in
 parallel to one another. The distance between HF and mains conductors should be as
 large as possible, ideally > 5 cm. (This prevents the induction of interference between the
 mains and lamp conductors.)
- The mains conductor within the luminaire must be kept short (to reduce the induction of interference)
- Devices must be properly earthed. EBs require secure contacts to the luminaire casing or
 must be earthed using a PE connection. This PE connection should be effected using an
 independent conductor to achieve better dissipation of the leak current. EMC improves at
 frequencies greater than 30 MHz.
- The mains conductor must not be laid too close to the EB or the lamp (this is especially
 important in the event of through-wiring).
- Mains and lamp conductors must not be crossed. Should this be impossible to avoid, conductors should be crossed at right angles to one another to avoid inducing interference between mains and HF conductors.
- Should conductors be wired through metal parts, such conductors must always be additionally shielded (e.g. with an insulating sleeve or grommet).

Temperature

Reference point temperature t_C

The safe operation of electronic ballasts is dependent on the maximum permissible temperature not being exceeded at the measuring point. Vossloh-Schwabe has determined a casing temperature measuring point – $t_{\rm c\ max.}$ – on all EB casings. To avoid shortening the service life or diminishing operating safety, the stipulated maximum temperature must not be exceeded at this $t_{\rm c}$ point. This point is determined by testing the convertor during normal, IEC-standardised operation at the specified ambient temperature $(t_{\rm a})$, which is also indicated on the type plate. As both the design-related ambient temperature and the ballast's inherent heat, as determined by the installed load, are subject to great variation, the casing temperature should be tested at the $t_{\rm c}$ point under real installation conditions.

Ambient temperature ta

The ambient temperature – as specified on every EB – denotes the permissible temperature range within the luminaire.

Reliability and service life

If the max. temperature at the t_c reference point (as specified on the type plate and the technical documentation of the ballast) is not exceeded, the defined service life can be expected to be achieved, assuming a switching cycle of 165 minutes on and 15 minutes off. See page 353 for service life details regarding the various electronic ballast families.

Emergency lighting

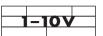
All Vossloh-Schwabe EBs that are suitable for DC voltage operation can be used in emergency lighting systems. Consideration must, however, be taken of system requirements.

VS Dimmable Electronic Ballasts

Vossloh-Schwabe's range of electronic ballasts is rounded off by dimmable ballasts for fluorescent lamps. The standardised interfaces "1-10 V" and "DALI" are used for this purpose. Coupled with sensors, electronic ballasts fitted with a "1-10 V" interface make it easy to create intelligent luminaires and room lighting systems, whereby the luminaires are "programmed" via the wiring to the control units, i.e. via the hardware.

The digital interface "DALI" (Digital Addressable Lighting Interface) constitutes a further development of the "1-10 V" analogue interface. This digital interface was jointly developed by leading manufacturers of electronic ballasts in order to create a uniform standard for the lighting industry. The uniform interface and telegram definition dictates the function of a DALI operating device or DALI consumer and ensures exchangeability of operating devices made by various manufacturers.

Each VS DALI ballast is additionally fitted with the so-called PUSH function. The data input DA (DALI & PUSH) is used as a control input for both signal structures, with the exception of devices featuring separate inputs. When used as a DALI ballast, control is effected via the DALI protocol; when used as a PUSH ballast, control is effected via a push key and is achieved via current flow times of differing duration.


Due to the working principle involved, dimming compact fluorescent lamps causes a negligible drop in colour temperature. However, sudden larger changes in the dimmer setting can temporarily cause greater variation in colour temperature. The dimmer function is optimised to minimise this subjective visual change in colour temperature when the dimmer setting is suddenly subjected to larger change.

VS DALI electronic ballasts are characterised by the following performance feature

- Two-strand, potential-free, polarity-independent control input
- Dimmer curve analogue to the light sensitivity of the human eye
- Addressing options: total system, group-wise or individually
- Scene memory
- Feedback in the event of defective lamps

These features ensure a number of advantages for lighting systems

- No group wiring needed
- Each DALI ballast can be individually addressed
- No need for scene memory modules
- Synchronised scene transitions
- Operating devices provide reports on lamp status
- Simple integration into facility management systems

VS DALI electronic ballasts provide the convenience of a bus system that is both easy to install and operate.

DALI and PUSH must not be used at the same time!

Switching mains voltage to the DALI conductors within a DALI system will lead to the destruction of both the DALI power supply and the DALI master!

4

5

6

7

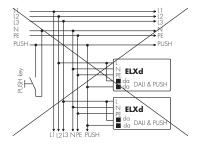
2

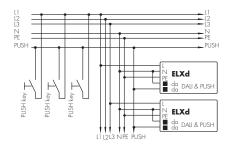
Q

PUSH function characteristic

- ullet Just one key for dimming and ON/OFF
- Polarity- and phase-independent control
- Control input with large working voltage range
- Suitable for multi-layer control
- Fully DC-compatible no functional restrictions during DC operation
- After disconnection from the primary voltage the ballast will reproduce the last stored lighting level
- Soft start
- Automatic recognition of DALI and PUSH signals

PUSH operating voltage ranges during control signal input


i obii operaning vonage	s runges doring connect signal inper				
EB type	ELXd 117.715, ELXd 217.717, ELXd 118.70	05, ELXd 218.707, All other DALI/PUSH ballasts			
	ELXd 142.709, ELXd 242.711				
AC	220-240 V ±10%	10-230 V			
DC	198-264 V	-			
	Failing to observe these working voltage ro	anges can lead to non-recognition of the signals; exceeding the			
	maximum voltages can lead to the destruct	maximum voltages can lead to the destruction of the data inputs.			
	·				
PUSH control signals (ke	ey activation)				
Short push	(80 ms < t < 460 ms)	(O ms < t < 500 ms)			
	Is used to switch between ON/OFF lighting	Is used to switch between ON/OFF lighting states. After the device is switched on, the last selected lighting level is			
	restored and the next dimming direction wi	restored and the next dimming direction will be upwards.			
Long push	(460 ms < t < 10 s)	$(500 \text{ ms} < t < \infty)$			


Short push	(80 ms < t < 460 ms)	(0 ms < t < 500 ms)			
	Is used to switch between ON/OFF lighting states. After the	he device is switched on, the last selected lighting level is			
	restored and the next dimming direction will be upwards.				
Long push	(460 ms < t < 10 s)	(500 ms < t < ∞)			
	Is used to dim upwards or downwards; a long push will ch	hange the dimming direction. Thus, a long push will			
	reverse the dimming direction until the upper or lower limit	is reached. If the light was off, a long push will switch			
	iit on and the dimmer will start at the lowest light intensity.				
Push to synchronise	(t > 10 s)	long - short - long			
	Light is dimmed to the preset factory level and the next	Starting situation: luminaires are switched off.			
	dimming direction will be upwards.	The "long - short - long" combination first switches the			
Synchronisation		lamp on, then off and finally on again, after which it gets			
		gradually brighter. The EBs will be synchronised again			
		after this procedure.			
	Any 1-key dimmer that does not feature a central control module (as each ballast will have its own controls)				
	can develop asynchronous behaviour (e.g. children might play with the key). The system will then be out of sync,				
	i.e. some lamps will be on, others off or the dimming direction will differ from lamp to lamp.				
	Two methods of synchronisation can be used:				
	Push the key for more than 10 seconds, after which				
	the light will be dimmed to a preset level and the next				
	dimming direction will be upwards.				
	Start with a long push of the key so that all lamps are				
	switched on. Follow with a short push to turn the				
	system off. The system will now be resynchronised.				

Wiring examples for PUSH function

Note

Not permissible: N-type conductors must not be used as PUSH potentials for multi-phase systems. Example: if the PUSH key is not activated, the series connection of the internal resistors of the DA inputs will approach the delta voltage of 400 V (voltage between L2 and L3) (Fig. 1).

Fig. 1N conductor must not be used as a PUSH potential

Fig. 2Standard application for T5 and T8 lamps

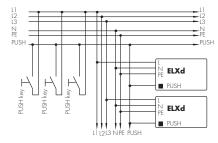


Fig. 3
Standard application for TC lamps

General information on PUSH and DALI

Mains voltage and interface conductors must not be wired in parallel to the lamp conductors so as to avoid capacitive bridging of the mains filter.

If more than one device is operated with a single key during PUSH operation, asynchronous behaviour can occur, which will require manual resynchronisation using the method described. Should this be unacceptable, a DALI control module will have to be used instead. It is recommended not to control more than four devices using a single key.

When using dimmable devices, new lamps should generally be burnt in for at least 100 hours at full brightness before they are dimmed. This process can become necessary again should the lamps be physically relocated O(e.g. transport).

After initial operation of a DALI system (address assignment, luminaire allocation, group formation, scene settings) it is recommended to disconnect the primary voltage of the DALI control units at the circuit breaker for at least 3 seconds and then to reconnect it. The devices will detect this disconnection from the mains and store the settings.

DALI devices with a PUSH function must be operated with a control module (DALI control module or key pad with PUSH function). DALI devices with a PUSH function must not be operated with an open or bridged DALI/PUSH input.

To ensure the ballast does not distort and misinterpret signals when operated in PUSH mode, connected PUSH buttons must not feature a control lamp.

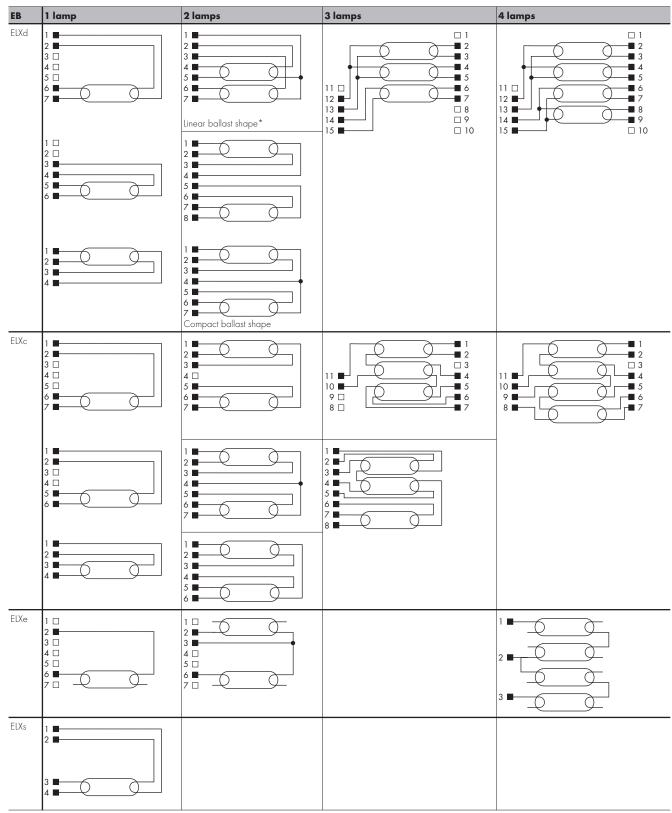
2

3

4

5

6


7

8

g

Circuit diagrams for Vossloh-Schwabe electronic ballasts

The circuit diagrams shown here are wiring examples for Vossloh-Schwabe electronic ballasts, whereby the number and configuration of the contacts differ. See the table on page 363-365 for details.

^{*} ELXc devices can also be wired under observation of the circuit diagram on the ballast.

Explanation of circuit diagrams for Vossloh-Schwabe electronic ballasts (see page 362)

lectronic		Lamp				llasts	5											Max. lead	1 -	Operation		THD		e quantit		
lef. No.	Туре	Quantity		minal ₂	ls 3	4	5	6	7	8	9	110	111	12	13	14	15	hot*	cold	frequency	voltage U _{OUT}		B EB/au	tomatic o	Cut-outs	lc
				-		Ė				Ŭ					10			(m/pf)	(m/pf)	kHz	V	%	(10A)	(16A)		(16A)
LXc						_										_							1			
83039	ELXc 424.223	3	x*	×*	-	×	х	Х	×	-	-	×	X	-	-	-	_	1/100	2/200	46	360	< 10	7	12	12	20
02040	EIV. 226 070	4	x*	x*	_	X	x x*	x x*	X	Х	X	X	Х	-	-	-	_	1/100	2/200	46	360	< 10	7	12	12	20
83040	ELXc 226.878	2	x	X		x	x*	x*	_	_	-	-	-	_	-	_	_	1/100	1.5/150	45 45	300	< 10	11	18	18	30
88093	ELXc 135.856	1	x*	×*	×	×	Ê	Î.							_			1/100	2/200	44	330	< 10	11	18	18	30
88094	ELXc 235.857	2	x*	x*	X	×	×	×*	×*	_	<u> </u>	-	_	_	_	_	_	1/100	2/200	45	330	< 10	9	15	15	25
83039	ELXc 424.223	1	×*	×*	х	×	-	-	_	-	-	-	_	-	_	_	_	1/100	2/200	28	330	< 10	11	18	18	30
88132	ELXc 257.836	2	x*	x*	х	х	×	x*	x*	-	-	_	_	_	-	-	_	1/100	1.5/150	47	350	< 10	7	12	12	20
88140	ELXc 140.862	1	x*	x*	х	×	_	_	_	-	_		_		-	-	_	1/100	2/200	45	250	< 10	11	18	18	30
88142	ELXc 154.864	1	x*	x*	х	x	-	-	-	_	-	-	-	_	-	-	_	1/100	2/200	34	300	< 10	9	15	15	25
88144	ELXc 180.866	1	x*	x*	Х	×	-	-	-	-	-	-	-	-	-	-	-	1/100	2/200	45	300	< 10	9	15	15	25
88238	ELXc 120.838	1	×	X	-	-	-	х*	x*	-	-	-	_	-	-	-	_	1/100	1.5/150	53	420	< 10	7	12	12	20
00070	FIV. 100.000	2	×	X	Х	-	Х	x*	x*	-	-	-	-	_	-	-		1/100	1.5/150	53	420	< 10	7	12	12	20
88273	ELXc 120.838	1	X	X	-	-	-	-	x*	-	-	-	-	-	-	-	_	1/100	1.5/150	53	420	< 10	7	12	12	20
00214	EIV. 134 200	2	X	X	X	-	X	x*	x*	-	-	-	-	-	-	-	_	1/100	1.5/150	53	420	< 10	7 11	12	12	30
88314 88315	ELXc 136.200 ELXc 158.201	1	X	X		H	-	x*	x*	-	-	H				-		1/100	2/200	48 36	330	< 10	9	18	18	25
88315	ELXc 138.201 ELXc 236.202	2	X	X				x*	x*							_		1/100	2/200	48	430	< 10	11	18	18	30
88317	ELXc 258.203	2	X	X	×		×	x x*	x*	_			_	_			_	1/100	2/200	36	300	< 10	7	12	12	20
88319	ELXc 170.205	1	×	×	_	-	_	x*	x*		-	-	_	_	_		_	1/100	2/200	37	380	< 10	111	18	18	30
88320	ELXc 270.206	2	x	x	х	-	x	x*	x*	-	-	-	_	_	_	_	_	1/100	2/200	51	380	< 10	6	11	11	18
88400	ELXc 257.836	2	x*	x*	х	×	×	x*	x*	_	Ī_	<u> </u>	_	_	_	_	_	1/100	1.5/150	47	350	< 10	7	12	12	20
88438	ELXc 414.868	3	x*	x*	-	x	×	x	x	-	-	х	×	_	_	- 1	_	1/100	2/200	45	400	< 10	7	12	12	20
		4	x*	x*	_	x	×	×	x	×	×	x	×	_	_	_	_	1/100	2/200	45	400	< 10	7	12	12	20
88454	ELXc 113.392	1	×	×	x*	x*	-	_	_	-	-	_	_	-	-	-		1/100	1.5/150	44	350	16	50	80	50	80
88589	ELXc 128.869	1	x*	x*	×	х	-			_	-	_	_	_	_	_	_	1/100	1.5/150	54	450	< 10	11	18	18	30
88590	ELXc 128.869	1	x*	x*	×	х	_	_	_	_	_	_	_		-	-	_	1/100	1.5/150	54	450	< 10	11	18	18	30
88595	ELXc 336.214	3	х	x	×	×	×	x	x*	×*	-	_	_		-	_		1/100	2/200	70	370	< 10	6	11	11	18
88616	ELXc 240.863	2	x*	x*	×	_	×	×	х	_	<u> -</u>	_	_	_	-	_	_	1/100	2/200	46	360	< 15	7	12	12	20
88617	ELXc 249.859	2	x*	x*	x	x	×	x*	x*	_	-	-	_	_	-	-	_	1/100	2/200	43	480	< 10	7	12	12	20
88618	ELXc 254.865	2	x*	×*	х	-	×	×	X	_	-	-	_	_	-	-		1/100	2/200	43	390	< 10	7	12	12	20
88619	ELXc 280.538	2	x*	x*	Х	Х	×	х*	x*	-	-	-	-	-	-	-	_	1/100	2/200	50	420	< 10	-	10	-	10
88643	ELXc 242.837	2	X	X	X	X	x*	х*	_	_	-	-	_	_	-	_	_	1/100	1.5/150	43	440	< 15	7	12	12	20
88680	ELXc 155.378	1	X	×	x*	x*	-	-	_	-	-	-	-	-	-	-	_	1/100	1.5/150	47	250	< 15	7	12	12	20
88681	ELXc 155.378	1	x x*	x x*	×	x*	-	_	_	-	-	-	-	-	-	_	_	1/100	1.5/150	47	250 350	< 15	7	12	12	20
88682 88683	ELXc 170.833 ELXc 170.833	1	x x*	x x*	-	-	-	X	X	-	-	-	-	-	-	_	_	1/100	1.5/150	44	350	< 10	7	12	12	20
88687	ELXc 170.833 ELXc 242.837	2	×	X	_	×	- x*	x x*	×	_	-	-	_	_	_	_	_	1/100	1.5/150	43	440	< 15	7	12	12	20
88698	ELXc 213.870	1	×	×	_	Ĺ	x*	x*										1/100	1.5/150	42	250	< 20	11	18	18	30
00070	EDIC 2 10:07 0	2	×	×	×	×	x*	×*			<u> </u>					_		1/100	1.5/150	42	250	< 20	11	18	18	30
88699	ELXc 218.871	1	×	×	_	-	x*	x*	_	_	_	_	_	_	_	_	_	1/100	1.5/150	35	350	< 12	11	18	18	30
		2	х	х	х	x	x*	x*	-	-	-	-	-	-	-	-	-	1/100	1.5/150	35	350	< 12	11	18	18	30
88700	ELXc 142.872	1	х	х	Ŀ	Ŀ	x*	x*	Ŀ	Ē	F	Ŀ		Ŀ	_	_		1/100	1.5/150	44	480	< 15	11	18	18	30
		2	х	х	х	х	x*	x*	_	_	L	E	_	E			_	1/100	1.5/150	44	480	< 15	11	18	18	30
88704	ELXc 136.207	1	х	х	_	_	х*	x*	_	-	-	-	_	_	-	-]	_	_	-	48	350	< 20	11	18	18	30
88705	ELXc 236.208	2	x	х	х	×	x*	x*	L	_	F	F	_					_	-	45	250	< 20	11	18	18	30
88706	ELXc 158.209	1	х	х	-	-	x*	х*	-	-	-	-	-	-	-	-	-	_	-	33	250	< 20	9	15	15	25
88707	ELXc 258.210	2	×	х	х	×	x*	x*	_	-	-	<u> -</u>	-	<u> -</u>	-	-	-		-	48	350	< 20	7	12	12	19
88708	ELXc 136.207	1	х	х	-	-	х*	x*	-	-	-	-	-	-	-	-	-	_	-	48	350	< 20	11	18	18	30
88709	ELXc 236.208	2	х	х	Х	×	x*	x*	_	-	-	L	-	<u> </u>	-	-	_		-	45	250	< 20	11	18	18	30
88710	ELXc 158.209	1	х	х	-	-	х*	х*	-	-	-	-	-	-	-	-	-	_	-	33	250	< 20	9	15	15	25
88711	ELXc 258.210	2	х	Х	Х	×	x*	x*	_	-	-	H	-	-	-	_	_	1 /100	- 1 5 (2.55	48	350	< 20	7	12	12	19
88712	ELXc 213.870	1	×	X	-	-	x*	x*	-	-	-	-	-	-	-	-	-	1/100	1.5/150	42	250	< 20	11	18	18	30
00710	FIV. 010 071	2	х	Х	Х	×	x*	x*	-	-	-	-	-	-	-	-	_	1/100	1.5/150	42	250	< 20	11	18	18	30
88713	ELXc 218.871	1	Х	Х	-	1-	x*	x*	-	-	-	H	-	-	-	-	_	1/100	1.5/150	35	350	< 12	11	18	18	30
00714	EIV. 142 072	2	X	X	X	×	x*	x*	-	-				-	-	-		1/100	1.5/150	35	350	< 12	11	18	18	30
88714	ELXc 142.872	2	X	X	_	-	x*	x*		-	-	H	-		_	-	_	1/100	1.5/150	44	480	< 15	11	18	18	30
88744	ELXc 418.204	3	x x*	x x*	X	×	×	X	_	-	-	-	_		_	-	_	1/100	2/200	44	480	< 10	7	12	18	20
00/44	LLAC 410.204	4		x x*	-	X	1^	^	X	Ε.	+	^	Λ.	-		_	_	1/100	2/200	44	480	< 10	7	12	12	20

Electronic	ballasts	Lamp	Elec	ctroni	ic bo	llasts	5											Max. lead	length	Operation	Output	THD	Possible	e quanti	ty of	
Ref. No.	Туре	Quantity		minal 2	ls 3	4	5	6	7	8	9	l ₁₀	l.,	12	1,2	l 1 4	1,5	hot*	cold	frequency	voltage		EB/aut B	tomatic	cut-outs	lc
				_	3	4				0	9	10	11	12	13	14	13	(m/pf)	(m/pf)	kHz	V _{OUT}	%		(16A)	(10A)	(16A)
ELXc																										
188760	ELXc 217.873	1	х	×	_	-	x*	х*	_	_	-	_	_	_	_	_	-	1/75	1.5/100	48	470	< 10	7	12	12	20
1007/1	ELV. 017.070	2	х	х	Х	Х	x*	x*	-	-	-	-	-	-	-	-	-	1/75	1.5/100	48	430	< 10	17	28	28	46
188761	ELXc 217.873	2	x	×	- 	_	x* x*	x*	H	-	-	-	-	_	-	-	-	1/75	1.5/100	48	430	< 20	1 <i>7</i>	28	28	46
188868	ELXc 136.216	1	×	×	_	_	x*	x*	-	_	_	_	_	_	_	_	_	1/75	1.5/100	47.5	430	< 20	17	28	28	46
188869	ELXc 236.217	2	x*	x*	х	×	x*	x*	-	-	-	-	-	_	-	-	-	1/75	1.5/100	45	430	< 10	8	13	13	21
188870	ELXc 158.218	1	х	x	-	_	x*	х*	-	-	_	-	-	_	-	-	-	1/75	1.5/100	34	430	< 10	12	19	19	31
188871	ELXc 258.219	2	x*	x*	х	×	x*	х*	_	_	-	_	_	_	_	_	-	1/75	1.5/100	52	430	< 10	8	13	13	21
188886	ELXc 213.874	1	х	×	-	-	x*	x*	-	-	-	-	-	-	-	-	-	1/75	1.5/100	44	250	< 10	11	18	18	30
188887	ELXc 218.875	1	×	X	Х	×	x*	x*	-	_	-	-	-	_	-	-	-	1/75	1.5/100	37	250 350	< 10	11	18	18	30
100007	LLAC 210.07 J	2	×	×	×	×	x*	x*	_	_	_	_	_	_	_	_	_	1/75	1.5/100	37	350	< 10	11	18	18	30
188888	ELXc 142.876	1	x	×	-	-	x*	x*	-	_	-	_	_	_	_	-	-	1/75	1.5/100	44	480	< 10	11	18	18	30
		2	х	×	х	×	x*	x*	_	_			-	_	_	_	-	1/75	1.5/100	44	480	< 10	11	18	18	30
188889	ELXc 242.877	1	x	х	-	-	x*	х*	<u> -</u>	-	<u> -</u>	<u> -</u>	-	_	<u> -</u>	<u> -</u>	-	1/75	1.5/100	45	480	< 10	7	12	12	20
1000	FIV 20 (T	2	х	х	Х	Х	x*	x*	-	_	-	-	_	_	_	-	-	1/75	1.5/100	45	480	< 10	7	12	12	20
188912	ELXc 136.216 ELXc 236.217	2	x x*	x x*	-	-	x*	x*	-	-	-	-	-	-	-	-	-	1/75	1.5/100	47.5 45	430	< 20	1 <i>7</i>	28	28	46
188913	ELXc 236.217 ELXc 158.218	1	X	x ^	X	X	x*	x*		_								1/75	1.5/100	34	430	< 10	17	28	28	46
188915	ELXc 258.219	2	x*	x*	x	x	x*	x*	-	-	-	-	_	_	-	-	-	1/75	1.5/100	52	430	< 10	17	28	28	46
188921	ELXc 135.220	1	x*	x*	х	х	_	_	_	_	_			_		_		1/100	2/150	41	300	< 10	11	18	18	30
188922	ELXc 235.221	2	х	х	х	х	х	x*	x*		E	_	-		-	E	_	1/100	2/150	41	300	<10	11	18	18	30
188945	ELXc 139.632	1	х	×	х*	x*	-	-	_	-	_	-	-	-	_	_	-	1/75	2/150	42-85	330	< 15	17	28	29	47
188946	ELXc 149.633	1	Х	X	x*	x*	-	-	-	_	-	_	-	_	_	-	_	1/75	2/150	42-85	330	< 10	17	28	29	47
188947	ELXc 180.634 ELXc 239.635	2	X	×	x*	x*	- x*	- ×*	- ×*	-	-	-	_	_	_	-	-	1/75	2/150	42-85	330	< 10	8	13	13	22
188949	ELXc 249.636	2	x	X	X	x x*	x*	x x*	x x*								E	1/75	2/150	42-85	330	< 7	8	13	13	22
188950	ELXc 280.637	2	x	×	X	x*	x*	x*	x*	_	-	-	_	_	-	-	-	1/75	2/150	45-70	330	< 10	5	9	9	15
ELXd																										
188276	ELXd 170.808	1	x*	x*	х	×	-	-	-	-	-		-	-	_	_	-	0.5/50	0.75/75	50-90	470	< 10	7	12	12	20
188329	ELXd 124.600	1	х	×	_	-	-	x*	x*	_	-	_	_	_	_	_	-	1/100	1.5/150	76-120	430	< 10	17	28	28	46
188330	ELXd 224.601 ELXd 139.602	2	X	×	Х	x*	x*	x*	x*	-	-	-	-	-	-	-	-	1/100	1.5/150	53-120 85-120	430	< 10	1 <i>7</i>	28	28	46
188332	ELXd 154.603	1	X	X		E		x x*	x x*									1/100	1.5/150	83-120	430	< 10	17	28	28	46
188333	ELXd 254.604	2	x	×	х	×*	x*	x*	x*	_	-	-	_	_	_	_	-	1/100	1.5/150	44-120	430	< 10	8	13	13	21
188334	ELXd 180.605	1	х	×	-	_	_	x*	x*	-	_	_	-	_	-	-	_	1/100	1.5/150	91-120	430	< 10	12	19	19	31
188335	ELXd 249.606	2	х	x	х	x*	x*	х*	х*	_	_	-	-	_	_	_	-	1/100	1.5/150	44-120	430	< 10	8	13	13	21
188336	ELXd 124.607	1	×	×	_	-	-	х*	х*	_	-	_	_	-	_	_	-	1/100	1.5/150	76-120	430	< 10	17	28	28	46
188337	ELXd 224.608	2	х	×	Х	х*	x*	x*	x*	-	-	-	_	_	-	-	-	1/100	1.5/150	53-120	430	< 10	17	28	28	46
188338	ELXd 139.609 ELXd 239.610	2	X	X	-	- ×*	- x*	x*	x*	_	-	-	-	_	_	-	-	1/100	1.5/150	85-120 53-120	430	< 10	1 <i>7</i>	28	28	46 46
188340	ELXd 154.611	1	×	×	_	_	<u>_</u>	x*	x*	_	_		_		_	_		1/100	1.5/150	83-120	430	< 10	17	28	28	46
188341	ELXd 254.612	2	×	×	×	×*	×*	x*	x*	-	-	-	_	_	_	-	-	1/100	1.5/150	44-120	430	< 10	8	13	13	21
188342	ELXd 180.613	1	х	х	_	_	_	x*	x*	_	-	_	_	_	_	_	_	1/100	1.5/150	91-120	430	< 10	12	19	19	31
188343	ELXd 249.614	2	х	х	х	х*	x*	x*	x*	_	-	_	-	_	_	_	-	1/100	1.5/150	44-120	430	< 10	8	13	13	21
188344	ELXd 118.615	1	х	х	-	-	-	x*	x*	-	-	-	-	-	-	-	-	1/100	1.5/150	51-120	300	< 10	17	28	28	46
188345	ELXd 218.616	1	X	X	Х	x*	x*	x*	x*	-	-	-	_	-	_	-	-	1/100	1.5/150	51-120	300	< 10	12 17	19	19	31
188346	ELXd 136.617 ELXd 236.618	2	×	×	×	- x*	- ×*	x*	x*	_								1/100	1.5/150	48-120 48-120	430	< 10	17	28	28	46
188348	ELXd 158.619	1	X	X	-	_	-	x*	x*	-	-	-	_	_	_	-	-	1/100	1.5/150	46-120	430	< 10	17	28	28	46
188349	ELXd 258.620	2	х	х	х	x*	x*	x*	x*	E	Ŀ	E				E	Ŀ	1/100	1.5/150	46-120	430	< 10	8	13	13	21
188350	ELXd 239.621	2	х	х	х	x*	x*	x*	x*	-	-	-	-	-	-	-	-	1/100	1.5/150	53-120	430	< 10	17	28	28	46
188431	ELXd 226.801	2	х	х	х	х	x*	x*	-	_	-	-	-	_	-	-	-	0.5/50	0.75/75	50-90	470	< 10	7	12	12	20
188490	ELXd 226.801	2	X	х	Х	Х	x*	х*	-	-	-	-	-	-	-	-	-	0.5/50	0.75/75	50-90	470	< 10	7	12	12	20
188495	ELXd 170.808	1	x* x*	x*	X	X	-	_ x*	_ x*	-	-	-	-	-	-	-	-	0.5/50	0.75/75	50-90	470	< 10	7	12	12	20
188549 188550	ELXd 218.803 ELXd 242.807	2	x*	x*	X	X	X	x*	x*	_		_	_	_			_	0.5/50	0.75/75	60-99 45-95	300 400	< 10	11 7	18	18	30 20
188564	ELXd 118.802	1	x	X	-	_	x*	x*	_		-	-	_	-	-			0.5/50	0.75/75	60-105	400	< 10	11	18	18	30
188565	ELXd 142.806	1	X	X	-	-	x*	x*	-	-	-	-	-	-	-	-	-	0.5/50	0.75/75	40-95	400	< 10	11	18	18	30
188596	ELXd 318.622	3		x*	x*	x*	x*	x*	x*	_				x*	x*	x*	x*	0.5/50	-	45-120	430	< 10	17	28	28	46
188597	ELXd 324.623	3	-	х*	x*	х*	x*	х*	x*	_	-	-	-	x*	x*	x*	x*	0.5/50	-	67-120	430	< 10	8	13	13	21
188598	ELXd 424.624	4	-	x*	x*	х*	x*	x*	x*	x*	x*	-	-	x*	x*	x*	x*	0.5/50	-	45-120	430	< 10	8	13	13	21
188599	ELXd 418.625	4	-	x*	x*	x*	x*	x*	x*	x*	x*	-	-	x*	x*	x*	x*	0.5/50	-	45-120	430	< 10	12	19	19	31
188600	ELXd 324.626	3	[-	x*	x^	х*	x*	x*	x^	-	[-	-	-	х*	x*	х*	x*	0.5/50	-	67-120	430	< 10	8	13	13	21

Electronic	ballasts	Lamp	Elec	ctroni	ic ba	llasts	,											Max. lead	length	Operation	Output	THD	Possibl	e quanti	ty of	
Ref. No.	Туре	Quantity	Terr	minal	ls													hot*	cold	frequency	voltage		EB/au	tomatic (cut-outs	
	''		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15				U _{OUT}		В	В	С	C
																		(m/pf)	(m/pf)	kHz	V	%	(10A)	(16A)	(10A)	(16A)
ELXd	•																									
188601	ELXd 318.627	3	_	x*	x*	×*	x*	x*	×*	-	-	_	_	x*	x*	x*	×*	0.5/50	_	45-120	430	< 10	17	28	28	46
188602	ELXd 424.628	4	_	x*	x*	×*	x*	x*	×*	×*	x*	_	_	x*	x*	x*	×*	0.5/50	_	45-120	430	< 10	8	13	13	21
188603	ELXd 418.629	4	_	x*	x*	x*	x*	x*	x*	x*	x*	_	_	x*	x*	x*	x*	0.5/50	_	45-120	430	< 10	12	19	19	31
188604	ELXd 280.630	2	×	x	х	×*	x*	x*	×*	_	_	_	_	_	_	_	_	1/100	1.5/150	44-120	430	< 10	5	9	9	15
188605	ELXd 280.631	2	x	х	х	×*	x*	x*	x*	-	-	_	_	-	_	_	_	1/100	1.5/150	44-120	430	< 10	5	9	9	15
188694	ELXd 118.802	1	х	х	_	_	x*	x*	_	-	-	_	_	-	_	_	_	0.5/50	0.75/75	60-105	400	< 10	11	18	18	30
188695	ELXd 142.806	1	x	х	_	_	x*	x*	_	-	-	_	_	-	_	_	_	0.5/50	0.75/75	40-95	400	< 10	11	18	18	30
188696	ELXd 218.803	2	x*	x*	х	×	×	x*	×*	-	-	_	_	-	_	_	_	0.5/50	0.75/75	60-99	300	< 10	11	18	18	30
188697	ELXd 242.807	2	x*	x*	х	×	х	x*	x*	-	_	_	_	-	_	_	_	0.5/50	0.75/75	45-95	400	< 10	7	12	12	20
188717	ELXd 135.823	1	x*	x*	х	×	-	_	_	-	-	_	_	-	_	_	_	1.0/75	1.5/100	45	420	< 10	30	50	30	50
188864	ELXd 117.715	1	_	_	x*	x*	x*	x*	_	-	_	_	_	-	_	_	_	0.5/50	1.5/150	47-80	400	< 10	10	15	15	25
188865	ELXd 117.715	1	_	_	x*	x*	x*	x*	_	_	_	-	_	_	_		_	0.5/50	1.5/150	47-80	400	< 10	10	15	15	25
188866	ELXd 217.717	2	x*	x*	x*	x*	x*	x*	x*	_	_	_	_	_	_	_	_	0.5/50	1.5/150	34-94	250	< 10	11	18	18	30
188867	ELXd 217.717	2	x*	x*	x*	x*	×*	x*	x*	-	-			-				0.5/50	0.5/50	34-94	250	< 10	11	18	18	30
188873	ELXd 118.718	1	x*	x*	x	x	-	_	_	_	-	_	_	_	_	_	_	1.5/150	2.0/200	55-113	300	< 5	15	24	25	40
188874	ELXd 218.719	2	x*	x*	×	x	×	×*	x*	_	_		_	_	_	_	_	1.5/150	2.0/200	42-114	400	< 5	17	27	28	46
188875	ELXd 136.720	1	x*	x*	x	×	-	_		_	_	_		_	_			1.5/100	2.0/200	47-105	300	< 5	15	24	25	40
188876	ELXd 236.721	2	x*	x*	×	×	×	×*	×*	_	_	_	_	_	_		_	1.5/100	2.0/200	42-107	400	< 5	17	27	27	44
188877	ELXd 158.722	1	x*	×*	×	×	_	_		_	_		_	_	_			1.5/100	2.0/200	47-105	300	< 8	15	24	25	40
188878	ELXd 258.723	2	x*	x*	×	×	×	×*	×*	-	-			-	_	_	_	1.5/150	2.0/200	45-110	400	< 10	11	18	19	31
188923	ELXd 142.709	1		_	x*	×*	x*	×*		_	_		_	_	_		_	0.5/50	0.5/50	41-104	400	< 10	8	12	12	20
188924	ELXd 142.709	1			×*	×*	×*	×*		<u> </u>	_			<u> </u>				0.5/50	0.5/50	41-104	400	< 10	8	12	12	20
188952	ELXd 118.705	1			x*	x*	x*	x*										0.5/50	0.5/50	47	250	< 10	13	20	21	34
188953	ELXd 118.705	1			×*	x*	x*	x*	_	<u> </u>	_		-	<u> </u>		_	_	0.5/50	0.5/50	47	250	< 10	13	20	21	34
188954	ELXd 218.707	2	x*	v*	v*	x*	·*	x*	·*									0.5/50	0.5/50	41	250	< 10	12	20	21	33
188955	ELXd 218.707	2	x*	×*	×*	×*	×*	×*	×*									0.5/50	0.5/50	41	250	< 10	12	20	21	33
188974	ELXd 242.711	2	x*	·*	×*	×*	·*	×*	·*									0.5/50	0.5/50	40	250	< 10	12	20	21	33
188975	ELXd 242.711	2	^ ×*	^ v*	^ _	^ ×*	^ v*	^ v*	_									0.5/50	0.5/50	40	250	< 10	12	20	21	33
ELXe	EBIG 242.7 11	12		^	^	^	^	^				_				_		0.5/ 50	0.5/ 50	140	250	. 10	112	120	121	100
188130	ELXe 258.222	1		v	_		_	x*		_	_			_				1/100	2/200	35	330	< 10	7	12	12	20
100130	LENG 230.222	2			_			x x*		Ē		F		F				1/100	2/200	35	330	< 10	7	12	12	20
188136	ELXe 218.526	1		^	X	_		x x*		_				_		_		1/100	2/200	29	250	< 10	11	18	18	30
100130	LLNG 2 10.320	2	E	\	_	E	E	x x*	E	t	E	E	E	t	E	Ē	E	1/100	2/200	29	250	< 10	11	18	18	30
188137	ELXe 238.527	1		_	ĺ.			x x*		F		F		F				1/100	2/200	26	350	< 10	7	12	12	20
10013/	LLNE 230.32/	2		×	_			x x*		-				-				1/100	2/200	26	350	< 10	7	12	12	20
188660	ELXe 418.215	4	- ×*	×	X	_		^		_	-	_		_				1/100	1.5/150	26.5	480	< 20	7	12	12	19
ELXs	ILINE 410.213	14	1^	^	^		_		<u></u>		_	_	_		_		<u></u>	11/100	11.0/ 100	120.5	1400	\ <u>Z</u> U		112	112	17
188661	ELXs 116.900	1	×*	v*	_	v												1/100	2/150	43	250		27	43	44	72
188662	ELXs 116.900	1	×	×	×*	×*				_			_	_		_		1/100	2/150	43	250		27	43	44	72
188663	ELXs 110.903	1	x x*	x x*	X.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			F	Е		F		Е			F	1/100	2/150	40	250		54	86	88	148
188664	ELXs 121.901	1	×	^	×*	x x*				_			_	_		_		1/100	2/150	40	250		54	86	88	148
		1	x x*	x x*	X	×				E				E				1/100	2/150	47	250	-	54	86	88	148
188665	ELXs 124.902	1	Χ	Χ	×*	x *	-	-	-	-	-	-	-	-	-	_	-	1/100	<u> </u>	47	+	-				
188666	ELXs 124.905	1	x x*	x x*	X	X				-				-				-	2/150	_	250	_	54	86	88	148
188667	ELXs 126.906	1	X "	X.	X *	x ×*	-	-	-	-	-	_	-	-	-	_	-	1/100	2/150	42	250	-	27	43	44	72
188668	ELXs 126.907	1	x *	X *	X "	X ~	-	_	-	-	-			-	-		-	1/100	2/150	42	250	-	27	43	44	72
188934	ELXs 117.908		X ^	X ~	Х	X	-	-	-	-	-	-	-	-	-	_	_	1/100	2/200	45	250	-	60	95	97	163

Electromagnetic ballasts

Electromagnetic (inductive) ballasts are active components that in conjunction with starters preheat the lamp electrodes, supply the ignition voltage and stabilise lamp currents during operation. Series or parallel capacitors are required to compensate blind current.

For installation in luminaires, consideration must be taken of the mains voltage and mains frequency, the dimensions and maximum thermal values as well as any potential noise generation. To fulfil these special requirements, Vossloh-Schwabe provides a large variety of different ballasts.

VS magnetic ballasts have been optimised with regard to their magnetic fields and loads so that usually so that noise cannot usually be perceived. However, the luminaire design can cause magnetic vibrations to affect large areas. When designing luminaires, it might therefore be necessary to fit a concertina section or grooves to prevent vibrations from spreading and thus from noise being generated.

The service life of an inductive ballast is mainly determined by the material chosen for the winding insulation. The maximum winding temperature denotes the temperature (tw) that the insulation will withstand for a period of 10 years given continuous operation under rated conditions. This maximum winding temperature must not be exceeded in real conditions to ensure the ballast can achieve its full service life. The winding temperature of the ballast that is measured in the luminaire is made up of the ambient temperature of the luminaire, the thermal conditions within the luminaire and the power loss of the ballast. The Δt marking on the ballast type plate provides a measure of the power loss of the ballast. In addition to this, the power loss of ballast-lamp circuits is measured in accordance with EN 50294. This test method forms the basis for the CELMA energy classification of ballasts and is also applied in European Regulation 245/2009/EG "Definition of eco-design requirements regarding fluorescent lamps without an integrated ballast, high-pressure discharge lamps as well as ballasts and luminaires in their operation and the invalidation of Directive 2000/55/EC" (see pages 376-378 for further details).

As a result of their design features, inductive ballasts cause leak current that is discharged via the earth conductor of the luminaire. The maximum permissible leak current for protection class I luminaires is 1 mA, a value of which all Vossloh-Schwabe electronic ballasts fall clearly short. Values of max. 0.1 mA are measured per electromagnetic ballast. However, as these values accumulate with the number of installed ballasts, this should be taken into account when dimensioning the F1 protective switch.

Starters for fluorescent lamps

As mentioned above, the operation of fluorescent lamps also requires starters in addition to ballasts. A distinction is made between glow starters, which are also available with automatic cut-outs, and electronic starters. The correct choice of voltage and power range is crucial. Starters are available for 220-240 V and for 110-127 V mains voltage. The latter are also required for twin-lamp operation (e.g. 2x18 W at 230 V).

Operating SL-series VS ballasts (100-127 V) depends on the use of a 220-240 V starter as these operating devices are high-reactance transformers that supply higher voltages to the lamp. Starters should only be used with starter contacts with a hardness value of at least HB 100.

Assembly Instructions for Electromagnetic Ballasts

Erection of low voltage installations

For mounting and installing of electromagnetic ballasts for fluorescent lamps

Mandatory regulations

DIN VDE 0100

EN 60598-1 Luminaires – part 1: general requirements and tests

EN 61347-1 Operating devices for lamps – part 1: general and safety requirements

EN 61347-2-8 Operating devices for lamps – part 2-8: special requirements for ballasts for fluorescent lamps

EN 60921 Ballasts for fluorescent tube lamps – performance requirements

Balladia for hisofoscom labo fampa porformance requirements

EN 50294 Methods for measuring the total input power of ballast-lamp circuits

EN 55015 Maximum values and methods of measurement for RFI suppression in electrical lighting installations and similar electrical appliances

EN 61000-3-2 Electromagnetic Compatibility (EMC) - part 3:

maximum values - main section part 2: maximum values for mains harmonics

(device input current up to and including 16 A per conductor)

EN 61547 Installations for general lighting purposes - EMC immunity requirements

Technical specifications

Operating voltage range

VS ballasts can be operated at the specified mains voltage within a tolerance range

of $\pm 10\%$

Leak current ≤ 0.1 mA per ballast

Error current Impulse-resistant leak-current protection must be installed. Distribute the luminaires to phases

L1, L2 and L3; install tri-phase FI switches. If permissible, install FI switches with 30 mA leak current; connect no more than 15 luminaires as FI switches can be triggered at half the leak

current value.

Power factor Inductive ballasts: $\lambda \le 0.5$

Parallel-compensated ballasts: $\lambda \geq 0.85$

Compensation VS recommends the use of parallel capacitors owing to their technical advantages and

power balance.

Possible interference with IR systems

Are not known to occur

7

3

4

5

6

7

8

g

Mechanical mounting

Mounting position

Any

Mounting location

Ballasts are designed for installation in luminaires or comparable devices. Independent ballasts do not need to be installed in a casing.

Fastening Preferably using screws Ø 4 mm

Maximum temperatures

The stipulated winding temperature (tw 130, tw 140 and tw 150, respectively) must not be exceeded during normal operation. The corresponding maximum values (232°C, 248°C and 264°C, respectively) must be observed during anomalous operation. These values must be checked by measuring resistance during operation.

Temperature increase

The lamp current flowing through the ballast generates a power loss that leads to an increase in winding temperature. The Δt values for normal and abnormal operation provide a measure of this temperature increase. The Δt values are ascertained using standardised connections for measurement and are provided on the ballast type plate in Kelvin.

Example: $\Delta t = 55 \text{ K/140 K}$:

The first Δt value indicates the temperature increase for normal operation at the lamp's operating current. The second value, 140 K in this case, denotes the temperature increase of the winding that results from the current that flows when the lamp's discharge path is short-circuited. The current that flows in this state is the preheat current through the lamp's electrodes.

Electromagnetic compatibility (EMC)

Interference

Interference voltage measurements have to be taken at the connection terminals for luminaires with magnetic ballasts as these are systems that operate with lamp voltages of under 100 Hz. These low-frequency interference voltages are generally not critical with magnetic ballasts.

Interference immunity

Thanks to the robust design and choice of materials, magnetic ballasts provide a high degree of interference immunity and are not impaired by admissible mains power interference.

Mains Harmonics After every zero crossing of the lamp current, fluorescent lamps experience a re-ignition peak as the lamps go out for a brief (imperceptible) moment. These re-ignition peaks generate mains harmonics that are smoothed by the ballast's impedance. The right design, i.e. determining the operating point of the magnetic ballast, ensures mains harmonics are limited to the maximum values permitted by EN 61000-3-2. VS electromagnetic ballasts all comply with the stipulated maximum values.

Selection of automatic cut-outs for VS electromagnetic ballasts

Dimensioning automatic cut-outs

When a ballast is switched on, high transient current peaks occur due to parasite capacitances that can accumulate with the number of luminaires. These high system switch-on currents put a strain on the automatic conductor cut-outs. For this reason, only surge-current-proof automatic cut-outs should be used for lighting systems.

Release reaction The release reaction of the automatic conductor cut-outs comply with VDE 0641, part 11, for B and C characteristics.

No. of ballasts The following values are meant as guidelines only and may vary depending on the respective lighting system. The maximum number of VS ballasts applies to cases where the devices are switched on simultaneously. Specifications apply to single-pole fuses. The number of permissible ballasts must be reduced by 20% for multi-pole fuses. The considered circuit impedance equals 400 m Ω (approx. 20 m of [2.5 m²] conductor from the power supply to the distributor and a further 15 m to the luminaire). Doubling circuit impedance to 800 m Ω increases the possible number of ballasts by 10%. The values quoted in the following tables are guidelines and can be affected by system-specific factors.

Possible number of ballasts connected to automatic cut-outs for compact fluorescent lamps (single lamp operation)

Lamp output	10 A (B)		16 A (B)					
W	Inductive	Parallel compensation	Inductive	Parallel compensation				
5/7/8/9/10/11/13	50	90	80	130				
18 (TC-L)	27	32	43	51				
18 (TC-D)	40	65	65	110				
24	25	32	40	51				
26	27	32	43	51				
36	23	32	37	51				

Possible number of ballasts connected to automatic cut-outs for tubular and U-shaped fluorescent lamps (single lamp operation)

Lamp output	10 A (B)		16 A (B)						
W	Inductive	Parallel compensation	Inductive	Parallel compensation					
4/6/8/10	50	90	80	130					
13	45	80	70	115					
15/18/20	27	32	43	51					
30/36/38/40	23	32	37	51					
58/65	15	20	22	32					
70	13	18	20	30					

Reliability and service life

Provided the specified maximum values for the winding temperature are complied with, a service life of 10 years can be expected. Failure rate: ≤ 0.025%/1,000 hours.

2

3

4

5

6

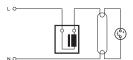
7

8

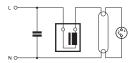
9

Electrical installation

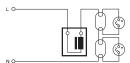
Connection terminals (combination terminals)

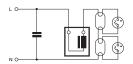

- Use copper (not stranded) wire
- $\bullet\,$ Required diameter for push-in connection 0.5–1 mm^2
- Stripped lead length 8 mm
- Required cross-section for IDC zone 0.5 mm²; max. Ø 2 mm including Insulation, no wire stripping required; mounting requires a special tool

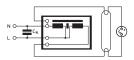
 $\hbox{Push-in terminals} \quad \hbox{The integrated terminals can only be used with rigid leads.}$

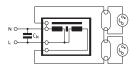

Rigid leads: 0.5– $1.5~\text{mm}^2$. The stripped lead length totals 8 mm.

Wiring The wiring between the mains, ballasts and lamps must comply with the respective circuit diagram.


Circuit diagrams for the operation of fluorescent lamps with Vossloh-Schwabe electromagnetic ballasts


Inductive single circuit


Parallel-compensated single circuit


Inductive tandem circuit

Parallel-compensated tandem circuit

Parallel-compensated single circuit with high-reactance transformer

Parallel-compensated tandem circuit with high-reactance transformer

Connection terminals

In the interest of ensuring firm contacts and long component service life, Vossloh-Schwabe uses only top-quality materials for plastic or metal parts during the production of connection terminals. These quality features apply to both Vossloh-Schwabe's luminaire connection terminals as well as to the terminals fitted to ballasts and lampholders.

Notes on connection terminals on electronic ballasts

Vossloh-Schwabe electronic ballasts are fitted with installation-friendly push-in connectors. In addition, many models for linear fluorescent lamps are also available with IDC terminals (for solid conductors 0.5 mm²) and supplementary push-in terminals (for solid conductors 0.5–1 mm²), stripped length 8–9 mm. IDC terminals permit automated luminaire wiring and testing using the ALF system and are thus particularly efficient.

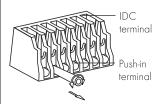
Notes on connection terminals on electromagnetic ballasts

Standard issue Vossloh-Schwabe electromagnetic ballasts are fitted with installation-friendly IDC/push-in terminals (combination terminals) or push-in terminals. The terminals are designed for use with solid conductors with cross-sections of 0.5 – 1 mm² (combination terminals) or up to 1.5 mm² (push-in terminals) and are approved for current loads of up to 6 A (combination terminal) and 16 A (push-in terminal). The lead stripping length totals 7 – 9 mm for push-in terminals; leads do not need to be stripped for IDC terminals.

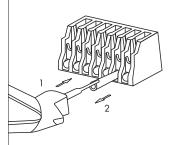
On request, many ballasts can also be provided with screw terminals (current load up to 16 A) for conductor cross-sections of 0.5 to 2.5 mm².

Notes on connection terminals on lampholders

Vossloh-Schwabe usually equips lampholders for T and TC lamps as well as starter lampholders with installation-friendly push-in terminals for solid conductors of 0.5 –1 mm 2 . Most lampholders are fitted with twin push-in terminals and thus permit through-wiring. The required lead stripping length amounts to 8 – 9 mm for all types.

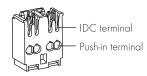

IDC terminals

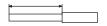
In order to fully exploit the vast potential for rationalisation offered by automated wiring and testing with the ALF system, a totally new component family was developed that is equipped with the VDE-tested IDC terminal technology. This technology has already been used very successfully on a large scale in other branches of industry. This connection technology dispenses with the stripping of conductors that is required for the push-in, screw or crimping methods. The tried-and-tested IDC terminal technology has created the foundation for efficient automation as it ensures both high connection quality and rapid contacting. Components equipped in this fashion make it possible to through-wire several terminals with a single conductor. This constitutes a further economic advantage as it significantly reduces the required conductor lengths. Furthermore, this design principle makes it possible to use adapters to simply and reliably make electrical contact from above for a VDE-compatible final luminaire inspection.


ALF connection

Height: 12 mm

Release by twisitng and pulling the conductor at the same time


- Insert release tool above the conductor
- 2. Pull out the conductor


Stripping the conductor fpr push-in terminal 0.5 - 1 mm²: 8 - 9 mm

ballasts

Stripping the conductor for push-in terminal 0.5 –1 mm²: 7–9 mm

i

2

3

4

5

6

7

8

9

Lampholders for Fluorescent Lamps

Lampholders for compact fluorescent lamps

Vossloh-Schwabe produces the majority of lampholders for TC lamps using PBT, a thermoplastic material. This highly heat-resistant material is responsible for the T140 temperature rating. Leading lamp manufacturers also use PBT for the lamp bases they produce. This material harmonisation in conjunction with fatigue-free, stainless steel lamp mounting springs ensures a permanently secure lamp fit.

Lampholders for double-ended fluorescent lamps

VS lampholders for T lamps are characterised by a number of technical features that guarantee a high degree of reliability and safety. The heat-resistant PBT rotor with which most VS lampholders are fitted is a recognised trademark. In addition to the lampholders with the field-tested large rotor, VS also provides a new generation of lampholders featuring innovative "Rotoclic" rotor technology. This new VS technology constitutes a further milestone in the development of highly heat-resistant rotor systems.

Among the special features of this new technology is a T140 temperature rating thanks to a front plate made entirely of PBT as well as a clearly audible click when the lamp is inserted or replaced. As a result, the motion of turning the lamp from "replacement" to "operating" position is aided acoustically.

In addition to this, VS produces a further series of lampholders with a rotor-like function, whose front plates are also made of highly heat-resistant PBT and have similarly been given a T140 temperature rating.

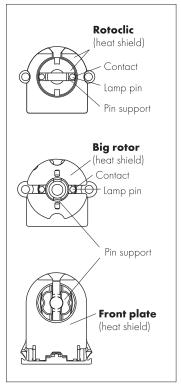
The maximum permissible temperature at the back of all lampholders is T_m 110 °C. Another key feature common to all VS lampholders is a highly effective support for the lamp pin that reliably prevents any base pin deflection, even with older lamps, and guarantees a durable and firm contact.

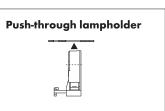
Push-through lampholders

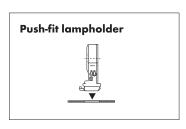
Push-through lampholders are inserted from below through a cut-out in the luminaire casing and are secured by lateral catches. This type of lampholder is frequently used in luminaires on which the lampholder remains visible from the outside, e.g. in so-called strip lighting. The electrical leads are laid beneath the sheet metal level. Luminaire directive EN 60598-1 Para. 8.2 must be observed with regard to the luminaire.

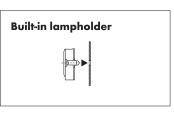
Push-fit lampholders

This lampholder type, which is frequently found in surface-mounted ceiling and built-in luminaires, is pushed into the luminaire casing from above. The lampholder foot should protrude by no more than 4 mm to match the usual height of the spacing cams in the luminaire casing. These lampholders are mostly wired above the luminaire casing to the side of the lampholder. However, there are also lampholders on which the wiring runs through the lampholder foot, with the leads laid beneath the luminaire casing.


Built-in lampholders


This design is also predominantly used for recessed ceiling and surface-mounted luminaires. However, unlike push-fit lampholders, built-in lampholders are usually fitted at the ends of the luminaire boxes. In addition to the usual fixing with split pins attached to the rear, there are also countless versions with fixing clips, push-fit studs or screw-in holes, which are also available with spring-loaded length compensation. Built-in lampholders offer luminaire designers a wealth of scope regarding the choice of lamp position in relation to the reflector. This enables great variation in light distribution as the lampholder does not dictate the distance of the centre of the lamp from the metal casing.


Surface-mounted lampholders


The fastening system of surface-mounted lampholders usually consists of screws or rivets above a fixing level, along which the wiring is also laid. As this type of installation is usually too costly nowadays for large unit numbers, these lampholders are used almost exclusively for special applications, e.g. displays or illuminated advertisements

VS lampholders for the UL market and UL approved leads are available for all common lamp types. Further information can be found at www.unvlt.com.

Lamp Table – Fluorescent Lamps

Lamp type/lamp base	Base	Output (W)	Max. length	(C) acc. to IEC
TCDEL G24q-1 -2 -3	G24q-1	10 13	95 130	
	G24q-2	18	140	
	G24q-3	26	160	
TC-TEL GX24q-1 -2 -3 -4 -5 -6	GX24q-1	13	90	
	GX24q-2	18	110	
	GX24q-3	26	130	
<u> </u>		32	145	
	GX24q-4	42	155	
	GX24q-5 GX24q-6	57 70	191 219	
TC-D G24d-1 -2 -3	G24d-1	8	73*	
	02.0.	10	95	
	00410	13	130	
	G24d-2 G24d-3	18	140	
TC-T GX24d-1 -2 -3	GZ4d-3 GX24d-1	26 13	90	
	GX24d-1 GX24d-2	18	110	
	GX24d-2 GX24d-3	26	130	
TCS G23	G23	5	85	
		7 9	115 145	
		ıı́ı	215	
TCSEL 2G7	2G7	5	85	
		7 9	115 145	
		11	215	
TC-TEL 2G8-1	2G8-1	60	167	
		85 120	208 285	
		129	200	
TC-TEL GR14q-1	0014	2.4	A B	C D
	GR14q-1	14 17	99.7 120 121.7 142	
A B				
С				
TC-DD			А В	
	GR8	16	138 141	
GRIOq GRYIOq-3 GRZ 10d GRZ 10t	GR10q	10	205 207 92 95	
	OKTOG	16	138 141	1
B		21 28	138 141 205 207	l 7
-		38	205 207	
	GRY10q-3	55	205 205	
	GRZ10d	18	137 141	
	GRZ10t	30	202 206	5*
TCF 2G10	2G10	18 24	122 165	
		36	217	
TC-L 2G11	2G11	18	225	
		24 34	320 533*	
		36	415 535	
		40 55	535 535	
		80	565	
* not included in IEC standard (non-committal specifications)	-	•	*	

^{*}not included in IEC standard (non-committal specifications)

VSSLOH SCHWABE

Lamp Table – Fluorescent Lamps

Lamp type/lamp base	Base	Output (W)	Ø D (mm)	Length A/C (mm) acc. to IEC 60081/ 60901 (for circular lamps B)
G(X53-)	GX53-1	7 9		
T2 (T7) W4.3	W4.3x8.5d	6 8 11 13	7 7 7 7	219.3 320.9 422.5 524.1
T5 (T16) G5	G5	4 6 8 13 14 20 21 24 25 28 32 34 35 39 45 49 50 54 73 80	16 16 16 16 16 16 16 16 16 16 16 16 16 1	135.9 212.1 288.3 516.9 549.0 549.0 849.0 1149.0 1149.0 1449.0 849.0 1449.0 1449.0 1449.0 1149.0 1149.0 1149.0 1149.0 1149.0 1149.0 1149.0 1149.0 1149.0 1149.0 1149.0 1149.0 1149.0 1149.0 1149.0 1149.0
T8 (T26) G13	G13	10 14 15 16 16 18 20*1 23 30 32 33 34 36 36 38 50 51 58 70	26 26 26 26 26 26 26 26 26 26 26 26 26 2	470.0*2 360.0*2 437.4 589.8 720.0*2 589.8 438.0*2 970.0*2 894.6 1199.4 1149.0 1047.0*2 1199.4 970.0*2 1047.0 1500.0 1500.0 1763.8
T12 (T38) G13	G13	20 25 30 40 65 75 80*1 85 85*1 100 100*1 115 125 140 140*1 160*1	38 38 38 38 38 38 38 38 38 38 38 38 38 3	589.8 970.0 894.6 1199.4 1500.0 1763.8 1500.0 2374.3 1763.8 23774.3 1800.0*2 1200.0*2 2374.3 1500.0*2 1800.0*2 1800.0*2

^{*1} UV solarium lamps
*2 Not included in IEC standard
(non-committal specifications)

Lamp Table – Fluorescent Lamps

Lamp type/lamp base	Base	Output (W)	Ø D (mm)	A (mm)
TR5 (TR16)	2GX13	22 40 55 60	16 16 16 16	230.0 305.0 305.0 379.0
TR G10q B	G10q	22 32 40 60	29 29 29 30	215.9 304.8 406.4 408.8*
2G13 T-U	2G13-92	18 36 58	26 26 26	304* 566, 601* 566, 759*

^{*} Not yet included in IEC standard (non-committal specifications)

Tube lengths of plastic and glass protective tube

ØD (mm)	Length L (mm)
38±0.5	L = A-20±1
50±0.8	L = A-30±1

}}	
}	
L	

i

2

3

4

5

6

7

8

9

Energy efficiency classification

The commission's regulation (EC) No. 245/2009 dated 18 March 2009 implementing Directive 2005/32/EC of the European Parliament and of the Council with regard to defining ecodesign requirements for fluorescent lamps without integrated ballast, high-pressure discharge lamps and for ballasts and luminaires needed for their operation, and repealing Directive 2000/55/EC of the European Parliament and of the Council (official title), has created a legal framework in the EU that defines fundamental requirements for operating efficient lighting technology products.

Although the Regulation predominantly applies to general lighting, it is also product-orientated and thus independent of any specific application. The efficiency and performance requirements (specifications governing performance features) apply to fluorescent lamps without integrated ballast, high-pressure discharge lamps as well as ballasts and luminaires needed to operate these lamps. A brief overview of the requirements governing fluorescent lamps is provided in the following table (excerpt from the CELMA guide).

Stage	Requirement	ts governing
1	Ballasts	Non-dimmable ballasts: minimum EEI = B2
13.04.2010		Dimmable ballasts: minimum EEI = A1
		• Standby losses ≤ 1 W
		Non-dimmable ballasts for new lamps not designed for use with existing ballasts: minimum EEI = A3
		• Ballasts must be labelled (for instance: EEI = A2)
Interim stage	Luminaires	Luminaire standby losses = sum of ballast limiting values (No. of installed ballasts)
13.09.2010		After 18 months: technical information must be made available, both online and in luminaire documentation
		(for luminaires > 2,000 Lumens).
2	Ballasts	Standby losses ≤ 0.5 W
13.04.2012	Luminaires	Luminaire standby losses = sum of ballast limiting values (No. of installed ballasts)
		Luminaire designs must permit integration of 3rd-stage ballasts. Exceptions: luminaires > IP4X
at the latest by	Revision of t	he regulation
13.04.2014	Technological p	progress as well as the sum of the experience gained during the implementation of the Regulation
	will be taken int	o consideration during the revision process.
3	Ballasts	New ballast limiting values calculated using specified formula (see page 378)
13.04.2017		• That constitutes a ban on EEI = A3, B1 and B2 ballasts (magnetic ballasts can only be produced for higher lamp ratings -
		permitted classes are A2, A2 BAT and only A1 BAT for dimmable ballasts)
		Ballasts labels shortened to A2, A2 BAT or A1 BAT ("EEI =" will be dropped; this means labelled ballasts can be clearly dated.
	Luminaires	All luminaire designs must permit the integration of 3rd-stage ballasts.

Energy efficiency classification

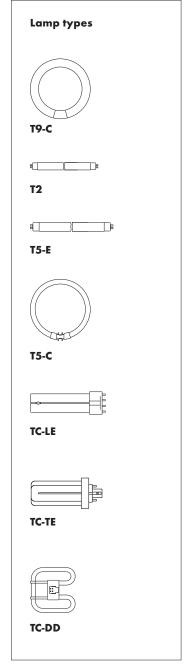
The following table taken from Regulation 245/2009/EC provides an overview of (1st- and 2nd-stage) ballast requirements, ordered according to efficiency values:

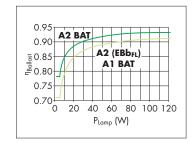
Lamp dat	ta				Ballast eff	ficiency	(Plama/F	lanu+1			
Туре	Nominal	ILCOS-Code	Typical	ratina	Ballast efficiency (P _{Lamp} /P _{Input)} (non-dimmable ballasts)						
1,950	output		50 Hz	HF	A2 BAT	A2	A3	В1	B2		
	W		W	W	%	% %	% %	%	%		
T8	15	FD-15-E-G13-26/450	15	13.5	87.8	84.4	75.0	67.9	62.0		
	18	FD-18-E-G13-26/600	18	16	87.7	84.2	76.2	71.3	65.8		
	30	FD-30-E-G13-26/900	30	24	82.1	77.4	72.7	79.2	75.0		
	36	FD-36-E-G13-26/1200	36	32	91.4	88.9	84.2	83.4	79.5		
	38	FD-38-E-G13-26/1050	38.5	32	87.7	84.2	80.0	84.1	80.4		
	58	FD-58-E-G13-26/1500	58	50	93.0	90.9	84.7	86.1	82.2		
	70	FD-70-E-G13-26/1800	69.5	60	90.9	88.2	83.3	86.3	83.1		
TC-L	18	FSD-18-E-2G11	18	16	87.7	84.2	76.2	71.3	65.8		
	24	FSD-24-E-2G11	24	22	90.7	88.0	81.5	76.0	71.3		
	36	FSD-36-E-2G11	36	32	91.4	88.9	84.2	83.4	79.5		
TC-F	18	FSS-18-E-2G10	18	16	87.7	84.2	76.2	71.3	65.8		
	24	FSS-24-E-2G10	24	22	90.7	88.0	81.5	76.0	71.3		
	36	FSS-36-E-2G10	36	32	91.4	88.9	84.2	83.4	79.5		
TC-D/	10	FSQ-10-E-G24q=1	10	9.5	89.4	86.4	73.1	67.9	59.4		
TC-DE		FSQ-10-I-G24d=1									
	13	FSQ-13-E-G24q=1	13	12.5	91.7	89.3	78.1	72.6	65.0		
	1.2	FSQ-13-I-G24d=1	-	1.2.5							
	18	FSQ-18-E-G24q=2	18	16.5	89.8	86.8	78.6	71.3	65.8		
		FSQ-18-I-G24d=2		1.2.2							
	26	FSQ-26-E-G24q=3	26	24	91.4	88.9	82.8	77.2	72.6		
	20	FSQ-26-I-G24d=3	20			00.7	02.0	, ,	, 2.0		
TC-T/	13	FSM-13-E-GX24q=1	13	12.5	91.7	89.3	78.1	72.6	65.0		
TC-TE		FSM-13-I-GX24d=1		1.2.0							
	18	FSM-18-E-GX24q=2	18	16.5	89.8	86.8	78.6	71.3	65.8		
		FSM-18-I-GX24d=2									
	26	FSM-26-E-GX24q=3	26.5	24	91.4	88.9	82.8	77.5	73.0		
		FSM-26-I-GX24d=3									
TC-DD/	10	FSS-10-E-GR10q	10.5	9.5	86.4	82.6	70.4	68.8	60.5		
TC-DDE		FSS-10-L/P/H-GR10q									
	16	FSS-16-E-GR10q	16	15	87.0	83.3	75.0	72.4	66.1		
		FSS-16-I-GR10q									
		FSS-10-L/P/H-GR10q									
	21	FSS-21-E-GR10q	21	19	89.4	86.4	79.2	73.9	68.8		
		FSS-21-I-GR10q									
		FSS-21-L/P/H-GR10q									
	28	FSS-28-E-GR10q	28	26	89.7	86.7	81.3	78.2	73.9		
		FSS-28-I-GR10q									
		FSS-28-L/P/L-GR10q									
	38	FSS-38-E-GR10q	38.5	36	92.3	90.0	85.7	84.1	80.4		
		FSS-38-L/P/L-GR10q									
TC	5	FSD-5-I-G23 FSD-5-E-2G7	5.4	5	72.7	66.7	58.8	49.3	41.4		
	7	FSD-7-I-G23 FSD-7-E-2G7	7.1	6.5	77.6	72.2	65.0	55.7	47.8		
	9	FSD-9-I-G23 FSD-9-E-2G7	8.7	8	78.0	72.7	66.7	60.3	52.6		
	11	FSD-11-I-G23 FSD-11-E-2G7	11.8	11	83.0	78.6	73.3	66.7	59.6		
T5	4	FD-4-E-G5-16/150	4.5	3.6	64.9	58.1	50.0	45.0	37.2		
	6	FD-6-E-G5-16/225	6	5.4	71.3	65.1	58.1	51.8	43.8		
	8	FD-8-E-G5-16/300	7.1	7.5	69.9	63.6	58.6	48.9	42.7		
	13	FD-13-E-G5-16/525	13	12.8	84.2	80.0	75.3	72.6	65.0		
T9-C	22	FSC-22-E-G10q-29/200	22	19	89.4	86.4	79.2	74.6	69.7		
-	32	FSC-32-E-G10q-29/300	32	30	88.9	85.7	81.1	80.0	76.0		
	40	FSC-40-E-G10q-29/400	40	32	89.5	86.5	82.1	82.6	79.2		
	1	1	1.0		10	1-5.0	1	1	1		

Lamp types	
₹□ }□ } T8	
TC-L	
TC-F	
TC-D/TC-DE	
тс-т/тс-те	
TC-DD/TC-DDE	
TC	
15	
15	

Lamp do	ata				Ballast efficiency (P _{Lamp} /P _{Input})						
Гуре	Nominal	ILCOS-Code	Typical	rating	(non-dimn	nable bo	allasts)				
	output		50 Hz	HF	A2 BAT	A2	A3	В1	B2		
	W		W	W	%	%	%	%	%		
Γ2	6	FDH-6-L/P-W4.3x8.5d-7/220		5	72.7	66.7	58.8	_	_		
	8	FDH-8-L/P-W4.3x8.5d-7/320		7.8	76.5	70.9	65.0	_			
	11	FDH-11-L/P-W4.3x8.5d-7/420		10.8	81.8	77.1	72.0	_			
	13	FDH-13-L/P-W4.3x8.5d-7/520		13.3	84.7	80.6	76.0	_	_		
	21	FDH-21-L/P-W4.3x8.5d-7		21	88.9	85.7	79.2	_			
	23	FDH-23-L/P-W4.3x8.5d-7		23	89.8	86.8	80.7	_			
T5-E	14	FDH-14-L/P-G5-16/550		13.7	84.7	80.6	72.1	_	_		
	21	FDH-21-L/P-G5-16/850		20.7	89.3	86.3	79.6	-	_		
	24	FDH-24-L/P-G5-16/550		22.5	89.6	86.5	80.4	_	_		
	28 35	FDH-28-L/P-G5-16/1150		27.8	89.8	86.9	81.8	_	-		
		FDH-35-L/P-G5-16/1450		34.7	91.5	89.0	82.6	_	-		
	39	FDH-39-L/P-G5-16/850		38	91.0	88.4	82.6	_	<u> </u>		
	49	FDH-49-L/P-G5-16/1450		49.3	91.6	89.2	84.6	_	_		
	54	FDH-54-L/P-G5-16/1150		53.8	92.0	89.7	85.4	_	_		
80 95 120	80	FDH-80-L/P-G5-16/1150		80	93.0	90.9	87.0	_	_		
	95	FDH-95-L/P-G5-16/1150		95	92.7	90.5	84.1	_	T_		
	FDH-120-L/P-G5-16/1450		120	92.5	90.2	84.5	_	_			
Г5-С 22	22	FSCH-22-L/P-2GX13-16/225		22.3	88.1	84.8	78.8	_	_		
	40	FSCH-40-L/P-2GX13-16/300		39.9	91.4	88.9	83.3	_	_		
	55	FSCH-55-L/P-2GX13-16/300		55	92.4	90.2	84.6	_			
	60	FSCH-60-L/P-2GX13-16/375		60	93.0	90.9	85.7	_	_		
TC-LE	40	FSDH-40-L/P-2G11		40	91.4	88.9	83.3	-	_		
	55	FSDH-55-L/P-2G11		55	92.4	90.2	84.6	_	-		
	80	FSDH-80-L/P-2G11		80	93.0	90.9	87.0	-	_		
TC-TE	32	FSMH-32-L/P-GX24q=3		32	91.4	88.9	82.1	_	_		
	42	FSMH-42-L/P-GX24q=4		43	93.5	91.5	86.0	-	_		
	57	FSM6H-57-L/P-GX24q=5		56	91.4	88.9	83.6	_	_		
		FSM8H-57-L/P-GX24q=5									
	70	FSM6H-70-L/P-GX24q=6		70	93.0	90.9	85.4	Ī-	_		
		FSM8H-70-L/P-GX24q=6									
	60	FSM6H-60-L/P-2G8=1		63	92.3	90.0	84.0	_	_		
	62	FSM8H-62-L/P-2G8=2		62	92.2	89.9	83.8	1_	-		
	82	FSM8H-82-L/P-2G8=2		82	92.4	90.1	83.7	_	_		
	85	FSM6H-85-L/P-2G8=1		87	92.8	90.6	84.5	_	-		
	120	FSM6H-120-L/P-2G8=1		122	92.6	90.4	84.7	_	_		
	-	FSM8H-120-L/P-2G8=1									
TC-DD	55	FSSH-55-L/P-GR10q		55	92.4	90.2	84.6	_	-		

At the very latest, the following energy efficiency formula for ballasts will be introduced to coincide with the 3rd stage:


If $P_{Lamp} \le 5 \text{ W}$ EBbFL = 0.71


 $If \quad P_{Lamp} \ge 100 \text{ W} \qquad \qquad EBb_{FL} = 0.91$

The following limiting values must be observed:

η Ballast	Energy efficiency classes
≥ EBb _{FL}	A2 and A1BAT
≥ 1-0.75*(1-EBb _{FL})	A2 BAT

The graph illustrates the difference between Classes A2, A1 BAT and A2 BAT (BAT = best available technology).

Key to lamp designations

TC-S	Tube Compact-Single
TC-SEL	Tube Compact-Single Electronic
TC-D	Tube Compact-Double
TC-DEL	Tube Compact-Double Electronic
TC-T	Tube Compact-Triple
TC-TEL	Tube Compact-Triple Electronic
TC-Q	Tube Compact-Quad
TC-QEL	Tube Compact-Quad Electronic
TC-DD	Tube Compact-Double D-Shape
TC-L	Tube Compact-Long
TC-F	Tube Compact-Flat
T2 (T7)	Tube Ø 2/8" (7 mm)
T5 (T16)	Tube Ø 5/8" (16 mm)
T8 (T26)	Tube Ø 8/8" (26 mm)
T12 (T38)	Tube Ø 12/8" (38 mm)
T-U	Tube, U-Shape
T-R	Tube, Ring-Shape
T-R5 (T-R16)	Tube, Ring-Shape Ø 5/8" (16 mm)

i

Transformers for Low-voltage Halogen Incandescent Lamps

ELECTRONIC AND ELECTRO MAGNETIC TRANSFORMERS

FOR LOW-VOLTAGE HALOGEN INCANDESCENT LAMPS

The operating voltage of low-voltage halogen lamps is normally 12 V (6 and 24 V are also used for special applications). As a result, transformers are required in order to connect such lamps to the normal mains supply within buildings, whereby international requirements governing building installations specify that safety transformers or converters (electronic transformers) be exclusively used for such purposes nowadays. These devices are designed in such a way as to prevent both personal injury and the outbreak of fire should the lighting system malfunction.

Electronic converters

The following chapter provides an overview of the VS range of electronic converters that feature a whole range of advantages: light and compact, superior efficiency (approx. 95%), short-circuit protection, integrated overheating and overload protection, soft start for longer lamp life, broad part-load range and dimmability.

Electromagnetic safety transformers

The following chapter also provides an overview of Vossloh-Schwabe's range of electromagnetic transformers. The range is split into protection class II transformers and protection class I built-in transformers whose ultra-flat design make them particularly user-friendly. Lamp brightness can be regulated using conventional phase dimmers for low-voltage halogen lamps.

Transformers for Low-voltage Halogen Incandescent Lamps

ndependent electronic converters	382-386
Vith DALI interface	386
Electronic built-in converters	387-389
Potentiometer and dimmers	390
electromagnetic safety transformers	391-395
echnical details for incandescent lamps	457-47
General technical details	533-540
Placeany	5/1 5/1

Independent Electronic Converters - LiteLine

Electronic safety converters
for low-voltage halogen incandescent lamps 12 V
Casing: heat-resistant polyamide
Mains frequency: 50-60 Hz
Protection against "no load" operation
Protection against short-circuit:
electronic switch-off with automatic restart
Electronically controlled overload
and temperature protection
Suitable for installation in furniture
and on combustible surfaces
Power factor: > 0.95
Efficiency: ≥ 94%

Dimming: optional with phase-cutting leadingedge or phase-cutting trailing-edge dimmer (EST 35/12.650: only phase-cutting trailing-edge dimmer)

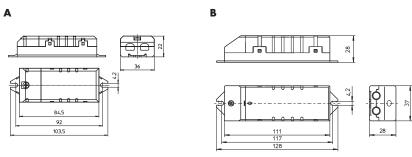
Screw terminals: 2.5 mm² (EST 60/12.635 primary: 4 mm²)

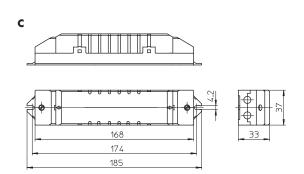
Quantity of screw terminals:

1x2-poles primary

1 x 2-poles secondary

With integrated cord grip


Protection class II


SELV-equivalent

Degree of protection: IP20

RFI-suppressed

Туре	Ref. No.	Capacity	Voltage (V)		Nominal current	Ambient	Casing	Drawing	Weight	
		range (W)	prim. (±10%)	sec.	A	temperature t _a (°C)	temperature t _c (°C)		g	
Dimensions: 22x	36×103.5 mi	m								
EST 60/12.635	186173	10-60	220-240	10.2-12	0.258-0.260	-20 to 45	max. 85	А	70	
Dimensions: 28x	37×128 mm									
EST 35/12.650	186081	5-35	230-240	11.4-11.8	0.152-0.158	-20 to 60	max. 70	В	80	
EST 70/12.380	186072	20-70	230-240	11.3-11.7	0.30-0.31	-20 to 45	max. 70	В	85	
EST 105/12.381	186077	20-105	230-240	11.2-11.7	0.435-0.445	-20 to 40	max. 85	В	95	
Dimensions: 33x	37x185 mm				•		•			
EST 150/12.622	186098	50-150	230-240	11.2-11.6	0.595-0.605	-20 to 45	max. 85	С	175	

Independent, Super-thin Electronic Converters – FlatLine

Electronic safety converters

for low-voltage halogen incandescent lamps $12\ V$

Casing: heat-resistant polyamide

Mains frequency: 50-60 Hz

Protection against "no load" operation

Protection against short-circuit:

electronic switch-off with automatic restart

Electronically controlled overload

and temperature protection

Suitable for installation in furniture

and on combustible surfaces

Power factor: 0.98

Efficiency: 95%

Dimming: with phase-cutting trailing-edge dimmer

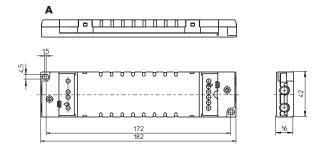
Screw terminals: 2.5 mm²

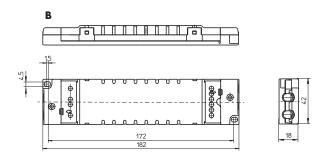
Quantity of screw terminals:

1x2-poles primary

1x2-poles secondary


With integrated cord grip


Protection class II


SELV

Degree of protection: IP20

RFI-suppressed

Туре	Ref. No.	Capacity range	Voltage (V)		Nominal Ambient		Casing	Drawing	Weight
		W	prim. (±10%)	rim. (±10%) sec. current (A) temperature t _a (°C)		temperature t _a (°C)	temperature t _c (°C)		g
Dimensions: 16x4	2x182 mm								
EST 60/12.388	179792	10-60	230	11.5	0.25	-20 to 50	max. 70	А	100
Dimensions: 18x4	2x182 mm					•	•		
EST 120/12.389	179793	20-120	230	11.5	0.50	-20 to 40	max. 70	В	125

2

3

4

5

6

7

8

9

Independent Electronic Converters – TopLine

Electronic safety converters for low-voltage halogen incandescent lamps 12 V Casing: heat-resistant polyamide Mains frequency: 50-60 Hz Protection against "no load" operation Protection against short-circuit: electronic switch-off with automatic restart Electronically controlled overload and temperature protection Suitable for installation in furniture and on combustible surfaces Power factor: ≥ 0.98 Efficiency: ≥ 94%

Dimming: optional with phase-cutting leadingedge or phase-cutting trailing-edge dimmer Screw terminals: 2.5 mm²

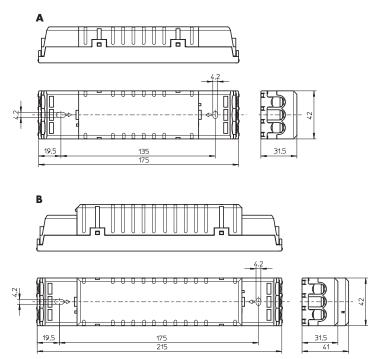
(EST 200/12.649: 4 mm²) Quantity of screw terminals:

2x2-poles primary

3 x 2-poles secondary

With integrated cord grip

Protection class II


SELV-equivalent

Degree of protection: IP20

RFI-suppressed

Time saving mounting due to click-in endcaps

Туре	Ref. No.	Capacity	Voltage (V)		Nominal current	Nominal current Ambient		Drawing	Weight
		range (W)	prim. (±10%)	sec.	A	temperature t _a (°C)	temperature t _c (°C)		9
Dimensions: 31.5x	42×175 mm				-				
EST 70/12.643	186117	20-70	230-240	11.3-11.8	0.305-0.310	-20 to 55	max. 75	А	145
EST 105/12.644	186118	20-105	230-240	11.3-11.8	0.430-0.440	-20 to 55	max. 75	А	165
Dimensions: 41x42	2x215 mm								
EST 150/12.645	186119	50-150	230-240	11.3-11.9	0.615-0.630	-20 to 55	max. 75	В	230
EST 200/12.649	186068	35-200	230/240	11.3/11.7	0.81/0.86	-20 to 45	max. 70	В	280

Independent Electronic Converters – DiscLine

Electronic safety converters

for low-voltage halogen incandescent lamps $12\ V$

Casing: heat-resistant polycarbonate

Mains frequency: 50-60 Hz

Protection against "no load" operation

Protection against short-circuit:

electronic switch-off with automatic restart

Thermal cut-out with automatic reset

Suitable for installation in furniture

and on combustible surfaces

Power factor: 0.98

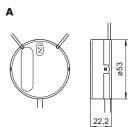
Efficiency: 95%

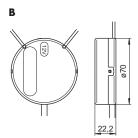
Dimming: with phase-cutting trailing-edge dimmer

Primary lead: 2x0.75 mm²,

PVC-insulation, length: 100⁺³⁰ mm

Secondary lead: 0.75 mm²,


PVC-insulation, length: 150 mm Secondary lead length: max. 2 m


Protection class II

SELV

Degree of protection: IP20

RFI-suppressed

3

4

5

6

Туре	Ref. No.	Capacity range	Voltage (V)		Nominal current	Ambient	Casing	Drawing	Weight				
		W	prim. (±10%)	orim. (±10%) sec. A		temperature t _a (°C)	temperature t _c (°C)		g				
Dimensions: Ø 53x22.2 mm													
EST 70/12.601	186005	20-70	230	11.5	0.30	-20 to 35	max. 75	А	70				
Dimensions: Ø 70x	Dimensions: Ø 70x22.2 mm												
EST 105/12.602	186007	35-105	230	11.5	0.43	-20 to 35	max. 70	В	100				

7

8

9

Dimmable Independent Electronic Converters

Electronic safety converters for low-voltage halogen incandescent lamps 12 V Casing: heat-resistant polyamide

Dimming range:

approx. 1-100% of lamp power

DALI: poles are not polarity sensitive (protected if connected to mains voltage), for use with DALI compatible control units

Low standby power consumption (< 1 W)

Mains frequency: 50-60 Hz Protection against "no load" operation Protection against short-circuit:

electronic switch-off with automatic restart

Electronically controlled overload

and temperature protection

Suitable for installation in furniture

and on combustible surfaces

Power factor: 0.98 at 100% operation

Efficiency: 94%

Screw terminals: 2.5 mm²

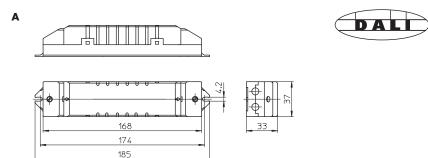
Quantity of screw terminals:

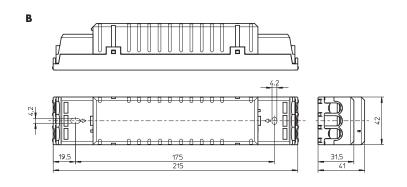
1x2-poles primary

1x2-poles DALI 2x2-poles secondary

(ESTd 150/12.661: 3x2-poles secondary)

With integrated cord grip


Protection class II


SELV-equivalent

Degree of protection: IP20

RFI-suppressed

Туре	Ref. No.	Capacity	Voltage (V)		Nominal current	Ambient	Casing	Drawing	Weight
		range (W)	prim. (±10%)	sec.	Α	temperature t _a (°C)	temperature t _c (°C)		9
Dimensions: 33x3	7x185 mm								
ESTd 70/12.660	186115	20-70	230-240	11.3-11.8	0.299-0.306	-20 to 50	70	А	110
ESTd 105/12.662	186121	20-105	230-240	11.2-11.7	0.440-0.455	-20 to 45	75	А	130
Dimensions: 41x4	2x215 mm								
ESTd 150/12.661	186116	50-150	230-240	11.2-11.6	0.595-0.605	-20 to 45	70	В	230

Transformers for Low-voltage Halogen Incandescent Lamps

Electronic Built-in Converters – CapLine

Electronic built-in safety converters for low-voltage halogen incandescent lamps 12 V Casing: heat-resistant polyamide, encapsulated with polyester resin For installation in plaster depth boxes:

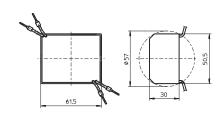
Ø 60 mm, height 65 mm Dimensions: 30x50.5x61.5 mm Mains frequency: 50-60 Hz

Protection against "no load" operation

Primary and secondary leads:

stranded conductors 1 mm², Si-insulation, Ø external: 2 mm, length: 170 mm

Protection against short-circuit:
electronic switch-off with automatic restart
Thermal cut-out with automatic reset
Suitable for installation in furniture
and on combustible surfaces


Power factor: 0.98 Efficiency: 94%

 $\label{eq:definition} \mbox{Dimming: with phase-cutting trailing-edge dimmer}$

SFIV

Degree of protection: IP54

RFI-suppressed

i

2

3

4

5

Туре	Ref. No.	Capacity	Voltage (V)		Nominal	Ambient temperature ta	Casing temperature t _c	Weight
		range (W)	prim. (±10%) sec.		current (A)	°C	°C	9
EST 75/12G.302	162400	20-75	230	11.5	0.32	-20 to 60	max. 85	200

6

7

8

9

Electronic Built-in Converters - BoardLine

Electronic built-in safety converters

for low-voltage halogen incandescent lamps 12 V

Mains frequency: 50-60 Hz

Protection against "no load" operation

Protection against short-circuit:

electronic switch-off with automatic restart

Thermal cut-out with automatic reset

(EST 70/12.380 and EST 105/12.381:

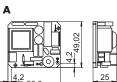
electronically controlled overload and temperature protection)

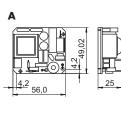
Power factor: 0.98

Dimming: optional with phase-cutting leadingedge or phase-cutting trailing-edge dimmer

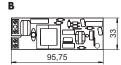
(EST 60/12.304: only phase-cutting

trailing-edge dimmer)

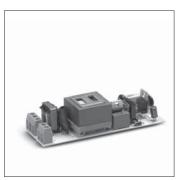

Screw terminals: 2.5 mm²


(EST 60/12.304 screw terminals: 4 mm²)

Fixing hole: Ø 4 mm (EST 60/12.304)


SELV-equivalent

RFI-suppressed



Electronic converter									Maximum temperature			
Туре	Ref. No.	Capacity	Voltage (V)		Nominal	Efficiency	Drawing	Weight	Power	Transformer	Y-Capacitor	
		range			current				transistor			
		W	prim. (±10%)	sec.	Α	%		9	t/t _{an} (°C)	t/t _{an} (°C)	t/t _{an} (°C)	
Dimensions: 25	49x56 mm											
EST 60/12.304	162396	20-60	230	11.5	0.26	94	А	70	90/110	110/120	< 110/110	
Dimensions: 23	33x96 mm				•							
EST 70/12.380	186074	20-70	230-240	11.3-11.7	0.30-0.31	95	В	65	95/105	95/115	< 100/110	
EST 105/12.381	186079	20-105	230-240	11.3-11.7	0.43-0.44	95	В	75	115/125	130/150	< 105/115	

Electronic Built-in Converters – TwinLine

With potentiometer connection (3.3 M Ω ±10%)

Electronic safety built-in converters for low-voltage halogen incandescent lamps 12 V

Casing: heat-resistant polyamide Mains frequency: 50-60 Hz

Protection against "no load" operation

Protection against short-circuit:

electronic switch-off with automatic restart Thermal cut-out with automatic reset

Suitable for installation in furniture

and on combustible surfaces

Power factor: 0.98 Efficiency: ≥ 94%

Dimming: potentiometer (3.3 M Ω ±10%)

or phase-cutting trailing-edge dimmer

Screw terminals: 4 mm²

Quantity of screw terminals:

1x2-poles primary

1x2-poles secondary

1x2-poles potentiometer connection

Fastening: male nipple M8

SELV (70 W)

SELV-equivalent (105 W) Degree of protection: IP20


RFI-suppressed

Α

3

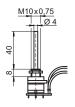
5

6

_

8

9


Туре	Ref. No.	Capacity	Voltage (V)		Nominal	Ambient	Casing	Drawing	Weight	
		range	Cu		current	temperature t _a	temperature t _c			
		W	prim. (±10%)	sec.	А	°C	°C		g	
Dimensions: 28.5x51.5x74 mm										
EST 70/12.618	186032	20-70	230-240	11.3-11.8	0.30-0.31	-20 to 45	max. 70/70 W	А	105	
							max. 75/60 W			
							max. 80/20-50 W			
Dimensions: 28.5x51.5x99.5 mm										
EST 105/12.619	186033	20-105	230-240	11.3-11.7	0.43-0.44	-20 to 45	max. 75	В	140	

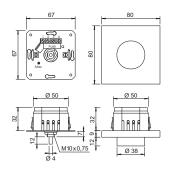
Potentiometer

For brightness control of low-voltage halogen incandescent lamps with electronic built-in safety transformers with potentiometer connection (3.3 M Ω \pm 10%) Pressure or rotary switch for switching on/off and brightness regulation Soldered leads: stranded conductors 0.75 mm², Si-insulation, \varnothing external: 2 mm, length: 150 mm

Weight: 15 g Unit: 14 pcs.

Ref. No.: 186050

Dimmers for Electronic Converters


Phase-cutting trailing-edge dimmer

Dimmer without cover plate
Dimensions: 67 x 67 x 51 mm

Push-button change-over switch with stud 4 mm, for installation in flushtype boxes with \varnothing 55 mm

Output: 10-350 W Weight: 60 g Unit: 25 pcs.

Ref. No.: 172773

Phase-cutting leading-edge dimmer

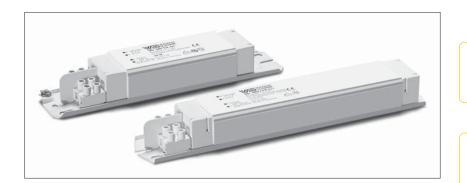
Dimmer without cover plate Dimensions: $67 \times 67 \times 51$ mm

Push-button change-over switch with stud 4 mm, for installation in flushtype boxes with \varnothing 55 mm

Output: 15-500 W Weight: 60 g Unit: 25 pcs. **Ref. No.: 172774**

Cover plate with rotary knob

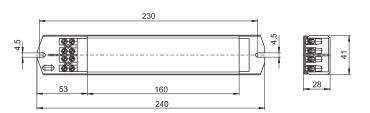
Dimensions: 80x80x9 mm


Colour: white Weight: 30 g Unit: 10 pcs.

Ref. No.: 172775

Super-thin Electromagnetic Built-in Transformers

Shape: 28 x 41 mm


Electromagnetic safety transformers for low-voltage halogen incandescent lamps 12 V Vacuum-impregnated with polyester resin Screw terminals: 0.5-2.5 mm² Protection class I For these transformers without thermal cut-out, a slow-acting fuse should be installed in the wiring on site

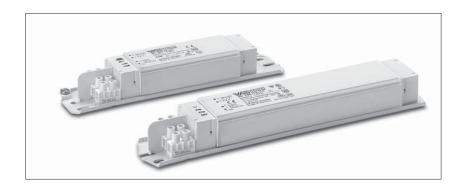
Α

В

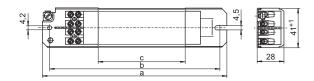
	ĸ.

Safety transformers											Primary fuse
Туре	Ref. No.	Capacity range	50, 60 H	Hz	Ambient	Drawing	а	Ь	С	Weight	
		W	V prim.	V sec.	temperature t _a (°C)		mm	mm	mm	kg	AT
220 V/50, 60 H	z										
STr 50/12.207	500843	35-50	220	11.5	40/B	А	175	165	83	0.73	0.250
230 V/50, 60 H	z										
STr 20/12.306	161781	15-20	230	11.5	60/B	А	155	140	63	0.55	0.125
STr 50/12.301	161757	35-50	230	11.5	50/B	А	195	180	92	0.80	0.250
STr 50/12.342	507181	35-50	230	11.5	40/B	А	175	165	83	0.73	0.250
STr 60/12.338	179604	40-60	230	11.5	50/F	А	195	180	92	0.80	0.315
STr 105/12.311	170002	60-105	230	11.5	30/F	В	240	230	160	1.33	0.500
240 V/50, 60 H	z										
STr 50/12.401	169830	35-50	240	11.5	45/B	А	195	180	92	0.80	0.250
STr 50/12.422	502592	35-50	240	11.5	40/B	А	1 <i>7</i> 5	165	83	0.73	0.250
STr 105/12.406	169125	60-105	240	11.5	50/H	В	240	230	160	1.33	0.500
127 V/60 Hz											
STr 50/12.109	525791	35-50	127	11.5	40/F	Α	155	140	63	0.55	0.500

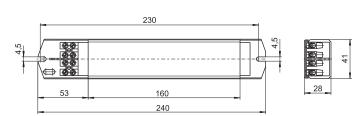
7


8

9


Super-thin Electromagnetic Built-in Transformers with Thermal Cut-out

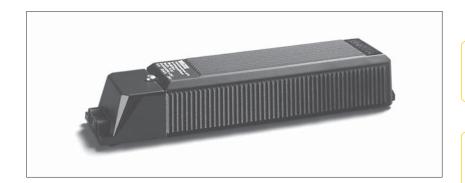
Shape: 28 x 41 mm

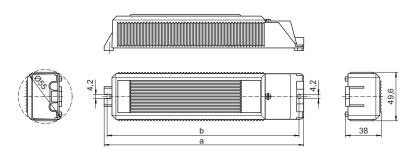

Electromagnetic safety transformers for low-voltage halogen incandescent lamps 12 V Vacuum-impregnated with polyester resin Screw terminals: 0.5-2.5 mm² Protection class I Temperature switch with self-holding protection against overheating, no primary fuse necessary

Α

В

Туре	Ref. No.	Capacity range	50, 60	Hz	Ambient	Drawing	а	Ь	С	Weight
		W	V prim.	V sec.	temperature t _a (°C)		mm	mm	mm	kg
230 V/50, 60 Hz										
STr 20/12.306	161860	15-20	230	11.5	60/B	А	155	140	63	0.55
STr 50/12.337	179444	35-50	230	11.5	50/F	А	175	165	83	0.73
STr 50/12.301	170091	35-50	230	11.5	50/B	А	195	180	92	0.80
STr 60/12.338	179608	40-60	230	11.5	50/F	А	195	180	92	0.80
STr 105/12.311	169747	60-105	230	11.5	45/F	В	240	230	160	1.33
240 V/50, 60 Hz										
STr 50/12.401	169748	35-50	240	11.5	45/B	А	195	180	92	0.80
STr 105/12.406	161935	60-105	240	11.5	50/H	В	240	230	160	1.33
127 V/60 Hz										
STr 50/12.109	537403	35-50	127	11.5	40/F	А	155	140	63	0.55


Electromagnetic Built-in Transformers, Protection Class II


Shape: 38 x 49.6 mm

Electromagnetic safety transformers for low-voltage halogen incandescent lamps 12 V Casing: polycarbonate encapsulated with PUR electrical resin

With self-holding thermal cut-out

Screw terminals: 2.5 mm²
With integrated cord grip
Suitable for installation in furniture
and on combustible surfaces
Degree of protection: IP20

Туре	Ref. No.	Capacity range	50, 60 Hz		Ambient	а	Ь	Weight
		W	V prim.	V sec.	temperature t _a (°C)	mm	mm	kg
STr 50/12G.301	161827	35-50	230	11.5	30/B	204	196	0.90
STr 60/12G.303	161830	40-60	230	11.5	30/B	204	196	1.10
STr 100/12G.311	161816	60-100	230	11.5	25/B	255	245	1.50

1

2

3

4

)

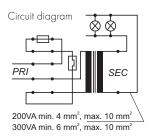
6

7

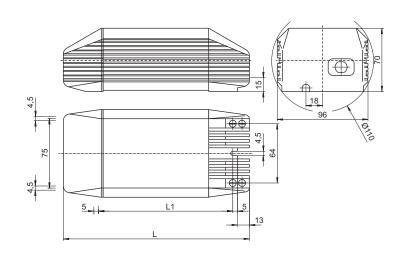
Ω

9

Compact Electromagnetic Transformers 70–300 W


Shape: 96 x 70 mm

Built-in electromagnetic safety transformers for low-voltage halogen incandescent lamps 12 V Fully encapsulated transformer in a plastic casing Mains frequency: 50-60 Hz Built-in primary fuse and temperature switch Screw terminals:


primary 0.75-2.5 mm² secondary up to 10 mm² Degree of protection: IP20

Protection class II

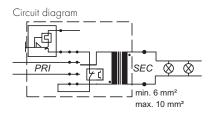
Suitable for installation in furniture and on combustible surfaces

Туре	Ref. No.	Capacity range	Voltage AC		Ambient temperature ta	L	L1	Weight		
			V -10%+	6%						
		W	prim.	sec.	°C	mm	mm	kg		
230 V/50, 60 Hz										
STr 200/12.02	531101	70-200	230	12	40	200	145	3.3		
STr 300/12.13	531102	150-300	230	12	40	230	175	4.6		
240 V/50, 60 Hz										
STr 300/12.50	531109	150-300	240	12	40	230	175	4.6		

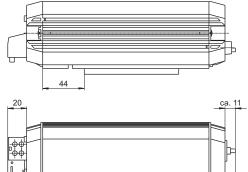
Compact Electromagnetic Transformers 70-400 W

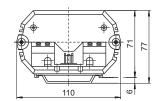
Dimensions: 110 x 77 mm

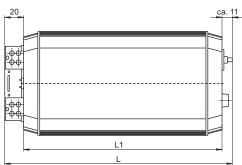
Built-in electromagnetic safety transformers for low-voltage halogen incandescent lamps 12 V and 24 V $\,$ Fully encapsulated transformer in an aluminium casing Mains frequency: 50-60 Hz


Built-in reversible device protection and temperature switch Screw terminals:

primary 0.75 - 2.5 mm² secondary up to 10 mm²


Degree of protection: IP20


Protection class II


Suitable for installation in furniture and on combustible surfaces Simple installation thanks to mounting aid

Туре	Ref. No.	Capacity range	Voltage	AC	Ambient temperature ta	L	L1	Casing colour	Weight
			V - 10%	5+6%					
		W	prim.	sec.	°C	mm	mm		kg
STr 200/12.05	531091	70-200	230	12	45	195	165	black	3.6
STr 200/12.01	531098	70-200	230	12	45	195	165	white	3.6
STr 200/24.20	531093	70-200	230	24	45	195	165	black	3.6
STr 300/12.11	531092	150-300	230	12	35	240	210	black	5.4
STr 300/12.12	531099	150-300	230	12	35	240	210	white	5.4
STr 300/24.01	531094	150-300	230	24	35	240	210	black	5.4
STr 400/12.01	531090	250-400	230	12	25	290	260	black	5.7
STr 400/12.02	531097	250-400	230	12	25	290	260	white	5.7

LOW- AND MAINS VOLTAGE LAMPHOLDERS

LAMPHOLDERS FOR HALOGEN INCANDESCENT LAMPS

As the tungsten-halogen cycle and the high lamp current can cause very high temperatures when operating low-voltage halogen lamps, close attention must be paid to the luminaire's thermal conditions and components must be made of high-grade materials.

VS lampholders for low-voltage halogen lamps

The following chapter contains Vossloh-Schwabe's comprehensive range of connection elements, lampholders and accessories for safe and reliable installation in accordance with the latest regulations and developments.

VS lampholders for mains voltage halogen lamps

The following chapter contains Vossloh-Schwabe's comprehensive range of lampholders for single-ended halogen lamps (GU/GZ10 and G9 bases), lampholders for bayonet lamps (B15d and B22d bases) as well as lampholders for double-ended tubular lamps (R7s base).

Lampholders for Halogen Incandescent Lamps

Lampholders for low-voltage halogen incandescent lamps	398-407
G4, GZ4, G5.3, GX5.3, G6.35, GY6.35 lampholders, accessories	398-399
G4 lampholders, GZ4 lamp connectors	400-402
Lampholders with separate mounting spring for GU4 lamps	402-403
GX5.3 lamp connectors	403-404
GU5.3 lampholders	404
Lampholders with separate mounting spring for GU5.3 lamps	405-406
G6.35, GY6.35 lampholders, GZ6.35 lamp connectors	406
G53 lamp connectors	407
B15d, BA15d lampholders	407
Lampholders for mains voltage halogen incandescent lamps	407-417
B15d, BA15d lampholders	407
G9 lampholders, accessories	408-410
GU10, GZ10 lampholders, accessories	410-412
R7s thermoplastic lampholders	412
R7s ceramic lampholders	412-414
R7s metal lampholders	415
Connection boxes	416
Connectors	417
Technical details for incandescent lamps	457-4 <i>7</i> 1
General technical details	533-540
Glossary	5/1 - 5/13

G4, GZ4, G5.3, GX5.3, G6.35, GY6.35 Lampholders, Accessories

For low-voltage halogen incandescent lamps

The lampholders listed in this chapter permit the use of lamps with different bases. It is important to ensure that under no circumstances a lamp

with a smaller pin diameter is used if a lamp with a larger pin diameter has already been used.

G/GZ4, G/GX5.3, G/GY6.35 lampholder

Casing: LCP, natural, T270

Nominal rating: 8/24 (for G4/GZ4 lamps: 4/24)

Multipoint contacts: CuNiZn

Push-in terminals for stranded conductors with ferrule on bare end of core \varnothing 1.4–1.8 mm

Fixing holes for screws M3 Weight: 2.4 g, unit: 1000 pcs.

Type: 33300 **Ref. No.: 109547**

Cover caps

For push-fit onto lampholders type 333

External thread 20.8 x 2 Material: LCP, natural Moulded thread: M10x1 Weight: 3.8 g, unit: 1000 pcs.

Type: 97255 **Ref. No.: 109548**

Screw rings

For components with external thread 20.8×2

Weight: 1.7/1.4 g, unit: 1000 pcs.

Type: 97257

Ref. No.: 109550 PPS, black **Ref. No.: 507490** LCP, natural

G/GZ4, G/GX5.3, G/GY6.35 lampholder

Casing: LCP, natural, T270

Nominal rating: 8/24 (for G4/GZ4 lamps: 4/24)

 $Multipoint\ contacts:\ CuNiZn$

Push-in terminals for stranded conductors with ferrule on bare end of core \varnothing 1.4-1.8 mm

Fixing holes for screws M3 Weight: 2.6 g, unit: 1000 pcs.

Type: 33400 **Ref. No.: 109674**

G/GZ4, G/GX5.3, G/GY6.35 lampholder

Casing: steatite, T270

Nominal rating: 8/24 (for G4/GZ4 lamps: 4/24)

 $Multipoint\ contacts:\ CuNiZn$

Push-in terminals for stranded conductors with ferrule on bare end of core \varnothing 1.4–1.8 mm

Fixing holes for screws M4

Weight: 3.4 g, unit: 1000 pcs.

Type: 32210

Ref. No.: 543530

G/GZ4, G/GX5.3, G/GY6.35 lampholder

Casing: ceramic, cover plate: mica

T350

Nominal rating: 10/24

Contacts: Ni

Leads: Cu nickel-plated, stranded conductors 0.75 mm², PTFE-insulation, length: 140 mm

Fixing holes for screws M3

Weight: 6.8 g, unit: 500 pcs.

Type: 32400

Ref. No.: 100939

G/GZ4, G/GX5.3, G/GY6.35 lampholder

Casing: ceramic, cover plate: mica

T300

Nominal rating: 10/24 Multipoint contacts: CuNiZn

Leads: Cu nickel-plated, stranded conductors

0.75 mm², PTFE-insulation, length: 140 mm

Fixing holes for screws M3

Weight: 7.1 g, unit: 1000 pcs.

Type: 32700

Ref. No.: 101258

G/GZ4, G/GX5.3, G/GY6.35 lampholder

Casing: ceramic, cover plate: mica

T300, nominal rating: 10/24

 $Multipoint\ contacts:\ CuNiZn$

Leads: Cu nickel-plated, stranded conductors

0.75 mm², PTFE-insulation, length: 140 mm

Fixing plate: zinc-coated polished steel $\,$

Fixing holes for screws M3

Weight: 8.8 g, unit: 1000 pcs.

Type: 32720

Ref. No.: 101274

G/GZ4, G/GX5.3, G/GY6.35 lampholder

Casing: ceramic, cover plate: mica

T300, nominal rating: 10/24

Multipoint contacts: CuNiZn

Leads: Cu nickel-plated, stranded conductors

0.75 mm², PTFE-insulation, length: 140 mm

Fixing bracket: zinc-coated polished steel

Fixing holes for screws M3

Weight: 9.3 g, unit: 1000 pcs.

Type: 32730

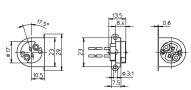
Ref. No.: 101275

3

4

6

7


8

10

G4 Lampholders, GZ4 Lamp Connectors

For low-voltage halogen incandescent lamps

G4 lampholder, GZ4 lamp connector

Casing: PPS, black, T240

Nominal rating: 4/24, multipoint contacts: steel Leads: Cu tinned, stranded conductors 0.75 mm², Si-insulation, length: 140 mm

Option for lateral wiring Lampholder height: 16 mm Fixing holes for screws M3 Weight: 5.7 g, unit: 1000 pcs.

Type: 30400

G4 lampholder, GZ4 lamp connector

Casing: PPS, black, T240

Nominal rating: 4/24, multipoint contacts: steel Leads: Cu tinned, stranded conductors 0.75 mm²,

Si-insulation, length: 140 mm Lampholder height: 12.8 mm Fixing holes for screws M3 Weight: 5.5 g, unit: 1000 pcs.

Type: 30450 **Ref. No.: 530025**

G4 lampholder, GZ4 lamp connector

Casing: PPS, black, T240

Nominal rating: 4/24, multipoint contacts: steel Leads: Cu tinned, stranded conductors 0.75 mm²,

Si-insulation, length: 140 mm

Option for lateral wiring Lampholder height: 16 mm For push-fit onto the lamp Weight: 5.3 g, unit: 1000 pcs.

Type: 30460 **Ref. No.: 530026**

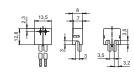
G4 lampholder, GZ4 lamp connector

Casing: PPS, black, T240

Nominal rating: 4/24, multipoint contacts: steel Leads: Cu tinned, stranded conductors 0.75 mm²,

Si-insulation, length: 140 mm Option for lateral and base wiring Lampholder height: 12.8 mm For push-fit onto the lamp Weight: 5.1 g, unit: 1000 pcs.

Type: 30465 **Ref. No.: 530027**



G4 lampholders

For push-fit into lampholder support 535267

T240

Nominal rating: 2/50 Multipoint contacts: CuNiZn

Push-in terminals for stranded conductors with ferrule on bare end of core \varnothing 1.4-1.8 mm

Weight: 1.5/1.6 g, unit: 1000 pcs.

Type: 30800

Ref. No.: 535146 material: LCP Ref. No.: 535263 material: PPS

Lampholder support for G4 lampholders type 30800

Material: polyamide

Base split pins for wall thickness 0.6 mm

Weight: 0.8 g, unit: 500 pcs.

Type: 95300

Ref. No.: 535267

G4 lampholders

Casing: PPS, black, T200 Nominal rating: 2/24

Contacts: Ni

Push-in terminals for stranded conductors with ferrule on bare end of core max. \varnothing 1.8 mm

Weight: 4.4/5 g, unit: 1000 pcs. Type: 32800 holes for screws M3

Ref. No.: 106248

Type: 32820 threaded bushes M3

Ref. No.: 106249

G4 lampholder

Casing: PPS, black, T200 Nominal rating: 2/24 Multipoint contacts: CuNiZn

Leads: Cu tinned, stranded conductors 0.75 mm², Si-insulation brown/blue, length: 140 mm

Push-in fixing

Weight: 4.4 g, unit: 1000 pcs.

Type: 30485 Ref. No.: 535988

G4 clip-in tube lampholder

With earth contact

Casing: PPS, black, T200 Nominal rating: 2/24 Multipoint contacts: CuNiZn

Lead: Cu tinned, stranded conductors 0.75 mm²,

Si-insulation blue, length: 140 mm

Push-in fixing

Weight: 2.7 g, unit: 1000 pcs.

Type: 30471

Ref. No.: 108449

VSSLOH SCHWABE

G4 clip-in tube lampholder

With integrated cable holder for Teflon conductor

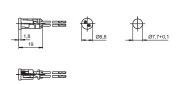
Casing: PPS, black, T200 Nominal rating: 2/24 Multipoint contacts: CuNiZn

Leads: Cu tinned, stranded conductors 0.61 mm², FEP-insulation brown/blue, length: 140 mm

Push-in fixing

Weight: 8.1 g, unit: 1000 pcs.

Type: 30470 **Ref. No.: 520865**


G4 lampholder Casing: PPS, black, T240

Casing: PPS, black, T240 Nominal rating: 4/24 Multipoint contacts: steel

leads: Cu tinned, stranded conductors $0.75\ mm^2$,

Si-insulation, length: 140 mm For push-fit onto the lamp Weight: 4.7 g, unit: 1000 pcs. Type: 34000

Ref. No.: 507105

Lampholders with Separate Mounting Spring for GU4 Lamps

For low-voltage halogen incandescent lamps

G/GZ4, G/GX5.3, G/GY6.35 lampholder

Casing: LCP, natural, T270

Nominal rating: 8/24 (for G4/GZ4 lamps: 4/24)

 $Multipoint\ contacts:\ CuNiZn$

Push-in terminals for stranded conductors with ferrule on bare end of core \varnothing 1.4–1.8 mm

Fixing holes for screws M3 For cover cap (see p. 398)

Weight: 2.4 g, unit: 1000 pcs. Type: 33300

Ref. No.: 109547

G/GZ4, G/GX5.3, G/GY6.35 lampholder

Casing: steatite, T270

Nominal rating: 8/24 (for G4/GZ4 lamps: 4/24)

Multipoint contacts: CuNiZn

Push-in terminals for stranded conductors

with ferrule on bare end of core \varnothing 1.4–1.8 mm

Fixing holes for screws M4 Weight: 3.4 g, unit: 1000 pcs.

Type: 32210 **Ref. No.: 543530**

GU4 mounting spring for lamp Material: stainless steel

For push-fit onto lampholders type 333 and 32210

Weight: 0.8 g, unit: 1000 pcs.

Type: 94095 Ref. No.: 109553

G/GZ4-, G/GX5.3, G/GY6.35 lampholder

Casing: ceramic, cover plate: mica

T350

Nominal rating: 10/24

Contacts: Ni

Leads: Cu nickel-plated, stranded conductors 0.75 mm², PTFE-insulation, length: 140 mm

Fixing holes for screws M3 Weight: 6.8 g, unit: 500 pcs.

Type: 32400

Ref. No.: 100939

GU4 mounting spring for lamp

Material: stainless steel

The mounting spring has to be fastened

to the lampholder 100939.

The luminaire manufacturer is responsible

for the attachment.

Weight: 1.6 g, unit: 1000 pcs.

Type: 94071

Ref. No.: 108678

GX5.3 Lamp Connectors

For low-voltage halogen incandescent lamps

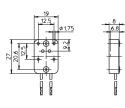
GX5.3 lamp connector

Casing: ceramic, cover plate: mica T300, nominal rating: 10/24 Multipoint contacts: Ni

Leads: Cu nickel-plated, stranded conductors 1 mm², PTFE-insulation, length: 145 mm

Fixing holes for screws M3 Weight: 13.3 g, unit: 1000 pcs.

Type: 32020 Ref. No.: 400548


GX5.3 lamp connector

Casing: ceramic, cover plate: mica T300, nominal rating: 10/24 Multipoint contacts: Ni

Leads: Cu nickel-plated, stranded conductors 0.75 mm², PTFE-insulation, length: 135 mm

Weight: 12 g, unit: 500 pcs.

Type: 32100 **Ref. No.: 100877**

GX5.3 lamp connectors


Casing: ceramic, cover plate: mica T300, nominal rating: 10/24 Multipoint contacts: Ni

Leads: Cu nickel-plated, stranded conductors 0.75 mm², PTFE-insulation, length: 140 mm

Weight: 7.8/8.5 g, unit: 500 pcs. Type: 32600 holes for screws M3 **Ref. No.: 101162**

Type: 32620 threaded bushes M3

Ref. No.: 101207

GU5.3 Lampholders

For low-voltage halogen incandescent lamps

GU5.3 lampholder

Casing: ceramic, cover plate: mica T350, nominal rating: 10/24

Contacts: Ni

Leads: Cu nickel-plated, stranded conductors 0.75 mm², PTFE-insulation, length: 140 mm

Fixing holes for screws ST2.9

Mounting spring for lamp: stainless steel

Weight: 9.1 g, unit: 1000 pcs.

Type: 32480 **Ref. No.: 106457**

Casing: ceramic, cover plate: mica

T300, nominal rating: 10/24, multipoint contacts: Ni

Leads: Cu nickel-plated, stranded conductors 0.75 mm², PTFE-insulation, length: 140 mm

Mounting spring for lamp: stainless steel Weight: 11/12 g, unit: 500 pcs. Type: 32680 holes for screws M3

Ref. No.: 101248

Type: 32690 threaded bushes M3

Ref. No.: 101253

Lampholders with Separate Mounting Spring for GU5.3 Lamps

For low-voltage halogen incandescent lamps

G/GZ4, G/GX5.3, G/GY6.35 lampholder

Casing: LCP, natural, T270

Nominal rating: 8/24 (for G4/GZ4 lamps: 4/24)

Multipoint contacts: CuNiZn

Push-in terminals for stranded conductors

with ferrule on bare end of core Ø 1.4-1.8 mm

Fixing holes for screws M3 For cover cap (see p. 398)

Weight: 2.4 g, unit: 1000 pcs.

Type: 33300

Ref. No.: 109547

G/GZ4, G/GX5.3, G/GY6.35 lampholder

Casing: steatite, T270

Nominal rating: 8/24 (for G4/GZ4 lamps: 4/24)

Multipoint contacts: CuNiZn

Push-in terminals for stranded conductors

with ferrule on bare end of core \varnothing 1.4-1.8 mm

Fixing holes for screws M4 Weight: 3.4 g, unit: 1000 pcs.

Type: 32210

Ref. No. 543530

GU5.3 mounting spring for lamp

Material: stainless steel

For push-fit onto lampholders type 333 and 32210

Weight: 1.1 g, unit: 1000 pcs.

Type: 94096

Ref. No.: 109554

G/GZ4, G/GX5.3, G/GY6.35 lampholder

Casing: ceramic, cover plate: mica

T350

Nominal rating: 10/24

Contacts: Ni

Leads: Cu nickel-plated, stranded conductors 0.75 mm², PTFE-insulation, length: 140 mm

Fixing holes for screws M3

Weight: 6.8 g, unit: 500 pcs.

Type: 32400 Ref. No.: 100939

GU5.3 mounting spring for lamp

Material: stainless steel

The mounting spring has to be fastened

to the lampholder 100939.

The luminaire manufacturer is responsible

for the attachment.

Weight: 2 g, unit: 1000 pcs.

Type: 94060 **Ref. No.: 106256**

G6.35, GY6.35 Lampholders, GZ6.35 Lamp Connectors

For low-voltage halogen incandescent lamps

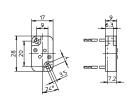
G/GY6.35 lampholder, GZ6.35 lamp connector

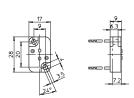
Casing: ceramic, cover plate: mica T300, nominal rating: 10/24 Multipoint contacts: Ni

Leads: Cu nickel-plated, stranded conductors 0.75 mm², PTFE-insulation, length: 140 mm

Fixing holes for screws M3 Lamp fixing holes: diagonal Weight: 11 g, unit: 500 pcs.

Type: 30300 **Ref. No.: 100662**


G/GY6.35 lampholder, GZ6.35 lamp connector


Casing: ceramic, cover plate: mica T300, nominal rating: 10/24 Multipoint contacts: Ni

Leads: Cu nickel-plated, stranded conductors 0.75 mm², PTFE-insulation, length: 140 mm

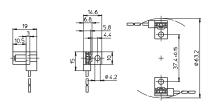
Fixing holes for screws M3 Lamp fixing holes: axial Weight: 12 g, unit: 500 pcs.

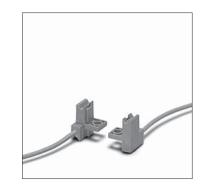
Type: 30350 **Ref. No.: 108674**

G53 Lamp Connectors

For low-voltage halogen incandescent lamps

G53 lamp connector Casing: PPS, black Nominal rating: 10/24 Contacts: CuNiZn


Lead: Cu tinned, stranded conductors $0.75\ mm^2$,


Si-insulation, length: 140 mm

Fixing hole for screw M4 Lead exit: lateral

Weight: 4.4 g, unit: 1000 pcs.

Type: 33100 Ref. No.: 107694

B15d, BA15d Lampholders

For low-voltage and mains voltage halogen incandescent lamps

One-piece contact pins with screw terminals to reduce voltage drop. When using lampholders without cap it has to be ensured protection from electric shock as well as sufficient creepage distances and clearances from live parts on the back of lampholders.

B 15d, BA 15d lampholders

Casing with fixing flange: zinc-coated polished steel

Insert: ceramic, T230 Nominal rating: 8/250 Fixing holes for screws M3 Weight: 15/16 g, unit: 500 pcs.

Type: 78100

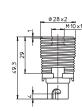
Ref. No.: 102923

Type: 78101 with earth terminal

Ref. No.: 102925

B15d, BA15d lampholder

Casing: zinc-coated polished steel


Insert: ceramic, T230, nominal rating: 8/250

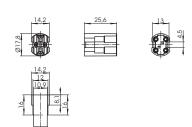
With earth terminal

Cover cap: PBT GF, max. 180 °C External thread 28 x 2 IEC 60399 For E14 metal screw rings Weight: 17/11.5 g, unit: 500 pcs.

Type: 78201

Ref. No.: 106513 **Ref. No.: 106583** cap M10x1

G9 Lampholders, Accessories

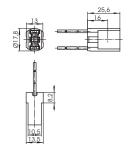

For mains voltage halogen incandescent lamps

For luminaires of protection class II

G9 lampholder

Casing: ceramic, cover plate: LCP, natural T300, nominal rating: 2/250
Push-in twin terminals for stranded conductors with ferrule on bare end of core Ø 1.4-1.8 mm
Weight: 7.5 g, unit: 1000 pcs.

Type: 33800 **Ref. No.: 509357**

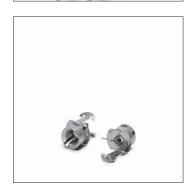

G9 lampholder

Casing: ceramic, T300, nominal rating: 2/250 Leads: Cu nickel-plated, stranded conductors 0.75 mm², double PTFE-insulation, length: 180 mm

Weight: 12.8 g, unit: 1000 pcs.

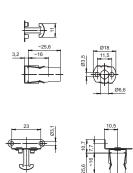
Type: 33906

Ref. No.: 532610



Metal bracket with nipple
For G9 lampholders type 338/339
Material: zinc-coated steel
Female nipple: M10x1
Weight: 7.8 g, unit: 1000 pcs.

Type: 94455 **Ref. No.: 520880**



Metal brackets
For G9 lampholders type 338/339
Material: zinc-coated steel
Fixing holes for screws M3
Weight: 1.5/3.5 g, unit: 1000 pcs.

Type: 94457

Ref. No.: 520882 Type: 80280 with bracket 90°

Ref. No.: 521010

Cover cap for G9 lampholders type 338/339

Material: LCP External thread 20.8 x 2 Moulded thread: M10x1 Weight: 3.2 g, unit: 1000 pcs.

Type: 97760 Ref. No.: 525583

G9 lampholder with external thread 20.8×2

Casing: steatite, T300 Nominal rating: 2/250 For luminaires of protection class II Push-in twin terminals for stranded conductors with ferrule on bare end of core Ø 1.5-1.8 mm

Fixing holes for screws M3 Weight: 14.5 g, unit: 500 pcs.

Type: 33890

new Ref. No.: 535610

G9 lampholders with external thread 20.8 x 2

Casing: LCP, nominal rating: 2/250 Push-in terminals for stranded conductors with ferrule on bare end of core \varnothing 1.4-1.8 mm

Fixing holes for screws M2.5 Bayonet fixing for cover caps Weight: 8.6/8.2/6 g, unit: 1000 pcs.

Type: 33700/33710

insert: ceramic, natural, T300 Ref. No.: 506398 Ref. No.: 507470 insert: ceramic, natural, T270 **Ref. No.: 508306** insert: LCP, natural, T270

For components with external thread 20.8×2

Weight: 1.7/1.4 g, unit: 1000 pcs.

Type: 97257

Ref. No.: 109550 PPS, black Ref. No.: 507490 LCP, natural

Metal screw rings

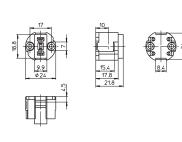
For components with external thread 20.8 x 2

Material: zinc-coated polished steel Weight: 1.6/2 g, unit: 1000 pcs. Type: 93034 Ø 27 mm, height: 7 mm

Ref. No.: 509110

Type: 93035 \varnothing 27 mm, height: 11 mm

Ref. No.: 509118


G9 lampholder

Casing: ceramic, cover plate: LCP, natural T270, nominal rating: 2/250
Push-in twin terminals for stranded conductors

Fush-in twin terminals for stranded conductors with ferrule on bare end of core \emptyset 1.4–1.8 mm

Fixing holes for screws M3 Weight: 14.4 g, unit: 1000 pcs.

Type: 33500 **Ref. No.: 502004**

Cover caps for G9 lampholder 502004 Material: LCP, natural External thread 28×2 IEC 60399 Fixing holes for screws M3 Weight: 8.7/4.6 g, unit: 1000 pcs. Type: 83310 female nipple: M10×1

Ref. No.: 505951

Type: 97268 moulded thread: M10x1

Ref. No.: 501942

 $\mathsf{Screw}\;\mathsf{ring}$

For components with external thread 28x2

Material: PPS, black Ø 34 mm, height: 7.5 mm Weight: 1.9 g, unit: 1000 pcs.

Type: 05202 **Ref. No.: 502503**

GU10, GZ10 Lampholders, Accessories

For mains voltage halogen incandescent lamps

GU10, GZ10 lampholders

Casing: LCP, natural, T270, nominal rating: 2/250 Push-in twin terminals for stranded conductors with ferrule on bare end of core Ø 1.4-1.8 mm Fixing holes for screws M3

Weight: 7 g, unit: 1000 pcs. Type: 31000/31010

Ref. No.: 108979 GU 10, GZ 10 lampholder **Ref. No.: 109007** GU 10 lampholder

GU10, GZ10 lampholders

For luminaires of protection class II

Casing: LCP, natural, T270, nominal rating: 2/250 Push-in twin terminals for stranded conductors with ferrule on bare end of core Ø 1.4–1.8 mm

Fixing holes for screws M3 Weight: 8 g, unit: 1000 pcs. Type: 31020/31030

Ref. No.: 502111 GU 10, GZ 10 lampholder **GU 10** lampholder

Cover cap for GU 10, GZ 10 lampholders type 310 $\,$

Material: PA GF, black Moulded thread: M10x1 Fixing holes for screws M3 Weight: 3.4 g, unit: 1000 pcs.

Type: 97244 **Ref. No.: 109411**

2

4

Cover cap for lampholders 502111/502112

External thread 32x2 Material: LCP, natural Moulded thread: M10x1 Weight: 6 g, unit: 1000 pcs.

Type: 97320 **Ref. No.: 502064**

5

6

Screw ring

For components with external thread 32×2

Ø 38.9 mm, height: 7.5 mm Material: PPS, black

Weight: 2.3 g, unit: 1000 pcs.

Type: 97282 **Ref. No.: 502416**

7

2

GU10, GZ10 lampholders Casing: steatite, cover plate: PPS T240, nominal rating: 2/250

Push-in terminals for stranded conductors with ferrule on bare end of core \varnothing 1.5–1.8 mm

Fixing holes for screws M3 Weight: 13.6/14 g, unit: 500 pcs.

Type: 31755/31705

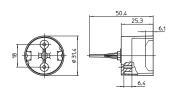
Ref. No.: 535034 GU 10, GZ 10 lampholder **Ref. No.: 535032** GU 10 lampholder

9

10

Cover caps for lampholders type 315/317

Material: PBT GF


Front fixing holes for self-tapping

screws acc. to ISO 1481/7049-ST2.9-C/F Cord grip: twist and block (for single-core leads)

Rear lead exit: max. \varnothing 2.5 mm Weight: 6.9 g, unit: 500 pcs.

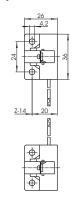
Type: 97765

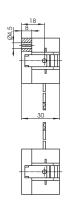
Ref. No.: 536164 black **Ref. No.: 543615** grey

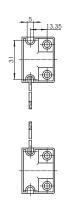
R7s Thermoplastic Lampholders

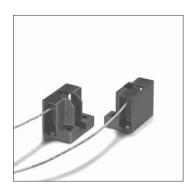
For mains voltage halogen incandescent lamps

R7s lampholders


Casing: LCP, black, T270


Contact pin: Ni, nominal rating: 2/250 Lead: Cu nickel-plated, stranded conductors


0.75 mm², PTFE-insulation, length: 300 mm

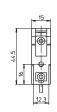

Fixing holes for screws M4 Weight: 15.5 g, unit: 25 pcs. Type: 31690 lead exit right

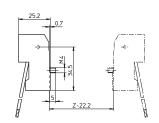
Ref. No.: 504296Type: 31691 lead exit left **Ref. No.: 504297**

R7s Ceramic Lampholders

For mains voltage halogen incandescent lamps

The luminaire design must ensure protection from electric shock as well as sufficient creepage distances and clearances from live parts on the back of lampholder.


Partly enclosed R7s lampholder


Casing: ceramic, T350 Contact pin: Cu, silver bulb Nominal rating: 8/250

Leads: Cu nickel-plated, stranded conductors 0.75 mm², PTFE-insulation, length: 200 mm

With fixing screw M4 Weight: 25.4 g, unit: 400 pcs.

Type: 32300 **Ref. No.: 100912** If the central hole on the bracket is used for fixing there must be a support within the luminaire to ensure that the bracket cannot be deformed.

Partly enclosed R7s lampholder Casing: ceramic, T350 Contact pin: Cu, silver bulb Nominal rating: 8/250

Leads: Cu nickel-plated, stranded conductors 0.75 mm², PTFE-insulation, length: 200 mm

Oblong holes for screws M3/M4 Central hole for screw M4 Weight: 59.3 g, unit: 200 pcs. Type: 32390 contact distance: 74.9 mm

Ref. No.: 107213

Partly enclosed R7s lampholder Casing: ceramic, T350 Contact pin: Cu, silver bulb Nominal rating: 8/250

Leads: Cu nickel-plated, stranded conductors 0.75 mm², PTFE-insulation, length: 200 mm

Oblong holes for screws M3/M4 Central hole for screw M4 Weight: 61 g, unit: 200 pcs.

Type: 32391 contact distance: 74.9 mm

Ref. No.: 107214

Partly enclosed R7s lampholder Casing: ceramic, T350 Contact pin: Cu, silver bulb Nominal rating: 8/250 Leads: Cu nickel-plated, stranded conductors

0.75 mm², PTFE-insulation, length: 200 mm Oblong holes for screws M3/M4

Central hole for screw M4 Weight: 61.3 g, unit: 200 pcs.

Type: 32395 contact distance: 74.9 mm

Ref. No.: 107215

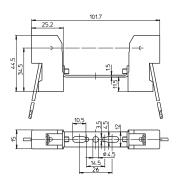
Partly enclosed R7s lampholder Casing: ceramic, T350 Contact pin: Cu, silver bulb Nominal rating: 8/250

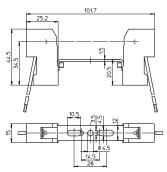
Leads: Cu nickel-plated, stranded conductors 0.75 mm², PTFE-insulation, length: 200 mm

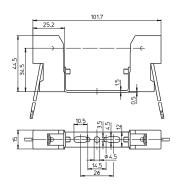
Oblong holes for screws M4 Central hole for screw M4 Weight: 64.9 g, unit: 200 pcs.

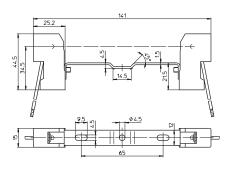
Type: 32310 contact distance: 114.2 mm

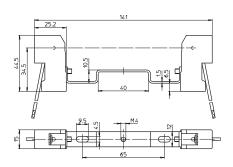
Ref. No.: 107195


Partly enclosed R7s lampholder Casing: ceramic, T350 Contact pin: Cu, silver bulb Nominal rating: 8/250


Leads: Cu nickel-plated, stranded conductors 0.75 mm², PTFE-insulation, length: 200 mm


Oblong holes for screws M4 Central threaded bush M4 Weight: 66.5 g, unit: 200 pcs.


Type: 32320 contact distance: 114.2 mm


Ref. No.: 107194



Partly enclosed R7s lampholder Casing: ceramic, T350 Contact pin: Cu, silver bulb

Nominal rating: 8/250

Leads: Cu nickel-plated, stranded conductors 0.75 mm², PTFE-insulation, length: 200 mm

Oblong holes for screws M4 Central hole for screw M4 Weight: 65.4 g, unit: 200 pcs.

Type: 32340 contact distance: 114.2 mm

Ref. No.: 107193

Partly enclosed R7s lampholder Casing: ceramic, T350 Contact pin: Cu, silver bulb Nominal rating: 8/250 Leads: Cu nickel-plated, stranded conductors

 $0.75~\text{mm}^2$, PTFE-insulation, length: 200 mm Oblong holes for screws M4

Central hole for screws M4

Central hole for screw M5

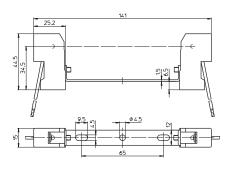
Weight: 66.7 g, unit: 200 pcs.

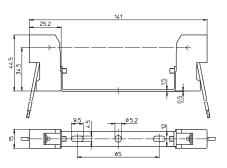
Type: 32360 contact distance: 114.2 mm

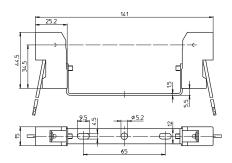
Ref. No.: 107192

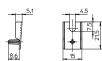
Partly enclosed R7s lampholder Casing: ceramic, T350 Contact pin: Cu, silver bulb Nominal rating: 8/250

Leads: Cu nickel-plated, stranded conductors 0.75 mm², PTFE-insulation, length: 200 mm


Oblong holes for screws M4 Central hole for screw M5 Weight: 71.3 g, unit: 200 pcs. Type: 32380 contact distance: 114.2 mm


Ref. No.: 109497


Protection cap for R7s lampholders
For push-fit onto lampholders type 323
Protection against electrical shock
on the rear side of the lampholder
Lampholder with assembled protection cap on request


Material: LCP, natural Weight: 0.7 g, unit: 1000 pcs. Type: 97528

Ref. No.: 507592

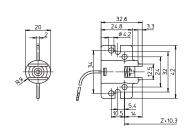
R7s Metal Lampholders

For mains voltage halogen incandescent lamps

1

2

R7s lampholder


Casing: Al, T300, contact pin: Ni Nominal rating: 10/250

Lead: Cu nickel-plated, stranded conductors 0.75 mm², PTFE-insulation, length: 300 mm

Fixing flange

Fixing holes for screws M4 Weight: 21 g, unit: 50 pcs.

Type: 30023 **Ref. No.: 100616**

J

4

R7s lampholder

Casing: Al, T300, contact pin: Cu, silver bulb

Nominal rating: 10/250

Lead: Cu nickel-plated, stranded conductors 1 mm², PTFE-insulation, length: 300 mm

Fixing flange

Fixing holes for screws M3 Weight: 15.7 g, unit: 1000 pcs.

Type: 30523

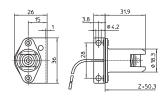
© 20.5

6

Ref. No.: 100710

R7s lampholder

Casing: Al, T300, contact pin: Cu, silver bulb


Nominal rating: 10/250

Lead: Cu nickel-plated, stranded conductors 1 mm², PTFE-insulation, length: 350 mm

Fixing bracket

Fixing holes for screws M4 Weight: 24.8 g, unit: 500 pcs.

Type: 30550 **Ref. No.: 100720**

7

8

9

10

Connection Boxes

For connecting downlights in false ceilings according to standards

The luminaire manufaturer is responsible for the right choice of accessories.

Connection box Material: PC, black Split pins for wall thickness 0.5-1.5 mm With integrated 2-pole terminal block and

contact bushings: 2.5 mm² With cord grip

Weight: 18 g, unit: 500 pcs.

Type: 85007 Ref. No.: 108940

Connection boxes Material: PA, black

With integrated 2-pole terminal block for leads

with cross-section: $0.5-2.5\ \text{mm}^2$ Cord grip on primary side for leads HO3VV-F/HO5VV-F (Ø 5-7 mm) and single-core Ø 3-7 mm

Cord grip on secondary side for single-core Teflon leads up to \varnothing 3 mm and single-core PVC leads up to \varnothing 2.2 mm

Weight: 21.8/20.1 g, unit: 500 pcs. Type: 85011/85012 plastic bracket

with locking screw

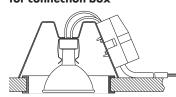
Ref. No.: 543048 12 V Ref. No.: 543049 230 V Type: 85013/85014 for fixing screw **Ref. No.: 543053** 12 V Ref. No.: 543054

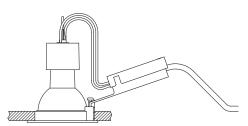
Connection boxes

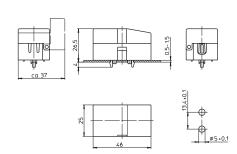
With plastic bracket with locking screw

Material: PA, black

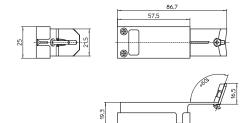
With integrated 3-pole terminal block for leads with cross-section: $0.75-4\ mm^2$

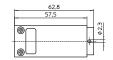

Cord grip on primary side for leads \varnothing 2.5-11 mm Cord grip on secondary side for

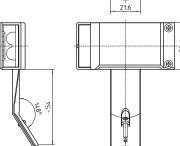

single-core Teflon leads up to \varnothing 1.8 mm and single-core PVC leads up to \varnothing 2.2 mm

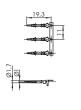

Weight: 28.7 g, unit: 500 pcs. Type: 85015/85016


Ref. No.: 543058 Ref. No.: 543059 230 V

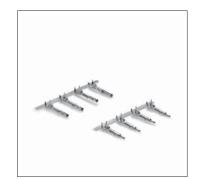

Application examples for connection box







Connectors


Modular system for various assembly options Connectors can be delivered pre-assembled with lampholder and lead assemblies

Male and female plug Nominal rating: 7/600 For cable: 0.3-0.9 mm² For crimping on the end of lead Material: brass, tinned Weight: 0.1 g, unit: 5000 pcs. Type: 93088 male plug

Ref. No.: 505251 Type: 93089 female plug Ref. No.: 506807

Male and female casing For male and female plug For push-fit assembly Material: PA, natural

Weight: 0.8/1 g, unit: 2500 pcs.

Type: 97355 male casing

Ref. No.: 509295 UL94V-0 **Ref. No.: 508562** UL94V-2 Type: 97356 female casing

Ref. No.: 509296 UL94V-0 **Ref. No.: 508563** UL94V-2

LAMPHOLDERS MADE OF THERMOPLASTICS, METAL AND PORCELAIN

LAMPHOLDERS FOR GENERAL-SERVICE INCANDESCENT AND RETROFIT LAMPS

The general-service light bulb owes its name to its bulbous shape, which has remained almost unchanged to this day. The tungsten filament contained within the bulb's glass shell, in which there used to be a vacuum but which is nowadays more usually filled with an inert gas, begins to glow as electricity is passed through it. Despite the considerable technical progress that has been made, the typical disadvantages associated with light bulbs still remain. For instance, incandescent lamps mainly radiate heat with no more than 5–10% light output and have a service life of approx. 1000 operating hours.

As a result of energy-efficiency regulations in the various regions of the world, the use of all-purpose incandescent lamps has been limited or even banned. Nonetheless, thanks to the many different shapes and surfaces of lamp bulbs, all-purpose incandescent lamps still have a firm place in decorative residential lighting applications and are often an important feature of luminaire designs. Retrofit lamps that comply with energy-efficiency regulations are increasingly being used as a replacement for all-purpose incandescent lamps and use the same lampholder systems found with E12/E14, E26/E27, E39/E40, B15d and B22d bases

VS lampholders for general-service incandescent and retrofit lamps

Depending on the operating conditions, lampholders can be made of thermoplastics, metal or porcelain. Metal lampholders are most often used for high-grade decorative luminaires. In accordance with protection class I, metal lampholders must be included in the measures taken to earth the luminaire.

Due to their heat resistance, Edison lampholders made of porcelain are frequently used for higher-output lamps. Classic lampholder materials like metal and porcelain are increasingly being displaced by modern thermoplastics.

Lampholders for General-service Incandescent and Retrofit Lamps

E14 lampholders	420-430
E14 thermoplastic lampholders, one-piece and cover caps	420-424
E14 table lamp set	425
E14 thermoplastic lampholders, three-piece	425-427
E14 porcelain lampholders, one-piece	428
E14 metal lampholders, three-piece	428-429
E14 thermoplastic rocker switch lampholders	429-430
E14 lampholder for emergency lighting	430
E27 lampholders	431-448
E27 thermoplastic lampholders, one-piece and cover caps	431 - 435
E27 table lamp set	436
E27 renovation kit lampholders	436
E27 thermoplastic lampholders, three-piece	437-439
E27 porcelain lampholders	440-442
E27 metal lampholders, three-piece	442-443
E27 thermoplastic pull-switch lampholders	443-444
E27 metal pull-switch lampholders	445
E27 thermoplastic rocker switch lampholders	446
E27 thermoplastic rotary switch lampholders	447
E27 festoon lampholders	447-448
B22d lampholders, accessories	448-449
Accessories for E14, E27 and B22d lampholders	450-455
E40 porcelain lampholders	456
Technical details for incandescent lamps	457-471
General technical details	533-540
Glossary	541 - 543

E14 Thermoplastic Lampholders, One-piece

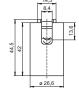
For incandescent lamps with base E14

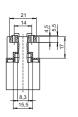
E14 lampholders with temperature marking

T180 on request.

Brass-finished versions are available on request.

E14 lampholders, for cover caps

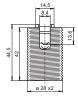

Plain casing

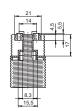

Casing: PET GF, T210, nominal rating: 2/250 Push-in twin terminals: 0.5–1.5 mm² Rear fixing holes for self-tapping screws acc. to ISO 1/81/7049-ST2.9-C/F

Weight: 11.3/11.4 g, unit: 1000 pcs.

Type: 64001

Ref. No.: 109384 white **Ref. No.: 109383** black

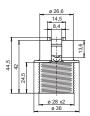


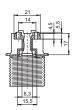

E14 lampholders, for cover caps
External thread 28×2 IEC 60399
Casing: PET GF, T210, nominal rating: 2/250
Push-in twin terminals: 0.5-1.5 mm²

Push-in twin terminals: 0.5–1.5 mm²
Rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST2.9-C/F
Weight: 12.5/12.2 g, unit: 1000 pcs.

Type: 64101

Ref. No.: 109387 white **Ref. No.: 109386** black

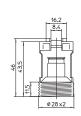


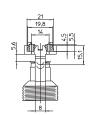


E14 lampholders, for cover caps
External thread 28 x 2 IEC 60399, with flange
Casing: PET GF, T210, nominal rating: 2/250
Push-in twin terminals: 0.5-1.5 mm²
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Weight: 12.7 g, unit: 1000 pcs.

Type: 64201

Ref. No.: 503924 white **Ref. No.: 503923** black





E14 lampholders, for cover caps
Profiled shape, short external thread 28 x 2 IEC 60399
Casing: PET GF, T210, Nominal rating: 2/250
Push-in twin terminals: 0.5-1.5 mm²
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Weight: 8.5/8.4 g, unit: 1000 pcs.

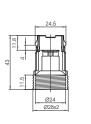
Type: 64370

Ref. No.: 546456 white **Ref. No.: 546454** black

E14 lampholders

Profiled shape, short external thread 28x2 IEC 60399

Casing: PET GF, T210, nominal rating: 2/250


Push-in twin terminals: $0.5-1.5\ mm^2$

For clipping-in

Weight: 6.6/6.8 g, unit: 1000 pcs.

Type: 64360

Ref. No.: 506247 white Ref. No.: 506249 black

E14 lampholders

Profiled shape, nominal rating: 2/250 Push-in twin terminals: 0.5-1.5 mm² Lateral push-fit foot for cut-out 10x20 mm for wall thickness 0.6-1.3 mm

Tilt of lamp axis: 6°

For cover cap 503579 (see p. 421) Weight: 9.1/9.2 g, unit: 1000 pcs.

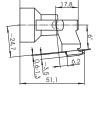
Type: 64307

Ref. No.: 108983 PBT GF, white, T180 Ref. No.: 509263 PET GF, natural, T210

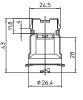
E14 lampholder Profiled shape

Casing: PET GF, white, T210 Nominal rating: 2/250

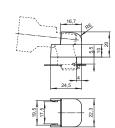
Push-in twin terminals: $0.5-1.5\ mm^2$ For insertion, clipping-in or bayonet fixing


for plastic cut-out: Ø 27.5 mm with wall thickness: $2.5\ \mathrm{mm}$ Weight: 7.1 g, unit: 1000 pcs.

Type: 64308


new Ref. No.: 533820

Cover Caps


For E14 thermoplastic lampholders, one-piece

Brass-finished versions are available on request.

Cover cap for lampholders type 64307 For luminaires of protection class II Material: PP, white

Weight: 2.4 g, unit: 1000 pcs.

Type: 97322 Ref. No.: 503579

Lampholders for General-service Incandescent and Retrofit Lamps

Cover caps Material: PA GF Female nipple: M10x1

Weight: 7.6/8.8 g, unit: 1000 pcs.

Type: 85075

Ref. No.: 109110 white Ref. No.: 109112 black

Cover caps Material: PA GF Moulded thread: M10x1 Rotation stop: external Weight: 2.7 g, unit: 1000 pcs.

Type: 97636 Ref. No.: 109676 Ref. No.: 109677

Cover caps Material: PA GF Moulded thread: M10x1 Rotation stop: external With locking screw Weight: 3 g, unit: 1000 pcs. Type: 85076

Ref. No.: 400818 white Ref. No.: 400817 black

Cover caps Height: 19 mm Material: PA GF Moulded thread: M10x1 Rotation stop: external

Weight: 3.2/3.1 g, unit: 1000 pcs.

Type: 97705

Ref. No.: 520733 Ref. No.: 520734 black

Cover caps Height: 19 mm Material: PA GF Moulded thread: M10x1 Rotation stop: external With locking screw Weight: 3.6/3.5 g, unit: 1000 pcs.

Type: 85074

Ref. No.: 520735 white Ref. No.: 520736 black

Lampholders for General-service Incandescent and Retrofit Lamps

Cover caps Material: PA GF Round hole: Ø 10.5 mm Rotation stop: internal and external Weight: 4.3 g, unit: 1000 pcs.

Type: 97666 Ref. No.: 109119 white

Ref. No.: 109120 black

Cover caps Material: PA GF

Profiled hole: Ø 10.5 x 8.6 mm Fixing holes for screws M3 Weight: 4.4/4.3 g, unit: 1000 pcs.

Type: 97635

Ref. No.: 109122 white Ref. No.: 109123

Cover cap Material: PA GF Profiled hole: Ø 10.4 mm Rotation stop: internal and external Weight: 4 g, unit: 1000 pcs.

Type: 97697 Ref. No.: 109126 black

Cover caps Height: 19 mm Material: PA GF Profiled hole: Ø 10.4 mm Rotation stop: internal and external Weight: 2.7 g, unit: 1000 pcs. Type: 97708

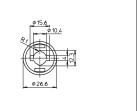
Ref. No.: 520759 **Ref. No.: 520760** black

Cover caps With peg With integrated cord grip For leads H03VVH2-F 2X0.75 Material: PA GF Weight: 4.2/4.3 g, unit: 1000 pcs.

Type: 97000

Ref. No.: 503457

white **Ref. No.: 503458** black



Cover cap

With male nipple: M10x1

With rotation stop

With integrated cord grip For leads H03VVH2-F 2X0.75

Material: PA GF, white

Weight: 4.1 g, unit: 1000 pcs.

Type: 97037 **Ref. No.: 508067**

Cover cap

External thread 28x2 IEC 60399

With integrated cord grip For leads H03VVH2-F 2X0.75

Material: PA GF, natural

Weight: 5.5 g, unit: 1000 pcs.

Type: 97427

Ref. No.: 509340

Cover cap

Lateral push-fit foot for cut-out 10x20 mm

For luminaires of protection class II

Material: PA GF, white

Weight: 4.3 g, unit: 1000 pcs.

Type: 97745

new Ref. No.: 546006

Cover cap

With central positioning stud

Material: PA GF

Fixing holes for countersunk screws Ø 3 mm

Weight: 3 g, unit: 1000 pcs.

Type: 91522

Ref. No.: 535357

Table Lamp Set

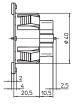
For E14 lampholders, one-piece

For E14 lampholders type 64001 (s. p. 420) For glass with hole: \varnothing 40-45 mm Material: PA

Fixing insert for cover cap 534089 For glass with hole: Ø 40-45 mm, wall thickness: 3-10 mm Weight: 6.9 g, unit: 500 pcs. Type: 97658

Ref. No.: 534087 natural

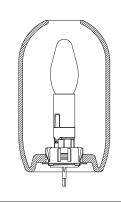
Screw ring for fixing insert External thread 38 x 2.5 Weight: 3.4 g, unit: 500 pcs. Type: 97701


Ref. No.: 534088 natural

Cover cap for E14 lampholders Suitable for fixing insert 534087 With cord grip for lead H03VVH2-F Weight: 3.4 g, unit: 1000 pcs.

Type: 97692

Ref. No.: 534089 white



E14 Thermoplastic Lampholders, Three-piece

For incandescent lamps with base E14

Nominal rating: 2/250 Temperature marking: T190

Brass-finished versions are available on request.

Inserts

Material: PET GF, black

Casing lock

Weight: 3.9/3.2 g, unit: 1000 pcs. Type: 81095 screw terminals: 0.5-2.5 mm²

Ref. No.: 103424

Type: 81096 push-in twin terminals: $0.5-1.5 \text{ mm}^2$

Ref. No.: 107716

425

Lampholders for General-service Incandescent and Retrofit Lamps

Plain casings Material: PET GF

Weight: 9/8.5 g, unit: 1000 pcs.

Type: 81093

Ref. No.: 103415 white **Ref. No.: 103414** black

Threaded casings 28 x 2 IEC 60399


Material: PET GF

Weight: 9.8/9.6 g, unit: 1000 pcs.

Type: 81109

Ref. No.: 103431 white **Ref. No.: 103430** black

Threaded casings 28 x 2 IEC 60399

With flange Material: PET GF

Weight: 10.6/10.4 g, unit: 1000 pcs.

Type: 81120

Ref. No.: 103443 white **Ref. No.: 103442** black

Caps

Material: PA GF Female nipple: M10x1 Height: 13.7 mm

Weight: 6.9/7.2 g, unit: 1000 pcs.

Type: 81002

Ref. No.: 109102 white **Ref. No.: 109103** black

Caps

Material: PA GF Female nipple: M10x1 Height: 18.7 mm

Weight: 7/7.3 g, unit: 1000 pcs.

Type: 81024

Ref. No.: 109805 white **Ref. No.: 109145** black

Lampholders for General-service Incandescent and Retrofit Lamps

Caps

Material: PA GF

Moulded thread: M10x1 Rotation stop: external Height: 13.7 mm

Weight: 3.3/3.7 g, unit: 1000 pcs.

Type: 96159

Ref. No.: 109095 white **Ref. No.: 109084** black

1

2

Caps

Material: PA GF Moulded thread: M10x1 Rotation stop: external Height: 18.7 mm

Weight: 3.6/3.9 g, unit: 1000 pcs.

Type: 96211

Ref. No.: 109149 white **Bef. No.: 109150** black

3

4

Caps

Material: PA GF Moulded thread: M10x1 Rotation stop: external With locking screw

Height: 13.7 mm

Weight: 3.7/4 g, unit: 1000 pcs.

Type: 81130

Ref. No.: 109041 white **Ref. No.: 109054** black

5

6

Caps

Material: PA GF Moulded thread: M10x1 Rotation stop: external With locking screw Height: 18.7 mm

Weight: 3.9/4.3 g, unit: 1000 pcs.

Type: 81132

Ref. No.: 109152 white **Ref. No.: 109153** black

7

8

Caps

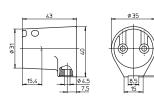
Material: PA GF Round hole: Ø 10.5 mm Rotation stop: internal Height: 13.7 mm

Weight: 3.3 g, unit: 1000 pcs.

Type: 96004

Ref. No.: 508352 white **Ref. No.: 508353** black

9


10

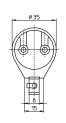
E14 Porcelain Lampholders, One-piece

For incandescent lamps with base E14

E14 lampholder, one-piece Material: porcelain, white, T270 Nominal rating: 2/250 Screw terminals: 0.5-2.5 mm² With lateral fixing flange Fixing oblong hole for screw M4 Weight: 57 g, unit: 250 pcs.

Type: 51020 **Ref. No.: 543419**




E14 lampholders, one-piece
Material: porcelain, white, T270
Nominal rating: 2/250
Screw terminals: 0.5-2.5 mm²
Fixing bracket with tapped holes for screws M3

Weight: 62/63 g, unit: 250 pcs.

Type: 51021/51022 **Ref. No.: 543420**

Ref. No.: 543421 with earth terminal

E14 Metal Lampholders, Three-piece

For incandescent lamps with base E14

Nominal rating: 2/250 Temperature marking: T190/T240 Type: 513 plain casing

Type: 514 threaded casing 28 x 2

Insert

Material: porcelain, white Casing lock Screw terminals: 0.5-2.5 mm² Weight: 10.3 g, unit: 500 pcs.

Type: 81020 **Ref. No.: 107944**

Lampholders for General-service Incandescent and Retrofit Lamps

Plain casings

Material: zinc-coated polished steel Weight: 14.3/14.2/18.3/18.2 g

Unit: 500 pcs.

Type: 81019 insulating threaded ring: duroplastic, T190

Ref. No.: 103359 chrome-finish brass-finish Ref. No.: 103360

Type: 81018 insulating threaded ring: steatite, T240

Ref. No.: 507049 chrome-finish Ref. No.: 507050 brass-finish

Threaded casings 28 x 2 IEC 60399 Material: zinc-coated polished steel Weight: 14.4/14.4/18.9/18.9 g

Unit: 500 pcs.

Type: 81022 insulating threaded ring: duroplastic, T190

Ref. No.: 103365 chrome-finish Ref. No.: 103366 brass-finish

Type: 81017 insulating threaded ring: steatite, T240

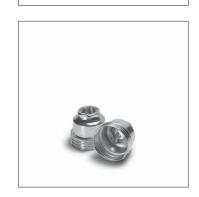
Ref. No.: 507052 chrome-finish Ref. No.: 507053 brass-finish

Caps

Material: zinc-coated polished steel

Female nipple: M10x1 Weight: 7.2/7.1/7.9/7.8 g

Unit: 500 pcs. Type: 80006


Ref. No.: 102946 chrome-finish Ref. No.: 102947 brass-finish Type: 80003 with earth terminal Ref. No.: 102938 chrome-finish Ref. No.: 102939 brass-finish

E14 Thermoplastic Rocker Switch Lampholders

For incandescent lamps with base E14

Nominal rating: 2/250 Temperature marking: T160 Suitable casings see page 426: Type: 81093 plain casing

Type: 81109 threaded casing 28 x 2

Type: 81120 threaded casing 28 x 2, with flange

Inserts with switch Material: PFT GF

Screw terminals: 0.5-2.5 mm² Weight: 7.9 g, unit: 1000 pcs.

Type: 83141

Ref. No.: 537087 switch, white Ref. No.: 537088 switch, black

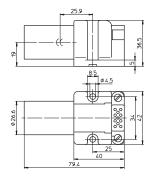
Lampholders for General-service Incandescent and Retrofit Lamps

Caps

Material: PET GF Moulded thread: M10x1 with locking screw Weight: 9.9 g, unit: 1000 pcs.

Type: 81100

Ref. No.: 537079 white **Ref. No.: 537080** black



E14 Lampholder for Emergency Lighting

For incandescent lamps with base E14

E14 lampholder, nominal rating: 2/250
For emergency lighting acc. to
DIN VDE 0711 part 2-22/EN 60598-2-22
Casing: FS 181 SG, white
Screw terminals: max. 10 mm²
With cord grip for leads max. Ø 7.5 mm,
after turn of cord grip for leads max. Ø 12 mm
"Green dot" sticker enclosed
Weight: 49 g, unit: 200 pcs.

Type: 52001 **Ref. No.: 101910**

E27 Thermoplastic Lampholders, One-piece

For incandescent lamps with base E27

E27 lampholders with temperature marking

T180 on request.

Brass-finished versions are available on request.

E27 lampholders, for cover caps

Plain casing

Casing: PET GF, T210 Nominal rating: 4/250

Push-in twin terminals: 0.5-2.5 mm² Fixing holes for screws M4 Weight: 17.4 g, unit: 500 pcs.

Type: 64401

Ref. No.: 108936 Ref. No.: 500810

E27 lampholders, for cover caps External thread 40x2.5 IEC 60399

Casing: PET GF, T210 Nominal rating: 4/250

Push-in twin terminals: $0.5-2.5 \ \text{mm}^2$

Fixing holes for screws M4

Weight: 19.1/18.8 g, unit: 500 pcs.

Type: 64501

Ref. No.: 108965 white Ref. No.: 109429 black

E27 lampholders, for cover caps

External thread 40x2.5 IEC 60399, with flange

Casing: PET GF, T210 Nominal rating: 4/250

Push-in twin terminals: $0.5-2.5 \text{ mm}^2$

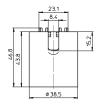
Fixing holes for screws M4 Weight: 21.4 g, unit: 500 pcs.

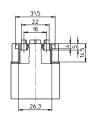
Type: 64601

Ref. No.: 501358 Ref. No.: 501356 black

E27 lampholders, for cover caps Profiled shape, external thread 40x2.5 IEC 60399

Casing: PET GF, T210, nominal rating: 4/250


Push-in twin terminals: $0.5-2.5 \ \text{mm}^2$ Fixing holes for screws M3


Rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST3.9-C/F

Weight: 14.8/14.9 g, unit: 500 pcs.

Type: 64719

Ref. No.: 504303 white Ref. No.: 504302 black

VS VOSSLOH SCHWABE

Lampholders for General-service Incandescent and Retrofit Lamps

E27 lampholders, for cover caps

Profiled shape, external thread 40x2.5 IEC 60399

Casing: PET GF, T210, nominal rating: 4/250

Push-in twin terminals: 0.5-2.5 mm² Fixing holes for screws M3

Rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST3.9-C/F

Weight: 11.4/11.3 g, unit: 500 pcs.

Type: 64775

Ref. No.: 506255 Ref. No.: 506257 black

Profiled shape, plain, nominal rating: 4/250

Screw terminals: 0.5-2.5 mm² Fixing holes for screws M3 Rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST3.9-C/F Weight: 11.7/11.5/13 g, unit: 500 pcs.

Type: 64785

Ref. No.: 506263 PET GF, white, T210 Ref. No.: 506265 PET GF. black, T210 Ref. No.: 506267 LCP, natural, T270

E27 lampholders

For cover caps type 97545/80023 (see p. 434) Profiled shape, plain, nominal rating: 4/250 Push-in twin terminals: 0.5-2.5 mm² Fixing holes for screws M3 Rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST3.9-C/F Weight: 11.5/14.9 g, unit: 500 pcs.

Type: 64770

Ref. No.: 108953 PET GF, natural, T210 Ref. No.: 109838 LCP, natural, T270

E27 lampholder

For luminaires of protection class II

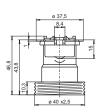
Profiled shape, plain Casing: PET GF, white, T210 Nominal rating: 4/250 Screw terminals: 0.5 - 2.5 mm² Lateral fixing hole for screw M4

Tilt of lamp axis: 3°

Weight: 15.2 g, unit: 500 pcs.

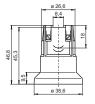
Type: 64781

Ref. No.: 503041

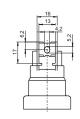

E27 lampholders Profiled shape, plain Casing: PET GF, T210 Nominal rating: 4/250 Push-in twin terminals: $0.5-2.5 \text{ mm}^2$ Lateral fixing hole for screw M4

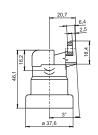
Tilt of lamp axis: 3°

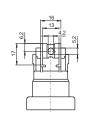
Weight: 13.3 g, unit: 500 pcs.

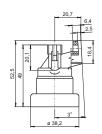

Type: 64740

Ref. No.: 108747 Ref. No.: 529599 natural

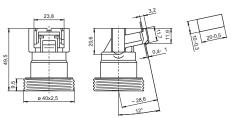








E27 lampholder


Profiled shape, external thread 40×2.5 IEC 60399 Casing: PET GF, natural, T210, nominal rating: 4/250

Push-in twin terminals: 0.5 – 2.5 mm² Lateral push-fit foot for cut-out 10 x 20 mm Fixing clips for wall thickness 0.4 – 1 mm

Tilt of lamp axis: 12 $^{\circ}$

For cover cap 504615 (see below) Weight: 14.7 g, unit: 500 pcs.

Type: 64741 **Ref. No.: 108758**

i

2

3

Cover Caps

For E27 thermoplastic lampholders, one-piece and for B22d thermoplastic lampholders

Cover cap for lampholder 108758 (see above) For luminaires of protection class II Material: PA GF, white Weight: 2.7 g, unit: 500 pcs.

Type: 97321

Ref. No.: 504615

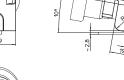
Protection caps for E27 lampholders with bracket with earth connection 400772 (s. p. 452) For lampholder type 64770/64785 (s. p. 432) For luminaires of protection class II Material: PA GF, natural

Weight: 4.8 g, unit: 500 pcs.

Type: 97497

Ref. No.: 526886

Type: 97498 fixing hole: \varnothing 10 mm


Ref. No.: 529464

Type: 85070

Ref. No.: 109077 white **Ref. No.: 109092** black

Cover caps Material: PA GF Moulded thread: M10x1

Cross groove for rotation stop: external Weight: 4.4/4.6 g, unit: 500 pcs.

Type: 97665

Ref. No.: 109679 white Ref. No.: 109680 black

Cover caps Material: PA GF Moulded thread: M10x1 Cross groove for rotation stop: external

With lateral hole Weight: 4/4.6 g, unit: 500 pcs.

Type: 97664

Ref. No.: 109795 Ref. No.: 109794

Cover caps Material: PA GF Moulded thread: M10x1

Cross groove for rotation stop: external

With locking screw

Weight: 4.7/4.9 g, unit: 500 pcs.

Type: 85077

Ref. No.: 400819 white **Ref. No.: 400820** black

Cover caps

For E27 lampholders type 64770 Material: PA GF, black Moulded thread: M10x1 Cross groove for rotation stop: external Weight: 3.1/3.4 g, unit: 500 pcs.

Type: 97545

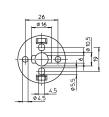
Ref. No.: 532390

Type: 80023 with locking screw

Ref. No.: 532391

Cover caps Material: PA GF Profiled hole: Ø 10.4 mm Rotation stop: internal and external Weight: 5.7/5.9 g, unit: 500 pcs.

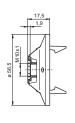
Type: 97698 Ref. No.: 109560 white Ref. No.: 109184 black

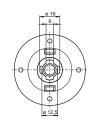


Cover caps Material: PA GF Round hole: Ø 10.5 mm Rotation stop: external Fixing holes for screws M4 Weight: 5.4/5.5 g, unit: 500 pcs.

Type: 97511

Ref. No.: 109045 Ref. No.: 109062 black




Cover caps Conical shape Material: PA GF Moulded thread: M10x1

Cross groove for rotation stop: external Weight: 8.9/8.8 g, unit: 500 pcs.

Type: 97260

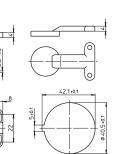
Ref. No.: 109555 white Ref. No.: 109556 black

Cover caps Conical shape Material: PA GF With integrated cord grip For leads H03VV-F 2X0.5 or H03VV-F 2X0.75

Weight: 10.6/10.5 g, unit: 500 pcs.

Type: 83282

Ref. No.: 109159 white Ref. No.: 109462 black


Cover cap for lampholder 102624 (see p. 440) With cord grip for self-tapping screws acc. to ISO 1481/7049-ST2.9-C/F Cord grip for luminaires of protection class II

Material: PA GF, black

Weight: 12.5/2.2 g, unit: 500 pcs.

Type: 96206 cover cap Ref. No.: 107178 Type: 96242 cord grip

Ref. No.: 107177

Cover caps Material: PA GF With integrated cord grip For leads H03VV-F 2X0.5 or H03VV-F 2X0.75

Weight: 6.6/5.8 g, unit: 500 pcs.

Type: 83283

Ref. No.: 504769 white **Ref. No.: 507075** black

Table Lamp Set

For E27 lampholders, one-piece

For E27 lampholders type 64401 (s. p. 431) For glass with hole: Ø 40-45 mm Material: PA

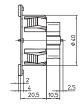
Fixing insert for cover cap 534090 For glass with hole: Ø 40-45 mm, wall thickness: 3-10 mm Weight: 6.9 g, unit: 500 pcs.

Type: 97658

Ref. No.: 534087 natural

Screw ring for fixing insert External thread 38×2.5 Weight: 3.4 g, unit: 500 pcs.

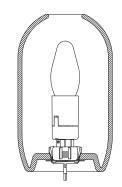
Type: 97701


Ref. No.: 534088 natural

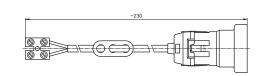
Cover cap for E27 lampholders Suitable for fixing insert 534087 With cord grip for lead H03VVH2-F Weight: 5.4 g, unit: 500 pcs.

Type: 97700

Ref. No.: 534090 white



E27 Renovation Kit Lampholders


For incandescent lamps with base E27

E27 renovation kit lampholders with suspension Profiled shaped lampholder 64770 - T180 Cover cap with cord grip 532394 Nominal rating: 4/250 Lead: Cu, stranded conductors 0.75 mm², double PVC-insulation, length: 150 mm

Weight: 25.8/26.2 g, unit: 150 pcs.

Type: 64770

Ref. No.: 532399 black, with screw terminal black, with push-in terminal

E27 Thermoplastic Lampholders, Three-piece

For incandescent lamps with base E27

Nominal rating: 4/250 Temperature marking: T190

Brass-finished versions are available on request.

Inserts

Material: PET GF, black

Casing lock

Weight: 5.7/6.1 g, unit: 500 pcs.

Type: 83285 push-in terminals: 0.5-1.5 mm²

Ref. No.: 103643

Type: 83011 screw terminals: 0.5-2.5 mm²

Ref. No.: 103520

Plain casings Material: PET GF

Weight: 14.5/14.3 g, unit: 500 pcs.

Type: 83000

Ref. No.: 103468 white Ref. No.: 103467

Threaded casings 40 x 2.5 IEC 60399

Material: PET GF

Weight: 17/16.1 g, unit: 500 pcs.

Type: 83002

Ref. No.: 103484 **Ref. No.: 103483** black

Threaded casings 40×2.5 IEC 60399 With flange Material: PET GF

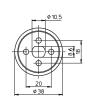
Weight: 16.7/17 g, unit: 500 pcs.

Type: 83173

Ref. No.: 103570 white **Ref. No.: 103569** black

Caps

Material: PA GF


Profiled hole: Ø 10.5 x 8.6 mm Fixing holes for screws M4 Height: 13.8 mm

Weight: 5.6/6 g, unit: 500 pcs.

Type: 96148

Ref. No.: 109188 white **Ref. No.: 109187** black

Caps

Material: PA GF Female nipple: M10x1 Height: 17 mm

Weight: 9.8/10.1 g, unit: 500 pcs.

Type: 83007

Ref. No.: 109052 white **Ref. No.: 109039** black

Caps with earth terminal Material: PA GF Female nipple: M10x1 Height: 17 mm

Weight: 10.7/11 g, unit: 500 pcs.

Type: 83035

Ref. No.: 109098 white **Ref. No.: 109099** black

Caps

Material: PA GF Moulded thread: M10x1 Rotation stop: external Height: 17 mm

Weight: 6.7/7 g, unit: 500 pcs.

Type: 96147

Ref. No.: 109195 white **Ref. No.: 109196** black

Caps

Material: PA GF
Moulded thread: M10x1
Rotation stop: external
With locking screw
Height: 17 mm

Weight: 7.1/7.3 g, unit: 500 pcs.

Type: 83293

Ref. No.: 109087 white **Ref. No.: 109074** black

Caps

Material: PA GF Round hole: Ø 10.5 mm

Rotation stop: internal and external

Height: 17 mm

Weight: 5.9/6.6 g, unit: 500 pcs.

Type: 96154

Ref. No.: 109190 white Ref. No.: 109191 black

Caps

Material: PA GF Profiled hole: Ø 10.3 mm

Rotation stop: internal and external

Height: 17 mm

Weight: 5.9/6.6 g, unit: 500 pcs.

Type: 96124

Ref. No.: 109559 white Ref. No.: 109512 black

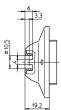
Caps

Conical shape Material: PA GF Female nipple: M10x1 Height: 19.2 mm

Weight: 14.2/15.2 g, unit: 500 pcs.

Type: 83274

Ref. No.: 109081 white Ref. No.: 109093 black


Caps


Conical shape Material: PA GF Round hole: Ø 10.5 mm Rotation stop: internal Height: 19.2 mm

Weight: 10.4/10.6 g, unit: 500 pcs.

Type: 96172

Ref. No.: 109060 Ref. No.: 109044 black

E27 Porcelain Lampholders

For incandescent lamps with base E27

E27 lampholders, one-piece Material: porcelain, white, T270 Nominal rating: 4/250/5 kV Screw terminals: 0.5-2.5 mm² Spring loaded central contact Fixing oblong holes for screws M4 Weight: 60.6 g, unit: 250 pcs.

Type: 62050

Ref. No.: 102599

Type: 62010 with lamp safety catch (with spring)

Ref. No.: 102577

Type: 62009 with lamp safety catch (with crushing)

new Ref. No.: 544605

E27 lampholder, one-piece Material: porcelain, white, T270 Nominal rating: 4/250/5 kV Screw terminals: 0.5-2.5 mm² Spring loaded central contact Fixing pillars for screws M3 Weight: 66.3 g, unit: 250 pcs.

Type: 62015

Ref. No.: 102582

E27 lampholder, one-piece Material: porcelain, white, T270 Nominal rating: 4/250/5 kV Screw terminals: 0.5-2.5 mm² Spring loaded central contact Fixing oblong holes for screws M4 Weight: 60.5 g, unit: 200 pcs.

Type: 62070

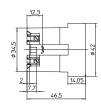
new Ref. No.: 543304

E27 lampholder, one-piece Material: porcelain, white, T270 Nominal rating: 4/250/5 kV Screw terminals: 0.5-2.5 mm² With lateral fixing flange, tilt angle: 15°

Spring loaded central contact Fixing hole for screw M4 Weight: 67.6 g, unit: 200 pcs.

Type: 62415

Ref. No.: 543414

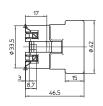


E27 lampholder, one-piece, for cover caps (see p. 435)

Material: porcelain, white, T270 Nominal rating: 4/250/5 kV Screw terminals: $0.5-2.5 \text{ mm}^2$ Spring loaded central contact Fixing oblong holes for screws M4 Weight: 66.5 g, unit: 250 pcs.

Type: 62310 Ref. No.: 102624

E27 lampholder


For cover caps type 80010, 97735 and 97742

(see below)

Material: porcelain, white, T270 Nominal rating: 4/250/5 kV Screw terminals: 0.5-2.5 mm² Spring loaded central contact Fixing holes for screw M4 Weight: 66.5 g, unit: 250 pcs.

Type: 62370

Ref. No.: 543303

Cover caps for lampholder 543303

Material: PA GF

Weight: $12.5/12.5/10/10 \, g$, unit: $500 \, pcs$. Type: 97735 moulded thread: M10x1,

without locking screw

Ref. No.: 536445 black **Ref. No.: 536446** white

Type: 97742 moulded thread: M10x1, with lateral hole, without locking screw

Ref. No.: 535247 black Type: 80010 female nipple: G3/8A **Ref. No.: 535694** white

E27 lampholder, three-piece

Material: porcelain, white, T240, nominal rating: 4/250, screw terminals: $0.5-2.5 \text{ mm}^2$ Weight: 116/125/116/125/121.7/130.7 g

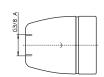
Unit: 25 pcs.

Type: 62061 female nipple: M10x1

Ref. No.: 535684

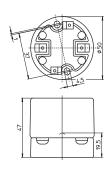
Ref. No.: 535685 with earth screw Type: 62062 female nipple: M13x1

Ref. No.: 536451


Ref. No.: 536452 with earth screw Type: 62063 female nipple: G3/8A

Ref. No.: 534832

Ref. No.: 534833 with earth screw



E27 lampholder, two-piece
With screws for assembling
Material: porcelain, white, T210
Nominal rating: 4/500
Screw terminals: 0.5-2.5 mm²
Fixing holes for screw M4
Weight: 122 g, unit: 10 pcs.

Type: 62700 **Ref. No.: 534835**

E27 Metal Lampholders, Three-piece

For incandescent lamps with base E27

Nominal rating: 4/250 Type: 670 plain casing

Type: 671 threaded casing 40×2.5 Temperature marking: T240

Inserts

Material: porcelain, white Screw terminals: 0.5 – 2.5 mm²

Spring loaded central contact, casing lock Weight: 22.8/23.3 g, unit: 500 pcs.

Type: 83221 **Ref. No.: 103595**

Type: 83223 with earth terminal

Ref. No.: 103597

Plain casings

Material: zinc-coated polished steel Weight: 23.5/22.9/27.1/27.1g

Unit: 500 pcs.

Type: 83218 insulating threaded ring: PPS **Ref. No.: 103582** chrome-finish **Ref. No.: 103583** brass-finish

Type: 83226 insulating threaded ring: steatite

Ref. No.: 504640 chrome-finish

Ref. No.: 504641 brass-finish

Threaded casings 40 x 2.5 IEC 60399 Material: zinc-coated polished steel Weight: 24/23.1/27.3/27.6 g

Unit: 500 pcs.

Type: 83219 insulating threaded ring: PPS **Ref. No.: 103590** chrome-finish **Ref. No.: 103591** brass-finish

Type: 83227 insulating threaded ring: steatite

Ref. No.: 504643 chrome-finish

Ref. No.: 504644 brass-finish

Caps

Material: zinc-coated polished steel

Female nipple: M10x1

Weight: 10.6/10.8/11.4/11.3 g

Unit: 500 pcs. Type: 80342

Ref. No.: 103020 chrome-finish Ref. No.: 103021 brass-finish Type: 80343 with earth terminal chrome-finish Ref. No.: 103026 Ref. No.: 103027 brass-finish

Material: zinc-coated polished steel

Female nipple: M10x1 With lateral hole: Ø 7 mm

Weight: 10/10/11/11 g, unit: 500 pcs.

Type: 80345

Ref. No.: 103031 chrome-finish Ref. No.: 103032 brass-finish Type: 80353 with earth terminal Ref. No.: 103042 chrome-finish Ref. No.: 103043 brass-finish

E27 Thermoplastic Pull-switch **Lampholders**

For incandescent lamps with base E27

Nominal rating: 2/250

Type: 65300 plain casing, with pull cord Type: 65308 plain casing, with draw chain Type: 65400 threaded casing 40 x 2.5, with pull cord

Type: 65408 threaded casing 40×2.5,

with draw chain

Insert with pull cord Material: PET GF, black Screw terminals: 0.5-2.5 mm² Length of cord: 250 mm Weight: 12.3 g, unit: 500 pcs. Type: 83146

Ref. No.: 507802

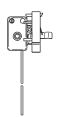
End button for pull cord, material: PS, white

Weight: 0.8 g, unit: 500 pcs.

Type: 96010

Ref. No.: 105144

Insert for brass chain Material: PET GF, black Screw terminals: 0.5-2.5 mm² Weight: 11.7 g, unit: 500 pcs.


Type: 83147

Ref. No.: 507803

Draw chain with end button Material: brass, length of chain: 85 mm

Weight: 3.9 g, unit: 500 pcs.

Type: 94304 Ref. No.: 104928

443

VSCHWABE

Plain casings
Material: PET GF

Weight: 11.7 g, unit: 500 pcs.

Type: 96033

Ref. No.: 105179 white **Ref. No.: 109280** black

Threaded casings 40x2.5 IEC 60399

Material: PET GF

Weight: 9.3 g, unit: 500 pcs.

Type: 96034

Ref. No.: 105185 white **Ref. No.: 109281** black

Caps

Material: PET GF Female nipple: M10x1

Weight: 19.8/19.4 g, unit: 500 pcs.

Type: 83258

Ref. No.: 109282 white **Ref. No.: 109283** black

Flange rings
For pull-switch lampholders type 654
Material: PA GF
Ø 60 mm, height: 6.5 mm
Weight: 3/3.1 g, unit: 500 pcs.

Type: 08400

Ref. No.: 501351 white **Ref. No.: 501352** black

E27 Metal Pull-switch Lampholders

For incandescent lamps with base E27

Nominal rating: 2/250

Type: 55204 plain casing, with pull cord Type: 55203 plain casing, with draw chain

Type: 55304 threaded casing 40x2.5, with pull cord Type: 55303 threaded casing 40x2.5, with draw chain

Insert with pull cord
Material: porcelain, white
Screw terminals: 0.5-2.5 mm²
Length of cord: 250 mm, casing lock
Weight: 28 g, unit: 500 pcs.

Type: 83006

Ref. No.: 103504

End button for pull cord, material: PS, white

Weight: 0.8 g, unit: 500 pcs.

Type: 96010

Ref. No.: 105144

Insert for brass chain Material: porcelain, white Screw terminals: 0.5–2.5 mm² Weight: 29.4 g, unit: 500 pcs.

Type: 83008

Ref. No.: 103515

Draw chain with end button

Material: brass, length of chain: $85\ \text{mm}$

Weight: 3.9 g, unit: 500 pcs.

Type: 94304

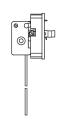
Ref. No.: 104928

Casings

Material: brass, passivated Insulating threaded ring: PPS Weight: 21.5/22.7 g, unit: 500 pcs.

Type: 83218 plain casing

Ref. No.: 103587


Type: 83219 threaded casing 40x2.5

Ref. No.: 103594

Cap with earth terminal Material: brass, passivated Female nipple: M10x1 With insulating insert Weight: 20 g, unit: 500 pcs.

Type: 80014

Ref. No.: 102956

i

2

3

4

5

6

7

8

9

10

E27 Thermoplastic Rocker SwitchLampholders

For incandescent lamps with base E27

Nominal rating: 2/250 Temperature marking: T180 Suitable casings see page 437: Type: 83000 plain casing

Type: 83002 threaded casing 40×2.5

Type: 83173 threaded casing 40x2.5, with flange

Inserts with switch
Material: PET GF, white
Screw terminals: 0.5-2.5 mm²
Weight: 11/11.1 g, unit: 500 pcs.

Type: 83015

Ref. No.: 107331 switch, white **Ref. No.: 107096** switch, black

Caps

Material: PA GF Female nipple: M10x1

Weight: 14.2/14.7 g, unit: 500 pcs.

Type: 83260

Ref. No.: 109198 white **Black** black

Caps

Material: PA GF Profiled hole: Ø 10.4 mm

Rotation stop: internal and external Weight: 8.2/10.4 g, unit: 500 pcs.

Type: 96229

Ref. No.: 109200 white Ref. No.: 109201 black

E27 Thermoplastic Rotary Switch **Lampholders**

For incandescent lamps with base E27

Nominal rating: 2/250 Temperature marking: T180 Suitable casings see page 437: Type: 83000 plain casing

Type: 83002 threaded casing 40x2.5

Type: 83173 threaded casing 40x2.5, with flange

Insert with rotary switch Material: PET GF, white Screw terminals: 0.5-2.5 mm² Weight: 19.2 g, unit: 500 pcs.

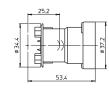
Type: 83001 Ref. No.: 506943

Caps for E27 rotary switch lampholder Material: PA GF Female nipple: M10x1

Weight: 14.7/15.1 g, unit: 500 pcs.

Type: 83005

Ref. No.: 507177 white Ref. No.: 507178 black


E27 Festoon Lampholders

For lighting chains of protection class II

Degree of protection: IP44 Type: 64710/11 The lampholders may only be operated with the lamp pointing downwards and with a gasket.

E27 festoon lampholder For lamps max. 40 W Material: PBT GF, black Nominal rating: 4/250 Blade contacts for festoon lead HO5RN H2-F 2X1.5 To be used only with protection cap Weight: 13.8 g, unit: 500 pcs.

Type: 83297 Ref. No.: 109158

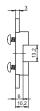
Protection cap

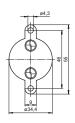
For E27 festoon lampholders Material: PA GF, black

With ready-fitted stainless screws Weight: 6.3 g, unit: 500 pcs.

Type: 83300 with non-removable screws

Ref. No.: 109243




Protection cap

For E27 festoon lampholders
Material: PA GF, black
With ready-fitted stainless screws
Fixing holes for screws M4
Weight: 7.2 g, unit: 500 pcs.

Type: 83301 with non-removable screws

Ref. No.: 502515

Gasket

For E27 festoon lampholders

Material: silicone

Weight: 4 g, unit: 500 pcs.

Type: 98006 **Ref. No.: 106817**

B22d Lampholders, Accessories

For mains voltage halogen incandescent lamps

B22d lampholders
For cover caps (see p. 433-435)
Nominal rating: 2/250
Push-in twin terminals: 0.5-1.5 mm²
Fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST3.9-C/F
Weight: 12.7/12.3 g, unit: 500 pcs.

Type: 64800

 Ref. No.: 108748
 PET GF, T180, white

 new
 Ref. No.: 544621
 PET GF, T210, white

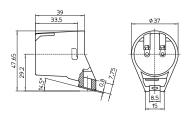
Plain casing For B22d lampholders type 64800 For cover caps (see p. 433-435) Threaded casing on request Material: PA GF, white Weight: 14.5 g, unit: 500 pcs. Type: 96021

Ref. No.: 504749

B22d lampholder With protection flange For cover caps type 80010, 97735 and 97742 (see below) Casing: porcelain, white, T240 Nominal rating: 2/250 Screw terminals: 0.5-2.5 mm² Fixing holes for screws M3 Weight: 84.7 g, unit: 150 pcs.

Type: 64900

Ref. No.: 535673


B22d lampholder Casing: porcelain, white, T240 Nominal rating: 2/250 Screw terminals: $0.5-2.5 \text{ mm}^2$ Lateral fixing bracket

Tilt angle: 15°

Fixing hole for screws M4 Weight: 70 g, unit: 150 pcs.

Type: 64940

Ref. No.: 535674

Cover caps for lampholder 535673

Material: PA GF

Weight: 12.5/12.5/10/10 g, unit: 500 pcs. Type: 97735 moulded thread: M10x1,

without locking screw

Ref. No.: 536445 black **Ref. No.: 536446** white Type: 97742 moulded thread: M10x1, with lateral hole, without locking screw

Ref. No.: 535247 black Type: 80010 female nipple: G3/8A **Ref. No.: 535694** white

Accessories

For E14, E27 lampholders, one-piece and three-piece and B22d lampholders

The luminaire manufacturer is responsible for the right choice of accessories. Brassfinished versions are available on request.

Plastic screw rings

For E14 lampholders

with external thread 28×2 IEC 60399 Weight: 3.6/3.2/1.8/1.6 g, unit: 1000 pcs. Type: $03210 \varnothing 43$ mm, height: 15 mm

 Ref. No.: 100125
 PET GF, white

 Ref. No.: 109162
 PA GF, black

 Type: 05202 Ø 34 mm, height: 7.5 mm

 Ref. No.: 107154
 PET GF, white

 Ref. No.: 109166
 PA GF, black

Metal screw ring For E14 lampholders

with external thread 28 x 2 IEC 60399

Material: zinc-coated polished steel, chrome-finish

 \varnothing 40 mm, height: 12 mm Weight: 4.3 g, unit: 500 pcs.

Type: 06700 **Ref. No.: 100194**

Metal screw ring with flange
For E14 lampholders
with external thread 28 x 2 IEC 60399
Material: zinc-coated polished steel, chrome-finish

Imprinted: max. 40 W With leaf springs

For glass with hole: \varnothing 34-42 mm Weight: 11 g, unit: 500 pcs.

Type: 17400 **Ref. No.: 100417**

Metal screw ring with flange
For E14 lampholders
with external thread 28×2 IEC 60399
Material: zinc-coated polished steel, chrome-finish
With basket springs
For glass with hole: ∅ 38-41 mm

Weight: 12.3 g, unit: 500 pcs. Type: 17803

Ref. No.: 108847

Front gasket

For E14 lampholders type 64305, 64306, 64308, 64313, 64316, 64360, 64380 and 64381 As lamp safety catch and for protection against moisture acc. to IEC 60079-15

Material: elastomer Weight: 1.1 g, unit: 2000 pcs.

Type: 98013 **Ref. No.: 534689**

1

2

Plastic screw rings

For E27 and B22d lampholders Weight: 4.9/4.4/3.3/3 g, unit: 500 pcs.

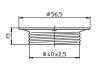
Type: 08610 Ø 55 mm, height: 15 mm **Ref. No.: 100270** PET GF, white **Ref. No.: 109285** PA GF, black

Type: 08701 Ø 47.8 mm, height: 9 mm

Ref. No.: 100273 PET GF, white PA GF, black

3

4


Metal screw ring

For E27 and B22d lampholders

Material: zinc-coated polished steel, chrome-finish

Ø 56.5 mm, height: 13 mm Weight: 7 g, unit: 500 pcs.

Type: 07400 **Ref. No.: 100217**

6

Brackets for E14 lampholders

For fastening with nipples 109249, 109247

Material: zinc-coated polished steel

Fixing holes for screws M3

Weight: 5.5/5.3/5.3 g, unit: 1000 pcs.

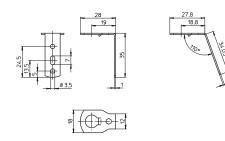
Type: 94068 internal bracket 90°

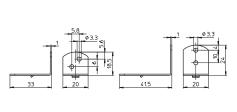
Ref. No.: 106767

Type: 94066 external bracket 90°

Ref. No.: 400671

Type: 94069 internal bracket 110°


Ref. No.: 106768


Bracket 90° for E14 lampholders
For fastening with nipples 109249, 109247
Material: zinc-coated polished steel
Fixing holes for screws M3
Weight: 6.2/8.5/8.5 g, unit: 1000 pcs.
Type: 94074 external bracket 18.5×33 mm


Ref. No.: 106802 holes diagonal

Type: 94067 external bracket 24x41.5 mm **Ref. No.: 106766** holes vertical

Type: 94079 internal bracket 24x41.5 mm **Ref. No.: 506211** holes vertical

7

8

9

U-shaped clips

For E27 lampholders, one-piece

Material: zinc-coated polished steel, chrome-finish

For wall thickness: 0.5-2 mm Weight: 3.7/4.3 g, unit: 2500 pcs.

Type: 94435 **Ref. No.: 109621**

Type: 80433 with earth terminal

Ref. No.: 103087

For E14 and E27 lampholders, one-piece Material: zinc-coated polished steel, chrome-finish

For wall thickness: 0.8–1.5 mm Weight: 3.3/4 g, unit: 2500 pcs.

Type: 94436 **Ref. No.: 109622**

Type: 80474 with earth terminal

(without drawing) **Ref. No.: 400699**

Brackets: 90°, 12.5 x 47.1 mm

For E14 and E27 lampholders, one-piece Material: zinc-coated polished steel, chrome-finish

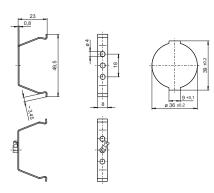
Fixing hole for screw M5 Weight: 5.6/4.8 g, unit: 500 pcs. Type: 80475 with earth terminal

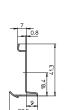
Ref. No.: 400779 Type: 94444 **Ref. No.: 401536**

Brackets: 100°, 22.9×36.6 mm
For E14 and E27 lampholders, one-piece
Material: zinc-coated polished steel, chrome-finish
Fixing holes for self-tapping screws

acc. to ISO 1481/7049-ST2.9-C/F Tapped hole M4

Weight: 5.5/4.6 g, unit: 1000 pcs. Type: 80476 with earth terminal

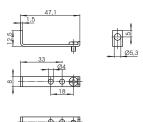

Ref. No.: 400772 Type: 94438 **Ref. No.: 401549**

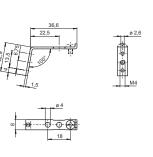

Fixing bracket

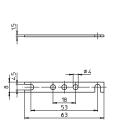
For E14 and E27 lampholders, one-piece Material: zinc-coated polished steel, chrome-finish

With slots for screws M4 Weight: 4.6 g, unit: 1000 pcs.

Type: 94450 **Ref. No.: 106829**







-М-----Ф--Ф

Fixing bracket: 90°, 21×40 mm
For E14 and E27 lampholders, one-piece
Material: zinc-coated polished steel, chrome-finish

Fixing holes for screws M3 Weight: 5.2 g, unit: 1000 pcs.

Type: 94448 **Ref. No.: 537628**

Material: PA, white Oblong hole for screw M4 Weight: 1.9 g, unit: 500 pcs.

For clicking-on onto the lampholder

Type: 97194 **Ref. No.: 108956**

Fixing brackets: 8°, 14.5x39 mm

For E27 thermoplastic lampholders, one-piece
Material: PET GF, white
With cable holder
Oblong hole for screw M4
Weight: 3/3.6 g, unit: 1000 pcs.
Type: 97750 fixing holes: Ø 4 mm

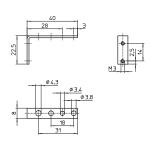
Ref. No.: 109725

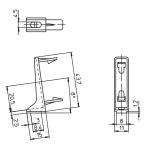
Type: 97752 fixing holes for self-tapping screws acc. to ISO 1481/7049-ST3.9-C/F

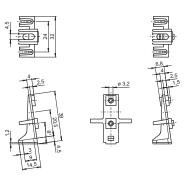
Ref. No.: 109728

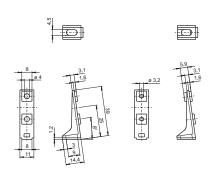
Fixing brackets: 8°, 14.4x39 mm
For E27 thermoplastic lampholders, one-piece
Material: PET GF, white
Oblong hole for screw M4

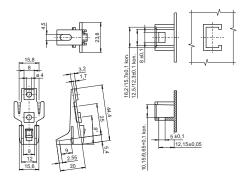
Weight: 1.9/4.3 g, unit: 1000 pcs.
Type: 97159 fixing holes: Ø 4 mm


Ref. No.: 108304


Type: 97755 fixing holes for self-tapping screws acc. to ISO 1481/7049-ST3.9-C/F


Ref. No.: 400732


Fixing bracket: 8°, 20x44.4 mm
For E27 thermoplastic lampholders, one-piece
Material: PET GF, white
Fixing holes: Ø 4 mm
With cable holder
Oblong hole for screw M4
Weight: 3.7 g, unit: 1000 pcs.


Type: 97754 **Ref. No.: 401970**

1

2

3

4

5

6

7

8

9

Nipples

For E14 cover caps with moulded thread: M10x1 Cross groove for rotation stop: external For E27 caps (see p. 438-439), for fastening of brackets 106766 and 106802 (see p. 451)

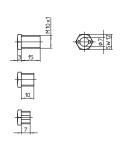
Material: PA, white

Male nipple: M10x1, with hexagon flange

Weight: 0.5 g, unit: 1000 pcs.
Type: 09700/09703/09708

Ref. No.: 538089 length: 15 mm

Ref. No.: 109249 length: 10 mm


length: 7 mm

Locking nut for thread M10x1 Material: PA GF

Weight: 0.9 g, unit: 1000 pcs.

Type: 97267

Ref. No.: 507797 white **Black** black

Cord grip with insulating socket For E14 and E27 lampholders Material: PA, natural

For luminaires of protection class II For leads H03WH2-F 2X0.75 Weight: 0.6 g, unit: 1000 pcs.

Type: 97632

Ref. No.: 534097

Cable grips For leads: H03VV-F Material: PA

Male nipple: M10x1, length: 10 mm

With locking screw

Weight: 0.6 g, unit: 1000 pcs.

Type: 09701

Ref. No.: 543640 white **Ref. No.: 543641** black

Cable grips

For leads HO3VV-F and HO3VVH2-F 2XO.5

or 2X0.75 Material: PA

Male nipple: M10x1, length: 11 mm

With locking screw

Weight: 1.6/1.5 g, unit: 1000 pcs.

Type: 09701

Ref. No.: 109248 white **Ref. No.: 109253** black

Cord grip

For E14 lampholders, three-piece,

with cap height: 19 mm For leads H03VVH2-F Material: PA, transparent Weight: 0.6 g, unit: 1000 pcs.

Type: 09501

Ref. No.: 106948

i

2

Cord grip

For E27 lampholders, three-piece (without switch)

For leads H03VVH2-F Weight: 0.9 g, unit: 1000 pcs.

Type: 09502

Ref. No.: 106949 PA, transparent

Insulating socket
Material: PA, transparent
Weight: 0.5 g, unit: 1000 pcs.

Type: 09705

Ref. No.: 109592

For leads H03VV-F 2X0.5 or

H03VV-F 2X0.75 Material: PA

Weight: 0.9/0.8/1.7/1.6 g, unit: 1000 pcs.

Type: 09606 cord grips

Ref. No.: 506026 white

Ref. No.: 506027 black

Type: 96160 screw caps

Ref. No.: 109318 white

Ref. No.: 109317 black

Cord grips

For leads H03VV-F 2X0.5 or

H03VV-F 2X0.75

Material: PA, male nipple: M10x1 Weight: 1/0.9/1.7/1.6 g, unit: 1000 pcs. Type: 09607 cord grips

Ref. No.: 506024 white
Ref. No.: 506020 black
Type: 96160 screw caps
Ref. No.: 109318 white
Ref. No.: 109317 black

Insulating socket for E14 lampholders

Material: PA, transparent Weight: 1 g, unit: 1000 pcs.

Type: 09704 **Ref. No.: 109600**

3

4

5

6

7

8

E40 Porcelain Lampholders

For incandescent lamps with base E40

Nominal rating: 18/500/5 kV Screw terminals: 1.5-4 mm² Spring loaded central contact

E40 lampholders

Material: porcelain, white, T270 Oblong holes for screws M5 Weight: 224/229.3/224/229.3 g

Unit: 48 pcs.
Type: 12800/12801 **Ref. No.: 108208**

Ref. No.: 107780 with lamp safety catch

With steel thread **Ref. No.: 532602**

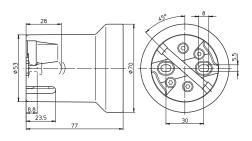
Ref. No.: 532603 with lamp safety catch

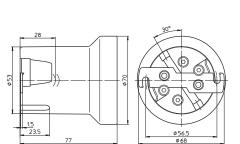
E40 lampholders

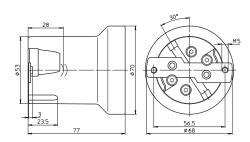
Material: porcelain, white, T270 Fixing bracket with slots for screws M5 Weight: 252.3/243/252.3/243 g

Unit: 48 pcs.
Type: 12810/12811
Ref. No.: 108374

Ref. No.: 108375 with lamp safety catch


With steel thread **Ref. No.: 532604**


Ref. No.: 532605 with lamp safety catch


E40 lampholders Material: porcelain, white, T270 Fixing bracket with tapped holes

for screws M5 With lamp safety catch Weight: 252.8 g, unit: 48 pcs.

Type: 12812 **Ref. No.: 108373**With steel thread **Ref. No.: 532606**

Technical Details

Components for Incandescent and Retrofit Lamps

Glossary	541_543
General technical details	533-540
Lampholders for incandescent lamps	469-470
Conductors for low-voltage halogen installations	468-469
Assembly instructions - Electromagnetic transformers	466-468
Electromagnetic transformers	465
DALI information	464
Assembly instructions - Electronic converters	460-464
Electronic converters	459
Dimmability of VS transformers and VS converters	459
Transtormers and converters tor low-voltage halogen lamps	458

Transformers and converters for low-voltage halogen lamps

Operating low-voltage halogen lamps depends on operating devices that transform the usual mains voltage of 230 V to under 24 V. Safety transformers, of either electromagnetic or electronic (converter) design, have been in almost exclusive use for several years now. The type plate of electromagnetic transformers bears the symbol for safety transformers in accordance with VDE 0570, corresponding to EN 61558. Electronic converters are marked with the sign for Safety Extra-Low Voltage (SELV), which indicates that the product is an isolating converter whose secondary output is safe to touch even during no-load operation.

All Vossloh-Schwabe transformers are safety transformers, i.e. isolation transformers for supplying SELV (safety extra-low voltage) and PELV (protection extra-low voltage) circuits. With such systems, the voltage must not exceed a value of 50 V AC or 120 V DC (smoothed) between the conductors or a conductor and the earth conductor of a circuit that is separated from the mains by a safety transformer. The specified values apply for protected (non-touchable) voltages; 25 V AC and 60 V DC (smoothed) apply for exposed (touchable) voltages.

Depending on their design features to protect against touchable live parts, transformers and converters fall into one of two protection classes. Operating devices of protection class I are base-insulated and have a protective earth conductor connection terminal that must be connected to the protective earth conductor for safety reasons. Isolating transformers and converters of protection class II are equipped with double or reinforced insulation that protects against dangerous casing currents; these operating devices are solely available as independent operating devices (also see page 538; Protection Classes of Luminaires and Operating Devices).

Electronic converters can also be fitted with a functional earth terminal that must be connected to a functional earth to ensure compliance with EMC requirements. In addition, some electronic converters are designed in such a way that neither a protective earth conductor nor a functional earth needs to be connected.

Operating devices can also be differentiated according to the way they are used. Built-in transformers have to be installed in a permanent casing, e.g. a luminaire. In contrast, so-called independent transformers and converters can be operated independently of a luminaire. These are often found in ceiling installations; in order to prevent possible noise development, isolation transformers must be mounted in such a way as to avoid vibration transmission.

Transformers or converters bearing the MM mark can be mounted on surfaces of unknown flammability, which can be the case when mounting these devices on wooden furniture elements. Such devices comply with the temperature requirements of VDE 0710, part 14, of < 95°C during normal and < 115°C during abnormal operation.

Converters are labelled with a tc point. The stipulated temperature (e.g. 75 °C) must not be exceeded when installed so that the service life of the converter is not shortened. The temperature quoted in the triangle (e.g. 110) denotes that the surface of the converter must never (even in the event of a defect) exceed this temperature.

Protection symbols

Safety transformer

SELV

Safety Extra Low Voltage

Protection class II

Independent operating device

Furniture installation

Normal operation < 95 °C

Abnormal operation < 115 °C

If the maximum value of 130 °C is not exceeded, the luminaire does not have to be tested in accordance with $\overline{\Psi}$ conditions.

 $t_c = 75 \, ^{\circ}\text{C}$

Measuring point for maximum permissible casing temperature

Temperature-protected converter (in this case < 110 °C)

Dimmability of VS transformers and VS converters

Electromagnetic VS transformers can be controlled using phase-cutting leading-edge dimmers. These dimmers "cut" the sinusoidal mains voltage in the negative and positive half wave at an angle in the ascending portion of this sinusoidal half wave. The higher the angle is set at the dimmer controls, the lower the effective value of the voltage and hence the lamp's output.

Electronic VS converters can be controlled using phase-cutting trailing-edge dimmers. In this case, a semiconductor ensures the predefined descending portion of the sinusoidal half wave is clipped, i.e. the voltage is reduced in reverse mode. Again, higher the angle is set at the dimmer controls, the lower the effective value of the voltage and hence the lamp's output.

Converters of the Liteline (EST 70/12.380, EST 105/12.381, EST 150/12.622 and EST 60/12.635) and Topline (EST 70/12.643, EST 105/12.644, EST 150/12.645 and EST 200/12.649) families can be operated using conventional phase-cutting trailing-edge and phase-cutting leading-edge dimmers.

Furthermore, TwinLine converters feature a separate potentiometer connection for direct regulation of lamp voltage and thus of its brightness.

VS DALI converters (Digital Addressable Lighting Interface) can be controlled via the DALI interface; dimmer operation (whether phase-cutting leading- or trailing-edge) is not possible.

Electronic Converters

The safe operation of electronic converters is dependent on the maximum permissible temperature not being exceeded at the measuring point. Vossloh-Schwabe has determined a casing temperature measuring point – $t_{c\ max}$. – on all converter casings. To avoid shortening the service life or diminishing operating safety, the stipulated maximum temperature must not be exceeded at this t_c point. This point is determined by testing the converter during normal, IEC-standardised operation at the specified max. ambient temperature (t_a), which is also indicated on the type plate. As both the design-related ambient temperature and the converter's inherent heat generation, as determined by the installed load, are subject to great variation, the casing temperature should be tested at the converter's t_c point under real installation conditions.

Temperature-protected converters feature a further protection symbol, namely a triangle containing the maximum temperature. This symbol certifies that the stipulated surface temperature of the device casing will not be exceed during any operating state or in the event of a defect.

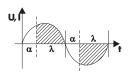
Vossloh-Schwabe electronic converters are tested in accordance with EN 61347. Function tests are carried out in accordance with EN 61047. VS converters can be operated without causing any inadmissible system reactions as all devices comply with EN 61000-3-2 on the limitation of mains harmonics. They also meet the EMC requirements of EN 61547. These devices are thus also protected against mains surges (as defined in the standard) that can be caused by, for instance, inductive ballasts during combined operation of fluorescent and low-voltage halogen lamps.

In addition, all devices comply with the RFI requirements of EN 55015. As the highly effective integrated filter can only limit the unit's own interference, the secondary conductor should be kept to under 2 metres in length so as to avoid RFI interference in the lighting system.

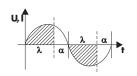
Dimmable using phase-cutting leading-edge or trailing-edge dimmers

Dimmable using phase-cutting leading-edge dimmers

Dimmable using phase-cutting trailing-edge dimmers


Working principle of a phasecutting leading-edge dimmer

 α = Ignition angle


 λ = Operating angle

U = Voltage

I = Current

Working principle of a phasecutting trailing-edge dimmer

1

2

3

4

5

6

7

8

9

Assembly Instruction for Electronic Converters

For mounting and installing electronic converters for low-voltage halogen lamps

Mandatory regulations

EN 60598-1 Luminaires - part 1: general requirements and tests

EN 61000-3-2 Electromagnetic compatibility (EMC) - part 3:

maximum values - main section part 2: maximum values for mains harmonics

(device input current up to and including 16 A per conductor)

EN 55015 Maximum values and methods of measurement for RFI suppression

in electrical lighting installations and similar electrical appliances

EN 61547 Installations for general lighting purposes - EMC immunity requirements

EN 61347-1 Operating devices for lamps - part 1: general and safety requirements

EN 61347-2-2 Operating devices for lamps - part 2-2: special requirements for DC- or

AC-powered electronic converters for incandescent lamps

EN 61047 DC- or AC-powered electronic converters for incandescent lamps -

performance requirements

Designations for VS converters

Designations for electronic converters are first listed by the name of the product family, which in each case reflects the visible product properties. The type designation should be read as follows:

EST	60	/12	.388
Electronic safety transformer	Max. wattage	Lamp voltage	Serial number

Mechanical mounting

Mounting position Any

Clearance Min. of 0.1 m from walls, ceilings, insulation; min. of 0.1 m from other electronic converters;

min. of 0.25~m from sources of heat (lamp)

Surface Solid; device must not be allowed to sink into insulation materials

Mounting location

In dry rooms or in luminaires, cases, casings or similar in the instance

of built-in converters

Fastening Independent converters: using screws, Ø 4 mm

Built-in converters: fix M8 nut on the threaded stud

Heat transfer
If the electronic converter is destined for installation in a luminaire, sufficient heat transfer must

be ensured between the converter and the luminaire casing. During operation, the t_c point

must not exceed the specified value

Technical specifications

**		Operating	Dimmability			Temperature protection		Through-	Type of automatic cut-out and number of possible VS devices				
		voltage						wiring ⁴					
		range AC											
		Unsuitable for	Phasecutting	Phasecutting	Max. potentio-	DALI	Thermal	Electronic	Converter	B (10A)	B (16A)	C (10A)	C (16A)
		DC operation	trailing edge ¹	leading edge ¹	meter 3.3 MΩ		cut-out ²	control ³	quantity				
FlatLine	EST 60/12.388	230	×					×	_	35	56	35	56
	EST 120/12.389	230	Х					×	_	18	29	18	29
LiteLine	EST 35/12.650	230-240	X					×	_	55	85	55	85
	EST 70/12.380	230-240	х	×				×	_	28	45	28	45
	EST 105/12.381	230-240	х	×				×	_	20	32	20	32
	EST 150/12.622	230-240	X	×				×	_	14	23	14	23
Mini	EST 60/12.635	220-240	X	×				×	_	35	56	35	56
Topline	EST 70/12.643	230-240	Х	×				×	7	29	47	29	47
	EST 105/12.644	230-240	х	Х				×	7	20	32	20	32
	EST 150/12.645	230-240	X	×				×	5	14	22	14	22
	EST 200/12.649	230-240	X	×				×	5	11	18	11	18
Discline	EST 70/12.601	230	Х				×		_	30	49	30	49
	EST 105/12.602	230	X				×		_	21	34	21	34
TwinLine	EST 70/12.618	230-240	х		х		×		_	29	47	29	47
	EST 105/12.619	230-240	X		х		×		_	20	32	20	32
Capline	EST 75/12G.302	230	Х				×		_	28	45	28	45
BoardLine	EST 60/12.304	230	X				×		_	34	55	34	55
	EST 70/12.380	230-240	X	×				×	_	28	45	28	45
	EST 105/12.381	230-240	X	×				x	_	20	32	20	32
DALI	ESTd 70/12.660	230-240				×		х	_	28	45	28	45
	ESTd 105/12.662	230-240				×		х	_	14	22	14	22
	ESTd 150/12.661	230-240				×		×	_	11	18	11	18

¹ The dimmer is connected to the primary side between mains and converter.

Properties of electronic converters

Overheating Protection against overheating is provided by a temperature switch or an electronic controller (see table above).

Short-circuit The converter will be electronically disconnected in the event of a short-circuit at the output; once the short-circuit has been eliminated,

the converter will switch on again automatically.

Minor overloads (< 50%) will trigger the temperature switch against overheating; major overloads (> 50%) will trigger the same reaction as for short-circuit. The ESTd 70/12.660, ESTd 105/12.662 and ESTd 150/12.661 converter models are fitted with integrated cut-out mechanisms in accordance with the DALI standard EN 62386-204.

Should any of the above-mentioned safety functions be triggered, disconnect the converter from the power supply, then find and eliminate the cause of the problem.

Protection against transient mains peaks

Overload

Values compliant with EN 61547 (immunity)

1

2

3

4

5

6

7

8

9

It is possible to connect several converters to one dimmer (whereby the dimmer's minimum and maximum load must be observed).

The dimmer-converter system should be subjected to function and noise development tests prior to installation.

² In the event of overhealing, the protective temperature switch turns the converter off. Once the converter has cooled down, it is automatically switched on again.

³ The rating is decreased electronically in the event of overheating.

⁴ Distributed secondary leads are only permitted on non-metallic surfaces (RFI suppression)

Electrical installation

Conductors Primary conductor cross-section: min. 0.75 mm²

Secondary conductor cross-section: min. 0,75 mm² for 50 W output and

min. 1 mm^2 for 100 W output

Stripping				
Converter	60/12.388,	60/12.635,	70/12.643,	35/12.650,
	120/12.389	70/12.618,	105/12.644,	70/12.380,
		105/12.619	150/12.645,	105/12.381,
			200/12.649	150/12.622,
				70/12.660,
				105/12.662
				150/12.661
Type of lead	H03-VVH2-F 2X0.75	All usual types	NYM 2X1.5; NYM 3X1.5 after	H03-VVH2-F 2X0.75
	H05-VVH2-F 2X0.75	of lead up to	breaking open the marked plastic	H05-VVH2-F 2X0.75
	H03-VV-F 2X0.75	4 mm ²	parts in the cover over the	H03-VV-F 2X0.75
	H05-VV-F 2X0.75		terminal area of the transformer	H05-VV-F 2X0.75
Lead preparation	6-8 max. 16	\$ ma	7-10 	6-8 max. 12

The cables/cords of converter models EST 70/12.601, EST 70/12.618, EST 105/12.602 and EST 105/12.619 must be protected against tension and compression during mounting.

Screw terminals: max. initial torque of 0.4 Nm must not be exceeded Connections

Secondary length Min. 0.25 m (clearance to lamp), max. 2 m (RFI protection)

Secondary wiring Min. 0.1 m clearance from the mains (RFI protection)

Twist single-wire or lead wires narrowly; silicone-insulated leads Star wiring

are recommended

Parallel connection

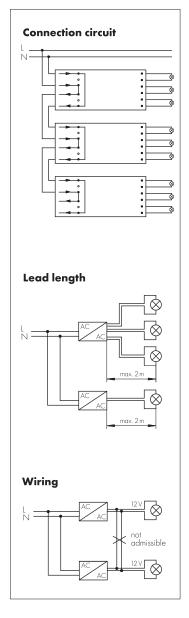
Secondary-side parallel connection is inadmissible

Feed-through of the mains voltage

See table on page 461

Distributed secondary leads are only permitted on non-metallic surfaces

(RFI suppression)


Selection of automatic cut-outs for VS converters

Dimensioning automatic cut-outs

High transient mains current pulses occur when a converter is switched on because the capacitor has to load. As the lamps ignite almost simultaneously, this also creates a high power drain. The high currents that occur when the system is switched on put a strain on the automatic conductor cut-outs, which must be selected and dimensioned to suit

Release reaction Release reaction of automatic cut-outs in accordance with VDE 0641, Part 11; for B and C characteristics. The values provided in the table on page 461 are meant as guidelines only and may vary depending on the respective lighting system.

No. of converters The maximum number of VS converters (see table on page 461) applies to cases where the devices are switched on simultaneously. Specifications apply to single-pole fuses. The number of permissible ballasts must be reduced by 20% for multi-pole fuses. The considered circuit impedance equals 400 m Ω (approx. 20 m [2.5 m 2] of conductor from the power supply to the distributor and a further 15 m to the luminaire).

Dimmability of electronic converters

Dimmed operation

VS converters can be operated with phase-cutting trailing-edge dimmers. Some converters can additionally be operated with phase-cutting leading-edge dimmers (see table on page 461). The dimmer is connected to the primary side between mains and converter. It is possible to connect several converters to one dimmer (whereby the dimmer's minimum and maximum load must be observed). The dimmer-converter system should be subjected to function and noise development tests prior to installation.

Converter TwinLine models EST 70/12.618 and EST 105/12.619 can be dimmed using a potentiometer of 3.3 M Ω max.

Converter DALI models ESTd 70/12.660, ESTd 105/12.662 and ESTd 150/12.661 can be dimmed using the DALI interface; operation with leading- or trailing-edge dimmers is not possible.

Electromagnetic compatibility (EMC)

Mains Harmonics

Maximum values are observed in accordance with EN 61000-3-2.

Interference

The requirements of EN 55015 must be met for luminaires with converters for operating low-voltage halogen lamps.

Vossloh-Schwabe converters are designed and manufactured to ensure these requirements are satisfied provided the installation instructions regarding the interference voltage at the connection terminals and electromagnetic interference fields up to 300 MHz are observed.

Additional information

Wiring

To ensure good radio interference suppression and the greatest possible operating safety, the following points should be observed when installing electronic converters:

- Conductors between the EST and the lamp (HF conductors) must be kept short (reduction of electromagnetic interference).
- Mains and lamp conductors must be kept separate and if possible should not be laid in
 parallel to one another. The distance between HF conductors and mains conductors
 should be as large as possible, ideally > 5 cm. (This prevents the induction of interference
 between the mains and lamp conductors).
- The mains conductor within the luminaire must be kept short (to reduce the induction of interference).
- The mains conductor must not be laid too close to the EST (this is especially important in the event of through-wiring).
- Mains and lamp conductors must not be crossed. Should this be impossible to avoid, conductors should be crossed at right angles to one another (to avoid inducing interference between mains and HF conductors).
- Should conductors be wired through metal parts, such conductors must always be additionally shielded (e.g. with an insulating sleeve or grommet).

Temperature

Reference point temperature t_C

The safe operation of electronic converters is dependent on the maximum permissible temperature not being exceeded at the measuring point. Vossloh-Schwabe has determined a casing temperature measuring point – $t_{c\ max.}$ – on all converter casings. To avoid shortening the service life or diminishing operating safety, the stipulated maximum temperature must not be exceeded at this t_c point. This point is determined by testing the converter during normal, IEC-standardised operation at the specified ambient temperature (t_a), which is also indicated on the type plate. As both the design-related ambient temperature and the converter's inherent heat, as determined by the installed load, are subject to great variation, the casing temperature should be tested at the t_c point under real installation conditions.

1

2

3

4

5

6

7

8

9

Ambient temperature ta

The ambient temperature - as specified on every converter - denotes the permissible temperature range within the luminaire or at the place of installation.

Reliability

Service life of 50,000 hrs at reference point temperature t_c , whereby a switching cycle of 165 minutes on and 15 minutes off is assumed. Failure rate: $\leq 0.2\%/1,000$ hrs

In order to achieve the average service life, the maximum temperature ($t_{c\ max.}$) must not be exceeded at the t_{c} point.

Emergency lighting

VS electronic converters cannot be used for emergency lighting purposes as they are unsuitable for DC voltage operation.

System Description of VS DALI Electronic Converters

Vossloh-Schwabe's EST range is rounded off by dimmable converters with a digital interface for low-voltage halogen lamps. The standardised DALI protocol EN 62386-204 (Digital Addressable Lighting Interface) is used for this purpose.

VS DALI converters include the following features:

- · potential-free, polarity-independent control input
- dimming curve analogue to the light sensitivity of the human eye
- addressing options: total system, group-wise or individually
- scene memory
- feedback in the event of defective lamps

These features ensure a number of advantages for lighting systems:

- no group wiring needed
- each DALI converter can be individually addressed
- no need for scene memory modules
- synchronised scene transitions
- operating devices provide reports on lamp status
- simple integration into facility management systems

General Information on DALI

Mains voltage and interface conductors must not be wired in parallel to the lamp conductors so as to avoid capacitive bridging of the mains filter.

After initial operation of a DALI system (address assignment, luminaire allocation, group formation, scene settings) it is recommended to disconnect the primary voltage of the DALI operating devices at the circuit breaker for at least 3 seconds and then to reconnect it. The devices will detect this disconnection from the mains and store the settings.

VS DALI converters offer the convenience of a bus system that is both easy to install and operate.

Switching the mains voltage to the DALI conductors within a DALI system will lead to the destruction of both the DALI power supply and the DALI master!

Electromagnetic Transformers

Owing to the low internal impedance of electromagnetic transformers, high currents can occur in the event of a short-circuit on the secondary side, which can lead to the transformer being destroyed. For this reason, IEC 61558-1 differentiates between three types of transformer:

Transformers without short-circuit resistance

These transformers require external protection to prevent excessive temperatures being generated.

At Vossloh-Schwabe, these transformers are marked with the symbol "not short-circuit proof safety transformer". To protect against current overload during overload or short-circuit operation, Vossloh-Schwabe recommends installing a fuse on the primary side. As an aid to the user, the rating of this fuse is stated on the type plate in accordance with IEC 60127. The installed primary-side fuse should be easily accessible so that it can be readily replaced at any time.

Transformers with (limited) short-circuit resistance

These transformers feature a safety device that prevents excessive temperatures being generated.

Electromagnetic transformers with thermal cut-outs afford a limited degree of short-circuit resistance and do not need to be additionally fused. VS safety transformers of limited short-circuit resistance are designed to safely cut out in the event of overload or short-circuit, but not to restart automatically after cooling off. The transformer must first be disconnected from the mains (i.e. switched off and on) before it can be restarted. The thermal cut-outs are dimensioned to ensure that the maximum permissible winding temperature of 225°C (transformers of thermal class B) or 240°C (F) or 260°C (H) is not exceeded in the event of overload or short-circuit.

Transformers with (unlimited) short-circuit resistance

These transformers are designed to ensure that fixed maximum temperatures are not exceeded in the event of overload or short-circuit.

This type of safety transformer is not in common use within the lighting industry due to the relatively large dimensions it needs to meet the overload and short-circuit requirements.

All transformers will function perfectly and meet the requirements of the standard after the overload or short-circuit has been eliminated.

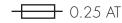
In addition to the above, there are also so-called **failsafe transformers** that are rendered permanently inoperative in the event of improper use, but do not pose a threat to the user or the surroundings. Vossloh-Schwabe does not provide this type of isolation transformer.

All Vossloh-Schwabe transformers are tested for compliance with the safety requirements of European standard EN 61558 regarding creepage and air clearance distances, the winding temperature and the maximum permissible ambient temperature (t_a).

EN 61558 specifies five insulation classes for electromagnetic transformers; respective testing temperatures and times are assigned to these classes. Due to the quality of the insulation materials used by Vossloh-Schwabe, VS transformers are only available in the three highest insulation classes B (120°C), F (140°C) and H (165°C). In this case, the quoted temperature refers to the maximum permissible winding temperature during permanent operation.

As luminaire casings made of plastic or sheet metal will discharge heat to varying degrees and because transformer installation conditions can differ, a transformer's winding temperature must be tested within the luminaire. The measured values will show whether the maximum temperature corresponds to the transformer's insulation class.

On request, Vossloh-Schwabe can carry out such luminaire tests to assess built-in components.


Protection symbols

Non short-circuit proof safety transformer

Limited short-circuit proof safety transformer

Rated fuse value

t_a 65

Transformer's maximum permissible ambient temperature

Thermal cut-out (reset after disconnection from the mains) i

2

3

4

5

6

7

8

9

Assembly Instruction for Electromagnetic Transformers

For mounting and installing electromagnetic transformers for low-voltage halogen lamps

Mandatory regulations

EN 60598-1 Luminaires - part 1: general requirements and tests

EN 61558-1 Safety of transformers, power supply units and similar – part 1:

general requirements and tests

EN 61558-2-6 Safety of transformers, power supply units and similar – part 2-6:

special requirements for safety transformers for general use

EN 61000-3-2 Electromagnetic compatibility (EMC) - part 3:

maximum values - main section part 2: maximum values for mains harmonics

(device input current up to and including 16 A per conductor)

EN 55015 Maximum values and testing methods for radio disturbance of electrical lighting facilities and

similar electrical equipment

EN 61547 Installations for general lighting purposes - EMC immunity requirements

Technical specifications

Mains voltage range

VS safety transformers can be operated at the specified mains voltage within

a tolerance range of $\pm\,10\%$

Leak current \leq 0.1 mA per safety transformer

Power factor $\lambda \ge 0.85$

Compensation Not required

Mechanical mounting

Mounting position

Any

Mounting location

Safety transformers are designed for installation in luminaires or comparable devices. Independent safety transformers do not need to be built into a casing.

Fastening Preferably using screws, Ø 4 mm

Insulation classes and maximum temperatures

In accordance with EN 61558, safety transformers are assigned to insulation classes on the basis of the insulation materials used (also called insulation material classes for this reason) in the transformers. These insulation classes also prescribe respective maximum winding temperatures that must not be exceeded during normal operation or in the event of overload or short-circuit.

Compliance with the maximum winding temperatures is tested by measuring the resistance of the transformer's copper winding.

Insulation classes for safety transformers in accordance with EN 61558-1

	А	Е	В	F	Н
Max. winding temperature (1.06 U _N)	100 °C	115 °C	120 °C	140 °C	165 °C
during normal operation					
Max. winding temperature in the event	200 °C	215 °C	225 °C	240 °C	260 °C
of overload or short-circuit					

Electromagnetic compatibility (EMC)

Interference

Interference voltage measurements do not have to be taken for luminaires with magnetic safety transformers for operating low-voltage halogen lamps as these are systems with lamp voltages of under 100 Hz and it is assumed that such systems do not cause interference.

Interference immunity

Thanks to the robust design and choice of materials, magnetic safety transformers provide a high degree of interference immunity and are not impaired by admissible mains power interference.

Mains harmonics

Owing to the Ohmic resistance characteristics of low-voltage halogen lamps and the low degree of distortion caused by magnetic transformers, mains harmonics remain low.

Safety functions of VS transformers

Load	Transformer features	
	Unprotected (OS)	With self-locking temperature protection (TS)
Overheating	Is not recorded	Protection is provided by the
Short-circuit	Protection must be provided	built-in thermal switch
Overload	by devices fitted in the luminaire	
	(fuse or thermal switch)	

Should one of the safety functions be triggered, the transformer must be disconnected from the mains, the cause of the fault found and then eliminated. 1

2

3

4

5

6

7

8

9

Dimmer operation

VS safety transformers can be controlled using progressively adjustable phase-cutting leading-edge dimmers for low-voltage halogen lamps.

Reliability and service life

VS safety transformers are designed for a long service life. Provided the specified maximum values for the winding temperature are complied with during operation, a service life of 10 years can be expected. Failure rate: < 0.025%/1,000 hrs

Electrical installation

Conductors Primary conductor cross-section: min. 0.75 m²,

secondary conductor cross-section: min. 0.75 m² for 50 W output

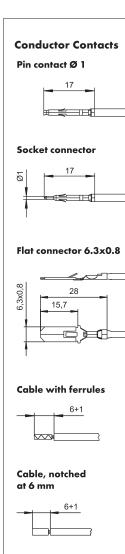
and a min. of 1 mm² for 100 W output

Connections Terminal screws: max. torque of 0.5 Nm must not be exceeded

Parallel connection

Parallel connection is admissible on the primary side, but is inadmissible on

the secondary side


Conductors for low-voltage halogen installations

As the high temperatures associated with the operation of low-voltage halogen lamps place severe demands on lampholder conductors, a skilful combination of conductor and insulation is essential. Tin-plated copper conductors with silicone insulation are recommended for temperatures of up to 180°C at the cable's conductor; nickel-plated copper cables with polytetrafluoroethylene (PTFE) sheathing are recommended for temperatures of up to 250°C. Welded connections ensure the most effective heat discharge. Control measurements should be carried out if other connection types are used, e.g. crimping or plug connectors. To prevent the risk of additional heat generation, the maximum permissible current load must be observed when dimensioning the conductor cross-section. When using electromagnetic transformers, the conductor resistance causes a relatively large voltage drop. This drop in voltage is always associated with a reduction of luminous flux. For instance, an 11% drop in voltage will lead to a 30% drop in luminous flux. For this reason, care should be taken to ensure secondary conductors are kept as short as possible and conductor cross-sections are adequately dimensioned when wiring luminaires. Nevertheless, transformers should not be mounted too near the light source (> 25 cm clearance if possible) to prevent the heat generated by the lamp from raising the ambient temperature above the critical level for a transformer.

As electronic converters operate at high frequencies, consideration must be taken of the skin effect, i.e. the displacement of the electrons from the middle of the conductor to its surface. As a result, the full cross-section of the conductor is no longer used, resistance increases and thus leads to a greater drop in voltage. In addition, AC resistance, which is caused by feed line inductance, can result in an even greater voltage drop. It is therefore recommended that lamp conductors be laid closely parallel or twisted together.

Voltage losses (V) with a two-metre secondary conductor

Working frequency	Load	Cross-section/	Cross-section/Voltage drop		
	W	0.75 mm ²	1 mm ²	1.5 mm ²	
50 Hz (electromagnetic transformers)	50	0,38 V	0.29 V	0.2 V	
any wiring layout	100	0.74 V	0.56 V	0.39 V	
40 kHz (electronic converters)	50	1.4 V	1.25 V	1.2 V	
any wiring layout (loops)	100	3.3 V	3.1 V	3 V	
40 kHz (electronic converters)	50	0.5 V	0.45 V	0.35 V	
wires twisted together or closely parallel	100	1.2 V	1 V	0.85 V	

Cable, bared

6+1

Ultrasonically welded

6+1

at 6 mm

cable end

Technical Details - Components for Incandescent and Retrofit Lamps

Conductors for installations with halogen lamps

All conductors must be selected to suit the luminaire conditions (see table) in terms of material, cross-section and insulation. Testing these conductors under worst case conditions is essential as the commonly occurring high temperatures considerably reduce the conductivity of the conductor and hence its current-carrying capacity.

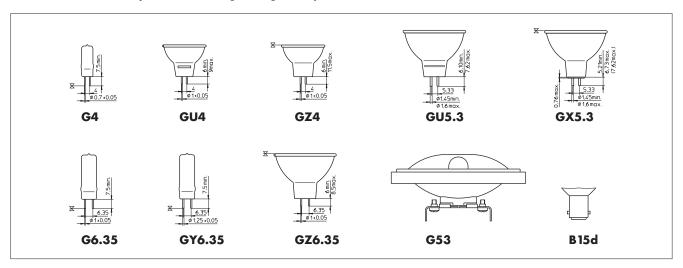
Insulation	Conductor	Cross-section	Mains voltage	Max. temperature
	Material	mm ²	V	°C
SI	Cu tin-plated (Cu vz)	0.75	300	180
FEP	Cu tin-plated (Cu vz)	0.75	300	180
PTFE	Cu nickel-plated (Cu vn)	0.75	500	250
PTFE	Cu nickel-plated (Cu vn)	1	500	250
PTFE	Ni	1	500	250
PTFE	Ni	1.5	500	250

Lampholders

For low-voltage halogen lamps

With the exception of B15d bases, the low-voltage sector is dominated by pin bases, which are fitted with a variety of different pin distances and diameters. Apart from classic lampholders that ensure both the electrical contact and the correct positioning of the lamp, connection elements are also available. These components are solely responsible for establishing electrical contact and are used in cases where, for instance, the regulations demand that the lamp be attached to its reflector (e.g. cold-light reflector lamps with GZ4 and GX5.3 bases). Extremely high temperatures are also generated when operating low-voltage halogen lamps as a result of the tungsten-halogen cycle and high lamp currents. In addition, the respective luminaires are often of very compact design, which leads to heat accumulation and thus to high internal temperatures. The materials the lampholder is made of thus play a vital role for the luminaire's operating safety and the lamp's service life. In addition to tried-and-tested materials - ceramics for casings and mica for covers - ever more frequent use is being made of highly heat-resistant plastics like LCP (liquid crystal polymer for e.g. G4, GU4, GX5.3, GU5.3 and GY6.35 lampholders) and PPS (polyphenylene sulphide for G4 lampholders). Plastic lampholders provide clear advantages: narrow dimensional tolerances, no material fractures, low weight and clip-attachment options.

The type of contact also plays an important role. Conventional contacts are only attached to one side of the lamp pin. In contrast, additional contact points - known as multipoint contacts - lead to a reduction of current density at the point of transition from the lamp pins to the lampholder contact and with that to a decrease in temperature. These contacts provide the further advantage of ensuring superior heat dissipation from the lamp pins to the conductor. The temperature advantage of multipoint contacts in defined conditions (including welded-on conductors) can amount to as much as 100 °C. In extremely rare cases, due to the high internal pressure in the bulb, it is possible for the lamp to shatter. For reasons of fire prevention (high temperature of the alass bulb), the lamp's components must be prevented from falling out. Enclosed luminaires meet these requirements. Open luminaires, however, may only be operated using lamps with enclosed bulbs or low-pressure lamps. Lamps of this kind are suitably marked with pictograms on the lamp's packaging and in the lamp manufacturer's documentation. Lamps marked with pictogram No. 1 are suitable for use with open luminaires, whereas those marked with pictogram No. 2 may only be used in enclosed luminaires.


Lampholders for low-voltage halogen lamps are equipped with mounted cables or with plug-type connectors. In addition to the various lampholders contained in the catalogue, further lampholder models with various cable lengths and of various qualities as well as lampholders with plug-connected cables can be made available on request.

VS lampholders for the UL market and UL approved leads are available for all common lamp types.

Further information can be found at www.unvlt.com.

VOSSLOH SCHWARE

Bases of the most widely used low-voltage halogen lamps

Lampholders for mains voltage halogen lamps

A major factor in lampholder design is the lamp temperature, which is determined by the tungstenhalogen cycle, high lamp current and high wattages. Lampholder casings can be made of ceramics, metal or the ever more popular highly heat-resistant thermoplastics like PET (polyethyleneterephthalate), PPS (polyphenylene sulphide) and LCP (liquid crystal polymer). The most suitable contact materials for these temperatures are nickel, copper-nickel alloys or copper materials with sufficiently thick nickel coatings. For tubular lamps (R7s base), the standard IEC 60061-2 7005-53 prescribes the respective contact pressure of lampholder contact materials.

Although halogen lamps offer twice the service life of general-purpose light bulbs, this can only be fully realised if luminaire manufacturers observe the recommended maximum temperatures at the lamp's pinch point. There is usually a welded-on molybdenum plate at the pinch point where the lamp base pins join the lamp filament. Lamp manufacturers ascertain the pinch temperature at this point, which is generally located within the lamp's quartz glass, using specially prepared measuring lamps. The pinch temperature is a critical thermal reference point which must not be exceeded within the luminaire.

VS lampholders for the UL market and UL approved leads are available for all common lamp types.

Further information can be found at www.unvlt.com.

The bases of the most widely used mains voltage incandescent lamps

Technical Details - Components for Incandescent and Retrofit Lamps

DALI LIGHT CONTROL GEAR AND ACCESSORIES

INTELLIGENT INDOOR LIGHTING

In addition to easily modifiable rooms, modern society particularly needs flexible lighting systems – a requirement that can only be satisfied with the help of intelligent and versatile solutions that suit the given purpose. Furthermore, where possible cost-intensive refurbishment measures should be avoided.

The VS LiCS Indoor System enables individual control of single luminaires, e.g. using sensors or conventional push buttons. If required, the system can be easily reconfigured without requiring rebuilding measures.

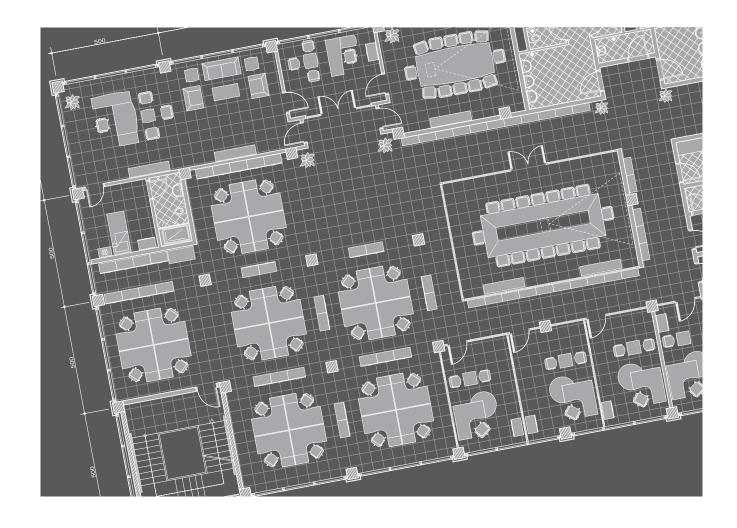
Typical applications

- Offices, industrial spaces and warehouses
- Supermarkets
- Public buildings (e.g. schools and hospitals)
- Stairwells and hallways
- Sanitary facilities

- Adjustment of lighting levels to suit human needs
- Energy savings and cost reductions
- More convenience thanks to automation

Lighting Control System for Indoor Applications

LiCS Indoor System overview	474-475
DALI light control gears	476-477
Light Controller L/LW	476
Light Controller S	477
Extender	478
Sensors	479
Accessories	480
Technical details for lighting control system for indoor	481–487
General technical details	533-540
Glossary	541 - 543


i

Overview of the LiCS Indoor System

This new generation of Vossloh-Schwabe lighting control gear was designed for indoor applications and combines the convenience of a light management system with the ability to reap substantial energy savings by ensuring targeted use of light.

These VS lighting control devices are light management systems that require neither a PC nor an overriding bus system to control and regulate a lighting system. The equipment works with the standardised DALI protocol and complies with all currently valid parts of the DALI standard, IEC 62386.

The system can be commissioned without needing any additional equipment, with configuration undertaken using the controller. To this end, the controller is fitted with a corresponding user interface, which enables easy system configuration and adjustment.

Overview of the LiCS Indoor System

Product matrix	Light Controller L	Light Controller LW	Light Controller S	Light Controller XS
	The state of the s		A Stransfer Land	PRELIMINARY
	for integration into the	for integration into the distribution	for independent operation	
	distribution board	board - EnOcean wireless version		
Sensors (motion and brightness)				
Extender				
Accessories	max. 6 buttons (mains voltage-compatible)	antenna (magnetic-base or screw-base max. 6 buttons (mains voltage- compatible); EnOcean wireless modules (max. 16 pcs.)	e); button (mains voltage-compatible)	button (mains voltage- compatible)

Functions	Light Controller L	Light Controller LW	Light Controller S	Light Controller XS
Control options	single, group, broadcast	single, group, broadcast	broadcast	broadcast
No. of groups	max. 16	max. 16	_	_
No. of EBs	max. 64	max. 64	max. 64	max. 10
No. of sensors	max. 16	max. 16	max. 16	max. 1
Motion detection (automatic and semi-automatic)	•	•	•	•
Constant light control	•	•	•	•
Scene settings	•	•	_	_
Push function	•	•	•	•
ON/OFF function	•	•	•	•
Stairwell function (timer)	•	•	•	•
System analysis software	•	•	_	_
Password protection	•	•	_	_
Minimising standby losses	•	•	_	_
Menu navigation in	German, English, French, Italian, Spanish	German, English, French, Italian, Spanish	_	_
Configuration using	rotary push key and screen	rotary push key and screen	dip switch	dip switch

i

Light Controller L/LW

For installation in a distribution board

This light control gear is designed for installation in a distribution board.

Technical notes

Configuration interface: display screen and rotary push key (on the controller)
Ambient temperature t_a: 5 to 50 °C
Push-in terminals with push-button: 0.5 – 1.5 mm²
Degree of protection: IP20, Protection class: I
RFI-suppressed
The MultiSensors are connected directly to the DALI bus
No. of DALI ballasts: max. 64 pcs.
No. of MultiSensors: max. 16 pcs.

Connections

Mains connection: 220-240 V AC, 50-60 Hz, max. power consumption 9 W

DALI bus to 3 pairs of terminals: max. current on DALI bus = 200 mA (see the respective data sheet for current consumption of individual components)
 As a standard DALI bus is not SELV-compliant, the DALI cable must be rated for mains voltage.
 The DALI bus features reversible electronic overload and short-circuit protection.

6 independently configurable push button inputs: cables must be rated for mains voltage; 220-240 V AC, 50-60 Hz

1 closing relay contact to 2 pairs of terminals (can be reconfigured as an opener): Minimising standby losses Antenna jack (only Light Controller LW): radio signal with a frequency of 868 MHz

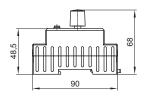
Functions

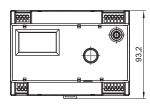
Automatic and semi-automatic motion detection, constant light control, scene settings, push function, ON/OFF function, stairwell function (timer), system analysis software, password protection, control options (broadcast, single and group), software languages: German, English, French, Spanish, Italian

LightController L

Dimensions (LxWxH): 126x90x68 mm, 7hp (horizontal pitches) Weight: 250 g

new Ref. No.: 186189


LightController LW


Suitable for wireless operation with EnOcean
No. of wireless modules: 16 pcs.
Antenna needed (see p. 480)
Dimensions (LxWxH): 126x90x68 mm, 7hp (horizontal pitches)
Weight: 250 g

new Ref. No.: 186190

Light Controller S

For independent operation

These light control devices are suitable for independent operation (e.g. in false ceilings).

Technical notes

Configuration interface: dip switch (on the device) Ambient temperature t_a : 0 to 50 °C Max. casing temperature t_c : 65 °C Screw terminals: 0.75–2.5 mm² Degree of protection: IP20, Protection class: II

RFI-suppressed
The MultiSensors are connected directly to the DALI bus

No. of DALI ballasts: max. 64 pcs. No. of MultiSensors: max. 16 pcs.

Connections

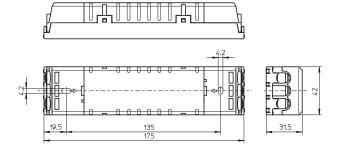
Mains connection: 220–240 V AC/DC, 0/50–60 Hz, max. power consumption $6.5~\mathrm{W}$

DALI bus: max. current on DALI bus = 200 mA
 (see the respective data sheet for current
 consumption of individual components)
 As a standard DALI bus is not SELV-compliant,
 the DALI cable must be rated for mains voltage.
 The DALI bus features reversible electronic overload and short-circuit protection.

1 configurable push button input: cables must be rated for mains voltage; 220-240 V AC/DC, 0/50-60 Hz

Functions

Automatic and semi-automatic motion detection, constant light control, push function, ON/OFF function, stairwell function (timer), control option (broadcast)


LightController S

Dimensions (LxWxH): 175x42x31.5 mm

Weight: 150 g

new Ref. No.: 186210

i

2

3

4

5

6

7

8

9

Extender

To extend LiCS Indoor System

An extender enables the maximum number of DALlcompliant control gear units within a standard DALI system to be increased.

This means the DALI extender is installed and addressed in instead of the ballast. At the extender output, up to 64 DALI ballasts can then be connected, which will all respond in the same way to the respective input signal.

The extender for DALI systems can only be used in combination with a DALI controller. When DALI commands are received, the extender behaves just like a DALI-compliant ballast for fluorescent lamps.

Configuration interface: via a DALI controller Ambient temperature t_{α} : 0 to 50 °C Max. casing temperature t_{c} : 65 °C Screw terminals: 0.75 - 2.5 $\,\mathrm{mm}^{2}$

Degree of protection: IP20, Protection class II

RFI-suppressed

Connections

Mains connection: $220-240\ V\ AC/DC$, $0/50-60\ Hz$

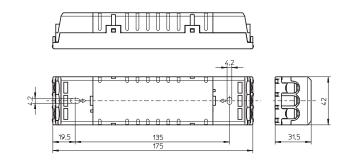
Max. power consumption: 6.5 W For DALI signals in acc. with IEC 62386 DALI current consumption: 2 mA

1 DALI bus to 3 terminal pairs: max. current on the DALI bus = 200 mA (see the respective data sheet for current consumption values of the individual components)

As a standard DALI bus is not SELV-compliant, the DALI cable must be rated for mains voltage. The DALI bus features reversible electronic overload and short-circuit protection.

Functions

Connection of up to 64 ballasts to a single DALI address


Extender

To extend DALI-controlled lighting systems Dimensions (LxWxH): $175 \times 42 \times 31.5$ mm

Weight: 150 g

new Ref. No.: 186194

Functions

selected.

Motion detection and monitoring of lighting

during configuration when the sensor is

48,5

levels. With built-in LED (red): the light flashes

Sensors

To supplement LiCS Indoor System

Daylight and motion sensors increase both energy savings and convenience.

VS MultiSensors detect both light levels and motion. In addition, MultiSensors feature a space-saving design and were specifically developed to work with VS Light Controllers. No external power supply is required, as the sensors are supplied via the DALI bus.

Technical notes

Configuration interface:
via the Light Controller L/LW and S
Ambient temperature ta: 0 to 50 °C
Push-in terminals with push-button: 0.5–1.5 mm²
DALI current consumption: 10 mA

MultiSensor SM

For surface mounting
Dimensions (ØxH): 53x48.5 mm
Weight: 30 g

new Ref. No.: 186191

MultiSensor FM

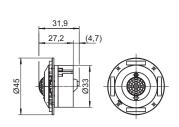
For ceiling installation With cord grip Dimensions (ØxH): 40x43.8 mm Weight: 30 g

new Ref. No.: 186192

MultiSensor IL

For luminaire installation Dimensions (ØxH): 45x31.9 mm Weight: 30 g

new Ref. No.: 186193


LICS

2

3

4

5

(16,5)

9

10

479

1

6

7

Accessories

To supplement LiCS Indoor System

To ensure faultless wireless operation, an antenna must be connected that is set to the respective frequency.

When fitting the antenna, care must be taken that it is not shielded by metal objects, e.g. steel cabinets, radiators, ventilation shafts etc., to ensure optimum signal reception.

The requisite antenna is provided by Vossloh-Schwabe in two models: the screw-base model comes with a detachable connection cable, while the magneticbase model is fitted with a non-detachable connection cable.

Antenna dimensions (ØxH): 29x88 mm Cable diameter: Ø 6 mm, length: 2.5 m Min. bending radius of the cable: 50 mm

Impedance: $50~\Omega$ Capacity: 10 W pulsed

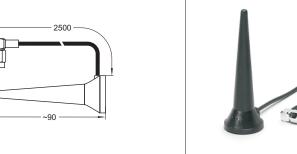
Ambient temperature $t_a\colon$ -40 to 80 $^{\circ}\text{C}$ Storage temperature: -40 to $80~^{\circ}C$

Degree of protection: IP66

Weight: 62 g new Ref. No.: 186211

Screw-base antenna

Antenna dimensions (ØxH): 33x89 mm


Impedance: $50~\Omega$ Capacity: 8 W pulsed

Ambient temperature ta: -40 to 70 °C Storage temperature: -40 to 80 °C

Degree of protection: IP66

Weight: 41 g new Ref. No.: 186212

Connection cable for the screw-base antenna

Cable diameter: Ø 6 mm, length: 1.5 m Min. bending radius of the cable $50~\mathrm{mm}$

Weight: 66 g

new Ref. No.: 186213

Technical Details

Lighting Control System for Indoor Applications

Light Controller L/LW	482-484
Assembly instructions	482
Circuit diagrams	483
Light Controller S	483-484
Assembly instructions	483
Circuit diagrams	484
Extender	485–486
Assembly instructions	485
Circuit diagrams	486
Sensors	486-487
Assembly instructions	486
Circuit diagrams	483-486
General technical details	533-540
Glossary	541-543

i

General safety information

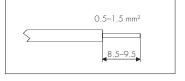
- LiCS products may only be installed and commissioned by authorised and fully qualified staff.
- These instructions must be carefully read before installing and commissioning the system, as this is the only way to ensure safe and correct handling.
- Before any work is carried out on the equipment, it must be disconnected from the mains.
- · All valid safety and accident-prevention regulations must be observed.
- The products should never be inexpertly opened as this poses lethal danger due to electrical shock. Repairs may only be undertaken by the manufacturer.
- On no account may the DAU control line be used to carry mains voltage or any other external voltage as this can destroy individual system components.

Light Controller L/LW

Installation

- In a distribution board on a 35-mm mounting rail in acc. with DIN 43880; required installation space: 7 hp (horizontal pitches) (126 mm)
- The controller must be installed so the display screen is in the upper left corner.
- Hook the light controller over the upper edge of the rail using the two mounting notches.
 Then carefully press the controller onto the lower part of the rail until the mounting spring on the controller snaps into place over the rail. If required, use a screwdriver to help you with the spring.

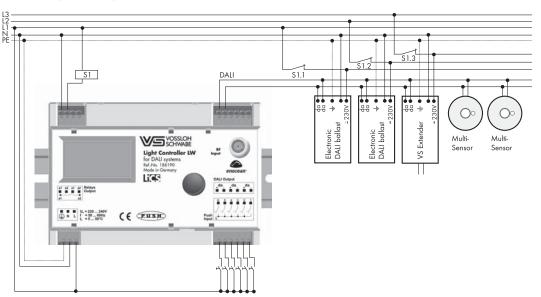
Removal


To remove the controller from the mounting rail, use a screwdriver to loosen the spring and ease the controller over the rail flange from the bottom.

Installation instructions

- Conductor cross-section for all terminals: 0.5 1.5 mm² for rigid or flexible conductors
- Cable preparation (see right)
- To protect the equipment, a 10 A or 16 A, Type B automatic circuit breaker must be fitted.
- Push button inputs 1-6: cables must be rated for mains voltage; max. cable length = 100 m.
- As a standard DALI bus is not SELV-compliant, the DALI cable must be rated for mains voltage
- A max. of 64 DALI ballasts and/or DALI extenders in aggregate can be connected as well as up to 16 MultiSensors, which in total must not exceed 200 mA.
 The exact number of components can be found in the manual.
- The power supply and the DALI line can be laid in a single cable provided the cable does not exceed a maximum length of 100 m, e.g. using 5x1.5 mm².
- Three electrically connected DALI outputs make it easier to connect DALI control gear. Please observe the maximum lengths of the DALI bus during installation:

	1.5 mm ²	1 mm ²	0.75 mm ²	0.5 mm ²
6.2 Ω max.	300 m	180 m	130 m	80 m


- The relay contact is a potential-free closing contact. The current load of the relay contact
 must not exceed an Ohmic load of I_{max} = 3 A. When using the standby contact, an
 additional external power relay should be used.
- Although both models of the Light Controller (L/LW) feature an antenna-connection jack (located top right on the front), only the jack on the LW model is functional.
 This is where the antenna is connected to enable wireless operation (EnOcean) of the Light Controller LW.

Additional information

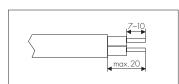
- To ensure faultless wireless operation, an antenna must be connected that is set to the respective frequency. This antenna is not included in the scope of delivery.
- Please refer to the manual at www.vossloh-schwabe.com/en/home/services for exact instructions on how to configure the system using the controller.
- The outputs of different controllers must not be connected with each other.
- To ensure safe operation of the controller, the maximum ambient temperature must not be exceeded.

Circuit diagram of Light Controller L/LW

Light Controller S

Installation

- Independent installation, e.g. in false ceilings
- Easy and time-saving installation thanks to end caps that snap into place without needing tools.
- Clearance: min. 0.1 m to walls, ceilings, insulation and other electronic devices; min. 0.25 m to sources of heat (e.g. lamps)
- Surface: solid, must not let the controller sink into insulation material
- Fastening: using 4-mm screws


Installation instructions

- Conductor cross-section for all terminals: 0.75-2.5 mm²
- Cable preparation (see right)
- Screw terminals: max. tightening torque = 0.4 Nm
- A standard DALI bus only features basic insulation. All DALI cables must be rated for mains voltage.
- A max. of 64 DALI ballasts and/or DALI extenders in aggregate can be connected as well as up to 16 MultiSensors, which in total must not exceed 200 mA.
 The exact number of components can be found in the manual.
- The power supply and the DALI line can be laid in a single cable provided the cable does not exceed a maximum length of 100 m, e.g. using NYM 5x1.5 mm².
 Please observe the maximum lengths of the DALI bus during installation:

	1.5 mm ²	1 mm ²	0.75 mm ²	0.5 mm ²
6.2 Ω max.	300 m	180 m	130 m	80 m

• Push button inputs: cables must be rated for mains power; maximum 100 m.

1

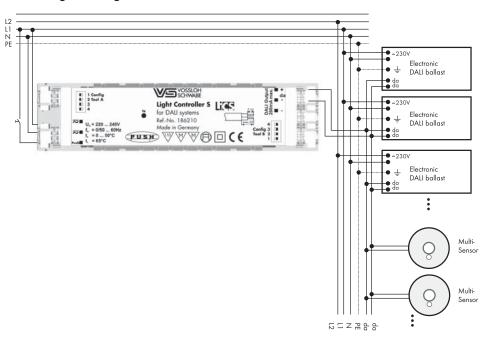
2

3

4

5

_


8

9

Additional information

- $\bullet\,$ The outputs of several light controllers (S model) must not be connected with each other.
- All control gear that is connected to the output of the DALI Light Controller S is synchronously operated in "broadcast" mode; the DALI ballasts are not addressed.
- To ensure safe operation of the Light Controller (S model), the maximum casing temperature at the measuring point (t_c) must not be exceeded.
- Please refer to the manual at www.vossloh-schwabe.com/en/home/services for exact instructions on how to configure the system using the controller.

Circuit diagram of Light Controller S

Technical Details Light Controllers

Light Controller	L	LW	S
Ref. No.	186189	186190	186210
Supply voltage	220-240	V AC, 50-60 Hz	220-240 V AC/DC, 0/50-60 Hz
Power consumption		9 W	6.5 W
Ambient temperature t _a	5 1	∘ 50 °C	0 to 50 °C
DALI output (da+-)		max. 200 mA c	urrent drain
No. of DALI ballasts	max	x. 64 pcs. per Controller (exp	pandable with the Extender)
No. of MultiSensors		max. 16	pcs.
RF input	_	Antenna for a reception range of 868 MHz	-
Wireless module	-	All radio buttons with PTM radio sensors by EnOcean with 868 MHz	-
No. of wireless modules	-	max. 16 pcs. with up to 4 buttons	-
Relay (outputs a 1, a 2)	250 V, max	c. 3 A ohmic load	_
Push inputs 1-6	220-240 V AC, 50-60 Hz		220-240 V AC/DC, 0/50-60 Hz
Degree of protection		IP2C)
Protection class	I		II
Weight		250 g	150 g
CE requirements	EMC in acc. with EN 61 <i>547</i> , f Safety in acc. with E		

Technical Details - Lighting Control System for Indoor Applications

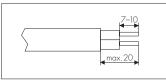
Extender

Installation

- Independent installation, e.g. in false ceilings
- Easy and time-saving installation due to end caps that snap into place without needing tools
- Clearance: min. 0.1 m to walls, ceilings, insulation and to other electronic devices; min. 0.25 m to sources of heat (e.g. lamps)
- Surface: solid, must not permit the extender to sink into insulation material
- Fastening: using 4-mm screws

Installation instructions

- Cross-section of primary/secondary conductor: 0.75 2.5 mm²
- Cable preparation (see right)
- Screw terminals: max. tightening torque = 0.4 Nm
- Length of the secondary bus cable: max. 300 m
- A standard DALI bus only features basic insulation. All DALI cables must be rated for mains voltage.
- The power supply and the DALI line can be laid in a single cable (max. 100 m).
- Mains power cables and DAU cables should not be laid directly parallel to lamp cables (min. clearance = 0.25 m).
- A maximum of 64 DALI ballasts and/or DALI extenders in total can be connected as well as up to 16 MultiSensors.


Additional information

- The extender can only be operated if connected to a DAU control unit. Please refer to the respective operating instructions for information on the control unit.
- The DALI extender is integrated into the DALI system using the "random address" assignment method.
- Three electrically connected DALI outputs make it easier to connect DALI ballasts.
 A maximum of 64 DALI ballasts and/or DALI extenders in total can be connected.
- The outputs of several extenders must not be connected with each other.
- All control gear that is connected to the output of the DALI Extender is synchronously operated in "broadcast" mode; the output side is not addressed.
- To ensure safe operation of the Light Controller S, the maximum casing temperature at the measuring point (t_c) must not be exceeded.

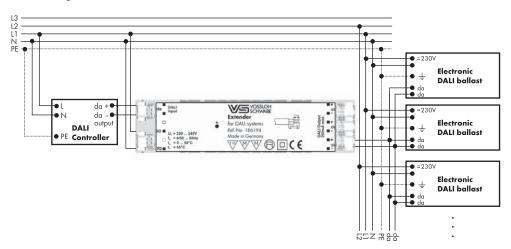
Technical details

Extender	
Ref. No.	186194
Supply voltage	220-240 V AC/DC, 0/50-60 Hz
Power consumption	6.5 W
Control input	DALI in. acc. with IEC 62386-102/-201
DALI output	max. 64 pcs. DALI EBs or max. 200 mA (expandable with the Extender)
Ambient temperature ta	0 to 50 °C
Casing temperature t _c	max. 65 °C
Degree of protection	IP20
Protection class	II
Weight	150 g
CE requirements	EMC in acc. with EN 61547, RFI in acc. with EN 55015, Safety in acc. with EN 61347-2-11

3

4

5


6

7

8

9

Circuit diagram of the Extender

Sensors

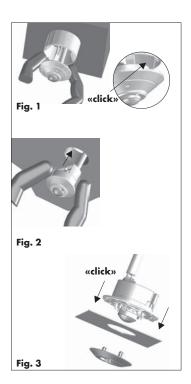
Installation

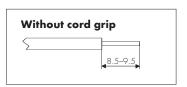
SM (Surface Mounted)

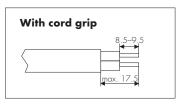
Prepare the cable accordingly and thread it through the back plate of the sensor at the side or from behind. Attach the back plate in the selected position using the two screws provided, then connect the cable to the sensor. Use two fingers to lightly press the springs of the sensor cover together and allow to lock into place along the guide rails inside the sensor's bottom face (see Fig. 1).

FM (Flush Mounted), with or without cord grip

Prepare the cable, connect to the sensor and attach cord grip if appropriate. Use two fingers to lightly press the sensor together and allow to lock into place in the pre-drilled hole (35 mm) in the selected position (see Fig. 2).

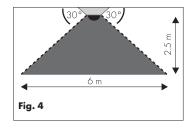

IL (In Luminaire)


Heed the dimension of the drilling template when inserting the sensor in the metal plate, which is 0.5-1 mm thick. Allow the sensor to lock into place in the precisely pre-drilled hole in the metal plate. Allow the sensor cover ring to lock into place from the other side in the recesses provided (see Fig. 3).


Installation instructions

- Conductor cross-section of all terminals: 0.5-1.5 mm² for both rigid and flexible conductors
- Preparation of the sensor cables (see right)
- As a standard DALI bus is not SELV-compliant, cables must be rated for mains voltage.
- The power supply and the DALI line can be laid in a single cable provided the cable does not exceed a maximum length of 100 m, e.g. using NYM 5x1.5 mm².
 Please observe the maximum lengths of the DALI bus during installation:

	1.5 mm ²	1 mm ²	0.75 mm ²	0.5 mm ²
6.2 Ω max.	300 m	180 m	130 m	80 m



Technical Details - Lighting Control System for Indoor Applications

Additional information

- $\bullet\,$ VS MultiSensors can only be operated in combination with a VS Light Controller from the LiCS indoor range.
- Please refer to the controller manual for exact instructions on how to configure the sensor.
- $\bullet\,$ To ensure safe operation of the sensors, the maximum permitted ambient temperature must not be exceeded.
- The sensor must be positioned to ensure its reception range is not obstructed by objects, furniture, etc.
- See Fig. 4 for the sensor range.

The height specified in Fig. 4 is a reference value. For other and specifically greater heights, it may be necessary to test the sensitivity of the sensors on site as the sensitivity of the motion sensor decreases the higher up it is mounted.

Technical details

MultiSensor	SM	FM	IL	
Ref. No.	186191	186192	186193	
Control input	DALI in acc. with IEC 62386			
DALI current consumption	10 mA			
Ambient temperature t _a	0 to 50 °C			
Casing temperature t _c	max. 50°C			
Degree of protection	IP20			
Protection class	II			
Weight	30 g			
CE requirement	Safety in acc. with EN 61347-2-11			

Circuit diagram of the sensors

See the circuit diagrams of the Light Controllers on pages 483 and 484.

ELECTRONIC CONTROL OF OUTDOOR LIGHTING

ECO-FRIENDLY AND COST-SAVING LIGHTING

The lighting solutions provided by Vossloh-Schwabe ensure that local authorities everywhere can save energy, achieve sustainable cost reductions and at the same time make a valuable contribution to reducing CO₂ output. Using various lighting situations as examples, energy savings of 30%–50% can be achieved if efficient technology is used in the right place.

This chapter presents Vossloh-Schwabe's newly developed light control systems for street lighting and lighting systems in the vicinity of buildings.

Luminaires operated in combination with magnetic and dimmable electronic ballasts that feature a 1–10 V or DALI interface can be monitored and controlled using these products. The system is suitable for both new installations as well as classic retrofits.

Without exception, all LiCS outdoor products can rightfully claim to provide the most efficient and most flexible control solutions for outdoor lighting. Vossloh-Schwabe's light management systems enable centralised control of individual luminaires with the advantage of a constant online link and the ability to monitor the lighting system. Lighting systems for which flexibility and efficiency are key, but that do not require an online connection, can benefit from the same savings potential by using the intelligent multifunctional controller units (iMCUs) in offline mode.

Typical applications

- General lighting in public spaces
- Lighting in the vicinity of buildings
- Lighting in tunnels
- Lighting for sports' venues
- Industrial lighting

6

Lighting Control System for Outdoor Applications

Intelligent light control for outdoor applications	490
System overview	491
Network-capable products	492-495
ilC - intelligent luminaire controller (built-in)	492-493
iPC - intelligent post controller (built-in)	493
iDC - intelligent data concentrator	494
iLUX - intelligent lux meter with a power line carrier interface	495
Software	496
iCT - intelligent configuration software	496
iLIC - intelligent luminaire information centre	490
Non network-capable products	497
iMCU - intelligent multifunctional controller unit	497
General technical details	533-540
Glossary	541-543

Sensors

Further sensors for the LiCS outdoor system are currently being developed. Please contact your VS representative for further details. The VS website at **www.vossloh-schwabe.com** also provides information on the current situation.

MidNight Controller

Further controllers for the LiCS outdoor system are currently being developed. Please contact your VS representative for further details. The VS website at **www.vossloh-schwabe.com** also provides information on the current situation.

i

2

3

4

5

6

7

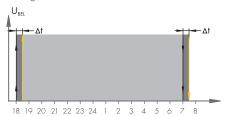
8

9

Intelligent Light Control for Outdoor Applications

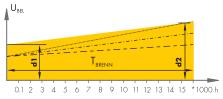
Power line carrier (PLC) technology enables bidirectional data transmission via the 230-V supply voltage. Without requiring additional wiring it is therefore possible to connect these light controllers to form a powerful network using either a lighting cable or a commonly available network cable in almost any environment. Data are measured with a high degree of precision at every controller connected to the network and, if required, automatically amplified. As a result, length restrictions make no difference. Vossloh-Schwabe's LiCS Outdoor system is based on this tried-and-tested technology, which has already proved itself millions of times in the most diverse applications and fields.

Vossloh-Schwabe's LiCS Outdoor system makes it possible to dim individual luminaires or entire luminaire groups. Depending on the requirements, the degree to which the lighting level is dimmed can be sensor-controlled or can comply with a preset level; the burn-in periods of discharge lamps can also be taken into consideration.

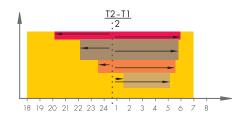

A lighting system that provides light as required therefore results in further savings potential.

Thanks to the system's convenient remote monitoring functions, it is possible to optimise maintenance processes as well as better plan maintenance work and budget for it in more detail.

Overview of functions

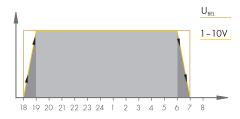

Independent functions form an integral part of the LiCS Outdoor controller and are common to all products. The parameters of these functions can be (re)set at any time by the customer using various tools or via the power line carrier network.

DPC (Delayed Switching for Pedestrian Crossing)
The lighting is switched off after a short delay or
switched on more quickly in the vicinity of pedestrian
crossings

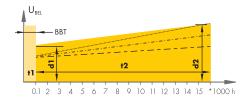


MFF (Maintenance Factor Function)

Maintenance factor function: reduction of the degree to which the luminous flux decreases over the service life of the light source.



ISD (Intelligent Switching Time Dimming)
Intelligent, timer-controlled periods of dimmed light.


DOO (Dimmed ON/OFF)

The lighting system is switched on or off in a dimmed state; also, dimmed changeover between dimming levels with configurable time sequences

BBT (Burn-in Block Time)

Configurable dimmer block during the burn-in period of conventional light sources (can be deactivated).

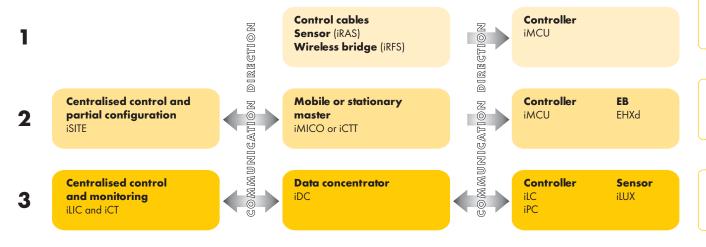
LST (Control input)

Control input with configurable behaviour and effect on the DALI/1-10 V output or the relay's two-way contact.

RCR (Ripple Control Receiver)

Sound frequency reception module for typical sound frequencies of 100 Hz to 1.7 kHz; TFR protocols on request.

Overview of the LiCS Outdoor System


Product matrix	Network-capable		Non network-capable
Software	iLIC	isite	-
Data concentrator	iDC	iMICO or iCTT	
	• GPRS		
	• IP • FO-MM		
	• FO-SM		
Controller	iLC (for installation in luminaires)	iMCU (controller)	iMCU Light Controller
	iPC (for installation in the luminaire pole)	EHXd (electronic ballasts)	for independent operation
	iRFS (controller)	iRFS (controller)	iRFS (controller)
Sensors	iLUX (lux meter) / iRAS (radar sensor)	iRAS (radar sensor)	iRAS (radar sensor)
			iRFS (wireless bridge)
	-		
Operating unit	iSCT (tablet) iCTI (hand-held operating device)	-	_
	(riuna-neia operating device)		

The technical documentation for the iMICO and iCTT MidNight controllers as well as the associated iSITE software can be found online at www.vossloh-schwabe.com.

Please contact your VS representative for further details.

www.vossloh-schwabe.com

Expansion Options for the LiCS Outdoor System

VSVOSSLOH SCHWABE

Light Control Gear for Outdoor Luminaires

Vossloh-Schwabe's outdoor light control gear works with power-line-carrier communication using the C/B CENELEC band. Thanks to the integrated functions, they can be used as independent control components or be integrated into a light management system to centrally monitor and regulate individual luminaires.

The LiCS outdoor system enables control of luminaires operated with magnetic ballasts (low-lost ballast and low-loss ballast ECO) as well as luminaires with up to four dimmable electronic ballasts with a 1-10 V or DALI interface.

The product is suitable both for new installations as well as for classic retrofits. The particularly flat design of the controller enables installation in almost all luminaires, especially luminaires featuring LED technology.

Control input LST can be used for a control phase, a motion detector, a key switch, a light sensor or, if operated independently, to receive simple protocols. Please contact your VS representative for further details.

The controller is integrated into a LON power-line-carrier light management system that requires a network connection to a central module (iDC). Communication via power line carrier occurs in accordance with standardised directives EN 14908-1, EN 14908-3 and the Lonmark® OLC profile (outdoor luminaire controller profile).

Installation and integration requires further products that are supplied in accordance with customer specifications. Once installed in a light management system, the controller delivers various performance data and status reports independently of the connected ballast. The following calibrated performance data are available within a tolerance of 1%: voltage, current, power factor, energy consumption, lighting hours and temperature. Limits must be defined for each measured value, which are then monitored in the controller with a report being transmitted to the master system if limits are exceeded. As a result, the controller itself already intelligently monitors the luminaire.

iLC – intelligent Luminaire Controller (built-in)

This light controller was developed for installation in a luminaire. Without requiring additional wiring, it can be integrated into a light management system.

Technical notes

Dimensions (LxWxH): $93 \times 58 \times 30$ mm Control output: DALI or 1 – 10 V for max. 4 EBs, Short-circuit-proof

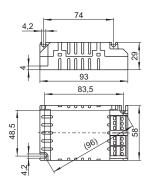
Bistable relay output: closing contact, control

output ECO ballast: 10 mA for powerreduction relays

Connection terminals: 0.5-1.5 mm² Operating temperature: -25 to 85 °C Betriebstemperatur: -25 to 80 °C

Humidity: non-condensing

Degree of protection: IP20, protection class I


Galvanic isolation

The electronic ballast does not feature potential isolation between input and output: as soon as the electronic ballast is connected to the controller, the control input of the electronic ballast is not potential-free.

Typical applications

Lighting for public spaces Lighting in the vicinity of buildings Lighting for tunnels

O DPC	MFF	(in ISD)	() DOO
ВВТ	LST	RCR	

•	Гуре	Ref. No.	Voltage AC	Power consumption	Control input LST	Switching output	Switching current	Weight
			V, Hz	W	V	V	$A (\lambda = 0.8)$	g
ľ	LC	186233	90-230, 50	< 1,2	230	230	4	100

new

Operating Elements

The parameters of the ilC, iPC and the iMCU light control devices can be (re)set at any time using various tools. A hand-held operating unit is available with which the iMCU can be updated with modified parameters even without an external power supply. The parameters of the ilC and iPC controllers are set using the power line carrier via the iDC data concentrator.

Further product details are available at **www.vossloh-schwabe.com**.

Type Ref. No.		Ref. No.	Description	Dimensions	Weight
				LxWxH (mm)	g
	iSCT	186251	Intelligent tablet	266x212x17	970
	iCTI	186246	Intelligent hand-held operating device	180x65x40	200

iPC – intelligent Pole Controller (built-in)

This light controller was developed for installation in a luminaire pole. It can also be integrated into a light management system without requiring additional wiring.

Technical notes

Dimensions (LxWxH): $250 \times 60 \times 55$ mm Control output: DALI or 1 - 10 V for max. 4 EBs,

Short-circuit-proof

Bistable relay output: closing contact Control output ECO ballast: 10 mA for

power-reduction relays

Connection cable: 1 m (special configurations

are available on request)

Storage temperature: -25 to 85 °C Operating temperature: -25 to 80 °C

Humidity: non-condensing

Degree of protection: IP20, protection class II

Galvanic isolation

The electronic ballast does not feature potential isolation between input and output: as soon as the electronic ballast is connected to the controller, the control input of the electronic ballast is not potential-free.

Typical applications

Lighting for public spaces
Lighting in the vicinity of buildings

	•	•	-	
40	90			

90				
	O DPC BBT	MFF LST	ISD RCR	<u>0</u> DOO

	Туре	Ref. No.	Voltage AC	Power consumption	Control input L _{ST}	Switching output*	Switching current	Suitable for	For ripple-control	Weight
			V, Hz	W	V	V	$A (\lambda = 0.8)$	iLUX light sensors	sound frequency**	9
V	iPC	186234	90-230, 50	< 1.2	230	230	4	no	no	360
7	iPC-Lux	186235	90-230, 50	< 1.2	230	230	4	yes	no	360
7	iPC-RC	186236	90-230, 50	< 1.2	230	230	4	no	yes	360

* Optionally available with a second switching output on request

www.vossloh-schwabe.com

VSSLOH SCHWABE

new new

^{**} Protocols on request

For ripple-control iDC – intelligent Data Concentrator

The iDC forms the master of the light management system and functions as the central connection interface to the software of the master system. The product can be programmed and also features application programs that are perfect for controlling lighting systems.

The following functions are an integral part of the product: timer programs, monitoring of limit values plus alarm function and alarm transmission, data conversion, data logging and email client.

Fitted with various interfaces such as SO for counter registration, the M bus for remote counter reading or the MOD bus for extended sensor and actuating functions, the iDC can adapt to suit almost any control task.

The iDC also provides a very well documented, web-based XML/SOAP interface or an optionally available OPC driver (open process control) to the SCADA (Supervisory Control and Data Acquisition) system. This makes it possible to integrate the iDC also into any BA (Building Automation) or control

The iLIC software was specifically developed to enable control of the iDC. Various extension options are available to suit common communication requirements: GPRS, IP (CAT5), Fibre optic (FO) Single Mode, Fibre optic (FO) Multi Mode, and optionally also WLAN on request.

Technical notes

Dimensions (BxWxT): 280x230x112 mm Material: aluminium AlSi12 (Fe)

Drill holes for cables:

Outputs:

2 PG metric fittings (25x1.5 mm) 2 PG metric fittings (32x1.5 mm) 1 PG metric fittings (20x1.5 mm) Interfaces for power line carriers

Inputs: 2 x 30 V DC digital inputs

Optionally extendable using a cut-off

relay for 230 V AC

2 impulse-counter inputs typical of SO 2 relay outputs 230 V AC; 10 A

Ethernet port 10/100BaseT, auto-selecting,

RS232 interface for GSM/GPRS modem

LON power line carrier communication:

Protocols: in acc. with ANSI CEA 709.1 /

EN 14908-1 on the supply voltage

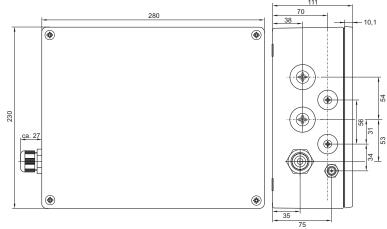
(tri/single phase)

Transmission: in acc. with ANSI CEA 709.3 /

EN 14908-3

IP communication: XML / SOAP, http, FTP, UDP

FME antenna connection: male Storage temperature: -25 to 85 °C Operating temperature: -25 to 60 °C


Humidity: non-condensing

Degree of protection: IP65, protection class I

Special features

The product can be commissioned using the VS iCT tool.

new	iΩ
new	iE
new	iΣ
new	iE

	Туре	Ref. No.	Voltage AC	Average power consumption	Transmission mode	Weight
			V, Hz	VA	VA	9
7	iDC-GPRS	186230	230±10%, 50±1%	standby 7VA	12	4400
7	iDC-IP	186237	230±10%, 50±1%	standby 7VA	12	4400
1	iDC-FO-MM	186238	230±10%, 50±1%	standby 7VA	12	4400
1	iDC-FO-SM	186239	230±10%, 50±1%	standby 7VA	12	4400

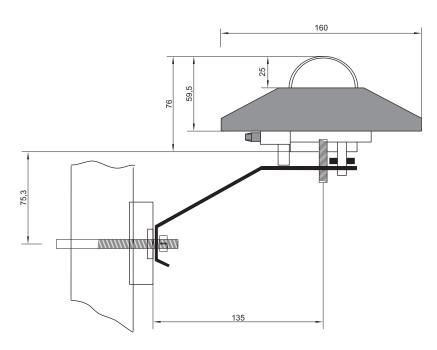
iLUX - intelligent Lux Meter with a Power-Line-Carrier Interface

The high-quality light sensor, upgraded with a special variant of the iPC controller for installation in the luminaire pole, directly measures and delivers digital light metrics in lux to a light management system for the purpose of lighting control.

Lighting systems operated with or without a light management system can be switched on or off at a specific lux value via internal relays. The measured lux values can then be transmitted to the lighting system via the power line. Depending on the respective lighting level required in each case, it is therefore possible to independently control luminaires in different areas, e.g. at major and minor roads, pedestrian crossings and in parks.

The compact sensor can be fixed to the luminaire pole or a wall using the enclosed mounting bracket.

Technical notes


Dimensions (LxWxH: 165x165x104 mm Sensor casing: aluminium with a PC cover, Sensor unit protected by opal glass Connection cable to the controller: 10 m (special configurations available on request) Storage temperature: -25 to 85 °C Operating temperature: -25 to 80 °C Humidity: non-condensing Degree of protection: IP65 Weight of mounting bracket: 300 g For details on the casing and connections of the iPC controller (intended for installation in luminaire poles), see page 493

Typical applications

new

Lighting for public spaces
Lighting in the vicinity of buildings

	Type Ref. No. Note		Note	Weight
				9
1	iLUX	186231	Use only in combination with iPC-LUX (Ref. No.: 186235)	1000

1

2

3

4

5

6

7

8

9

iCT - intelligent Configuration Software

For outdoor luminaire control

The software was specifically developed to integrate iLC or iPC luminaire controllers in the iDC. This enables quick and convenient installation of all controllers in network segments. Commissioning can also be completed quickly by using an optional barcode scanner to read the unique barcode identification number printed on each controller. The parameters of the controllers of the individual luminaires as well as luminaire groups can be set in accordance with the OLC Lonmark® profile. The software is available only in combination with the iDC, the intelligent data concentrator.

new Ref. No.: 186242

iLIC - intelligent Luminaire Information Centre

For outdoor luminaire control

The luminaire information centre is the central control instrument of a light management system. All connected luminaires can be controlled, monitored and displayed using a web-based server application.

The server-based software supports both Windows and Linux operating systems. Firefox or Internet Explorer are the frontend applications to operate, control or display the light management system. The following actions can be controlled via the software:

- Switching individual luminaires on or off ahead of defined luminaire groups
- Defining the most diverse timer settings
- Evaluation and display of the lighting system status depending on various types of error message
- Evaluation of energy consumption at individual luminaire and luminaire-group level
- Graphic display of all acquired data over time (voltage, current, power, temperature, power factor, lighting hours, ...)

new Ref. No.: 186243

Based on the software design, the lighting system displays information as a tree-like structure showing city, suburb, street, luminaire or can be broken down according to other criteria. The multi-client software also makes it possible to restrict rights and functions for different people or groups of people depending on their level of authorisation.

As the software is a wholly web-based application, system maintenance can be carried out via the web (global) or can be restricted to just the company using its LAN network, all depending on the system structure. Numerous users can access the system at the same time. Optional interfaces are also available to connect to other asset management systems.

System requirements

- Server: state-of-the-art
- RAM: 4GB HD: 2TB
- CPU: min. Dual Core, depending on the scope of the project
- Operating system: XT,
 Windows 7, Linux, Distribution,
 VM operation is possible
- Data security: min. RAID 1, recommended RAID 5

iMCU – intelligent Multifunctional Controller Unit

For outdoor luminaire control

This light controller unit was specifically designed for independent operation to enable control of street lighting or lighting close to buildings.

The unit is suitable for use with luminaires operated with magnetic ballasts (low-loss ballasts and low-loss ballasts ECO) as well as with dimmable electronic ballasts that support a 1-10 V or DALI interface.

The product is suitable both for new installations as well as for classic retrofits. The controller's particularly compact design facilitates installation in almost any luminaire, especially luminaires with LED technology.

Depending on the given task, the product can replace one or more individual products. It also enables control of conventional magnetic ballasts with coil tapping points without needing any other components. The control input LST can be used to connect a control phase, a motion detector, a key switch or a light sensor, but can also be used to receive simple data protocols.

Operating units

The parameters of the iMCU can be (re)set at any time using various tools. A simple hand-held unit (which does not require an additional power supply) is available with which the installed controller can be updated with modified parameters (see page 493).

Alternatively, a Windows-based program can be used that provides extended functions for stationary applications. To suit the specific requirements of the OEM market, the controller can be supplied with software protection mechanisms. Please contact us directly for further information.

2

3

iCS

4

Technical notes

Dimensions (LxWxH): $83 \times 30 \times 19$ mm Control output: DALI or 1-10 V for max. 1 EB, short-circuit-proof

Relay contacts: potential-free (input, opener,

closing contact)

Connection terminals: 0.5–1.5 mm² Storage temperature: -25 to 85 °C Operating temperature: -25 to 80 °C

Humidity: non-condensing

Galvanic isolation

Degree of protection: IP20, protection class I

The electronic ballast does not feature potential isolation between input and output: as soon as the electronic ballast is connected to the controller, the control input of the electronic ballast is not

7 69 (7) 83 83 (3)

6

7

Typical o	applications
-----------	--------------

potential-free.

Street lighting or lighting in the vicinity of buildings

DPC	MFF	ISD	<u>0</u> DOO
ВВТ	LST	RCR	

	Туре	Ref. No.	Voltage AC	Power consumption	Control input LST	Switching current	Weight
			V, Hz	mW	V	$A (\lambda = 0.8)$	9
new	iMCU	186232	220-230, 50	< 500	230	4	30

8

Emergency Lighting Modules for TC and T Lamps

6-80 W
EMERGENCY
LIGHTING
MODULES

EMERGENCY LIGHTING

Emergency lighting systems spring to life any time normal artificial lighting systems fail. Emergency lighting is designed to ensure that work can continue without risk, that staff can safely leave any workplaces involving special hazards and that there is sufficient lighting to illuminate rescue paths/routes as well as to avoid panic situations.

As power cuts result in a risk to safety, legislation has been enacted in the form of the Health and Safety at Work Directive (Europe) and the Health and Safety at Work Acts of the individual European countries (e.g. Germany), all of which stipulate that emergency lighting must be provided. The requirements placed on emergency lighting installed in places of public assembly and public buildings are governed by supplementary directives and laws.

Vossloh-Schwabe's emergency lighting units are designed for use with T5, T8 and compact fluorescent lamps and can be operated with electromagnetic or electronic ballasts.

VS emergency lighting units are suitable for both continuous and standby circuits with a nominal operating period of 1 or 3 hours.

Emergency Lighting Modules for TC and T Lamps

Emergency lighting modules with self-diagnosis function	500-501
Technical details for emergency lighting modules	502-508
General technical details	533-540
Glossary	541 - 543

Emergency Lighting Modules 6 to 80 W with Self-Diagnosis Function

EMXs - Emergency lighting modules

For one-, two-, three- or four-lamp operation with standard and dimmable electronic or magnetic ballasts

EB phase is switched off during emergency operation

Short circuit protection

RoHS-compliant (excluding rechargeable batteries)
5-pin technology and therefore EMC-compliant
even during emergency operation

Suitable for protection class I EN 61347-1, EN 61347-2-7

Suitable for systems in accordance with VDE 0108 or EN 50172

Not suitable for lamps with an integrated starter

Cyclic charging of the NiMH battery is microprocessor controlled, which can extend battery life by up to 30%

Dimensions (LxWxH): 210×31.4×21.5 mm Fixing hole distance: 205.5 mm

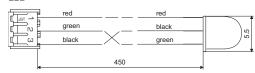
Nominal voltage: 230 V \pm 10%, 50-60 Hz Ambient temperature t_a : 0 to 50 °C

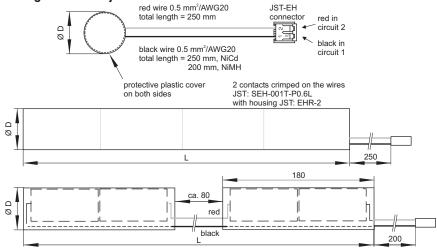
Unit: 25 pcs.

These VS emergency lighting modules include an automatic self-diagnosis feature that performs a two-minute function test of the device, the lamp and the battery every seven days.

In addition, the operating period is tested every 12 months with subsequent battery reactivation.

Optical status display


- Red LED, flashing intermittently: defective lamp. The status display will be reset approx. one minute after the fault has been rectified.
- White LED, not illuminated:
 if connected to the power supply, the LED
 must turn green after a maximum of five minutes.
 If not, the device either has no voltage supply
 or the emergency lighting module is defective.
- Red LED, permanently flashing: battery capacity is too low or the battery supply line has been interrupted.
- Green LED: fully functional.


Emergency lighting module

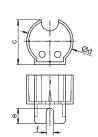
LED

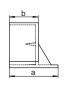
Rechargeable battery

Emergency Lighting Modules 6 to 80 W with Self-Diagnosis Function

EMXs - Emergency lighting modules

Туре	Ref. No.	Ref. No.	Nominal operating	Rechargeable	Dimensions LxD (Ø)	Test function	Weight	Weight
	Module	Battery	period	battery type	of battery		module	battery
			hrs.		mm		g	g
EMXs 180.000	188792	188823	1	4.8V 1.8Ah NiCd	1 / 190 x 23	automatic	160	200
EMXs 180.001	188793	188824	3	4.8V 4.5Ah NiCd	1 / 240 x 33	automatic	160	490
EMXs 180.002	188794	188825	1	4.8V 1.8Ah NiMH	1 / 200 x 17	automatic	160	140
EMXs 180.003	188795	188826	3	4.8V 4.5Ah NiMH	2 / 450 x 19	automatic	160	320


Circuit diagrams see page 506-508


Holders for Rechargeable Batteries for Emergency Lighting Modules

Material: PC (188828: PBT) Type: Rechargeable Battery Holder

Ref. No.	For rechargeable	Dimensions (mm)					
	battery type	а	Ь	С	d	е	f
188827	4.8V 1.8Ah NiCd	35.0	18.0	26.3	26.7	13.0	5.5
188828	4.8V 4.5Ah NiCd	39.0	32.2	36.2	3 <i>7</i> .3	12.4	6.0
188829	4.8V 1.8Ah NiMH	22.5	15.0	22.8	22.5	8.0	4.0
188829	4.8V 4.5Ah NiMH	22.5	15.0	22.8	22.5	8.0	4.0

It is recommended to use two holders per rechargeable battery to ensure optimum hold.

Table of suitable lamp types

Lamp type	Lamp nominal output		
	W		
T8	15, 18, 32, 36, 58, 70		
T5 HE	14, 21, 28, 35		
T5 HO	24, 39, 49, 54, 80		
T5	6, 8, 13		
T-R5 (T-R16)	22, 40, 55, 60		
T-R (T29-R)	22, 32, 40		
TC-L/TC-F	18, 24, 36, 40, 55, 80		
TC-DEL	10, 13, 18, 26		
TC-TEL	13, 18, 26, 32, 42, 57, 70		
TC-SEL	7, 9, 11		
TC-DD (2D)	10, 16, 21, 28, 38, 55		

Luminous flux factor of lamps during emergency operation

the state of the s	
Lamp nominal output	Luminous flux factor*
W	%
6	43.0
8	32.0
18	13.0
28	9.0
32	7.0
35	7.0
36	7.0
49	4.7
54	4.3
55	4.7
58	5.2
70	4.3
80	3.7

* Theoretically defined reference values at 25°C ambient temperature

Emergency Lighting Modules for TC and T Lamps

i

Assembly instructions for emergency lighting modules	502-50
Electrical installation	502-50
Emergency lighting module display	50
Circuit diagrams	506-50
General technical details	533-54
Glossary	541-54

Technical Details - Emergency Lighting Modules for TC and T Lamps

Emergency lighting modules are designed for operation with 6 to 80 W, 4-pin fluorescent lamps. Luminaires with integrated emergency lighting modules can be operated using a continuous or standby circuit.

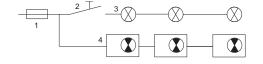
Technical specifications	EMXs emergency lighting modules		
Permissible mains voltage	230 V ±10%		
Permissible mains frequency	50-60 Hz		
Power consumption with standby circuit	3 W		
Nominal period of operation	1 to 3 hours, depending on the type of rechargeable battery		
Batteries	NiCd or NiMH		
Ambient temperature	0* to 50°C		
Charging time	24 hrs		
Protection class	1		
Degree of protection	IP20		
Certification	CENELEC		
Tested in accordance with	EN 61347-2-7		
Suitable for systems compliant with	VDE 0108 / EN 50172		
Casing	Metal (zinc-plated)		
Installation outside the luminaire	Permissible lead length between the emergency lighting module and the lamp must not exceed two metres.		
Luminous flux factors during emergency operation	See the table on page 501, values apply to 25 °C ambient temperature.		

 $^{^{\}star}$ Ignition in progress; the values of the colour rendering index and the luminous flux factor may deviate.

Assembly Instructions for Emergency Lighting Modules

For mounting and installing of emergency lighting modules

If the emergency lighting module is integrated in the luminaire, the LED and battery have to be wired separately, i.e. not in parallel with the mains or lamp. Emergency lighting modules must be fixed in a suitable spot within the luminaire (4-mm bore holes for mounting).


In the interest of maximising battery capacity and service life, care must be taken to ensure the battery is positioned at the coolest part of the luminaire. The ambient temperature of the battery must not exceed 50 °C. Emergency lighting modules must not be mounted on surfaces that ignite, melt or undergo some other thermal change at a temperature of 60 °C. Moreover, emergency lighting modules must not be operated in explosion-endangered enclosed spaces.

Electrical installation

The respective ordinances and standards valid at the place of operation must be observed for installation purposes. Emergency lighting modules and luminaires must only be installed by trained staff. Operating voltages exceed 50 V. Caution: potentially fatal hazard!

Prior to first operation of emergency luminaires, all covers must be attached. Furthermore, care must be taken to ensure that the supply voltage complies with the specifications on the type plate and the protective conductor is connected.

- 1. Fuse
- 2. Light switch
- 3. Room lighting
- 4. Emergency luminaires

Emergency luminaires must be connected to a direct phase to enable mains monitoring and ensure constant charge retention. This phase must be connected to the group fuse of the regular room luminaire. Emergency luminaires are generally delivered with uncharged batteries and must be connected to the mains for at least 48 hours to be fully functional or for approx. 10 minutes for mains operation in the case of a continuous circuit.

1

2

3

4

5

5

7

8

9

Technical Details - Emergency Lighting Modules for TC and T Lamps

Additional information for optimising EMC

Information on the installation of electronic ballasts for optimising EMC

To ensure good radio interference suppression and the greatest possible operating safety, the following points should be observed when installing electronic ballasts:

- Conductors between the EB and the lamp (HF conductors) must be kept short (reduction of electromagnetic interference). High-potential lamp conductors must be kept as short as possible, in particular with tubular lamps. Lamp conductors of this kind are labelled with an * in the wiring diagram on the type plate.
- Mains and lamp conductors must be kept separate and if possible should not be laid in parallel to one another. The distance between HF and mains conductors should be as large as possible, ideally > 5 cm. (This prevents the induction of interference between the mains and lamp conductors.)
- The mains conductor within the luminaire must be kept short (to reduce the induction of interference).
- Devices must be properly earthed. EBs require secure contacts to the luminaire casing or must be earthed using a PE connection. This PE connection should be effected using an independent conductor to achieve better dissipation of the leak current. EMC improves at frequencies greater than 30 MHz.
- The mains conductor must not be laid too close to the EB or the lamp (this is especially important in the event of through-wiring).
- Mains and lamp conductors must not be crossed. Should this be impossible to avoid, conductors should be crossed at right angles to one another to avoid inducing interference between mains and HF conductors.
- Should conductors be wired through metal parts, such conductors must always be additionally shielded (e.g. with an insulating sleeve or grommet).

Maintenance With regard to system maintenance and control, care must be taken to ensure compliance with any ordinances and standards governing emergency lighting at the place of installation. Prior to opening lamp covers, the following procedure must be observed:

- Disconnect luminaires from the mains voltage.
- 2. Remove cover.
- 3. Disconnect battery from the emergency lighting module (disconnect the plug). VS recommends connecting control LEDs to be visible on the outside of emergency luminaires to enable simple and regular control of emergency luminaires and emergency lighting modules.

Changing batteries

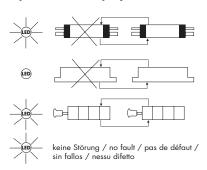
Batteries need to be replaced if the operating period of luminaires falls short of 60 minutes in the case of 1-hour operation and 180 minutes for 3-hour operation, respectively. Emergency lighting modules have a status display for this purpose.

Spent batteries must be replaced with the manufacturer's original batteries only. Furthermore, the polarity of the batteries must be strictly observed. The battery supply lines of the emergency lighting module are marked as follows:

red = +; black = -

Emergency lighting module display

Normal operation is indicated by a green LED. During emergency operation or for as long as the battery remains fully discharged, the LED is off (i.e. does not glow). The LED will flash red if the battery is missing or not properly connected.


Automatic test of emergency lighting modules

In the case of emergency luminaires with emergency lighting modules, the operational readiness of the device, the lamp and the battery is tested automatically every seven days. In addition, battery capacity is measured during a simulated loss of mains power every 12 months

The first capacity test will be carried out seven days following initial installation or any repair work. The LED must be checked after the first self-test. A green LED indicates all is in working order, any other display indicates a problem.

The device features a two-colour LED display to indicate that the emergency luminaire is ready for use.

Optical status display

Emergency luminaires merely require regular visual inspection of the status display (LED) and the luminaire itself.

Red LED, flashing intermittently	During initial operation, a lamp recognition test is first carried
	out. Prior to and during this test, the LED will be red and flash
	intermittently.
White LED, not illuminated	If connected to mains power, the LED must turn green after
	a maximum of five minutes. If not, the device has no mains
	voltage or the emergency lighting module is defective.
Red LED, continuous flashing	Battery capacity is too low or the battery supply line has been
	interrupted. The warning light will go off again as soon as the
	problem has been rectified.
Green LED	Fully functional.

Notes

Vossloh-Schwabe accepts no liability for any direct, indirect or incidental damage caused by putting a device to any improper use, i.e. any use not expressly permitted by VS. Similarly, Vossloh-Schwabe accepts no liability for third-party claims arising from putting a device to any improper use, i.e. any use not expressly permitted by VS. Emergency lighting modules must not be opened or modified in any way. The components of emergency lighting modules must be replaced with original parts only.

Should emergency lighting modules be damaged in a way that suggests it cannot be operated safely, the luminaires or emergency lighting modules, respectively, must not be operated. VS reserves the right to make changes to diagrams, weights, tables of dimensions or other such details included in the catalogue or instructions for use without prior notice if such changes prove to be necessary or are made as a result of technological progress. VS emergency lighting modules are patent protected.

Any act of producing counterfeit VS products will be prosecuted according to criminal and civil law.

Caution!

Emergency lighting modules from VS must not be operated with amalgam lamps.

2

3

4

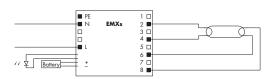
5

6

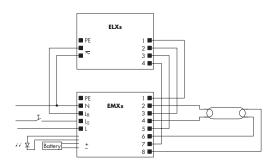
7

8

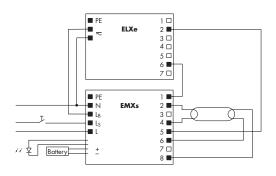
9

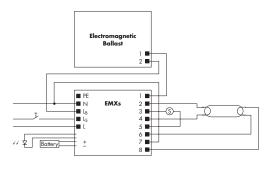

Circuit Diagrams

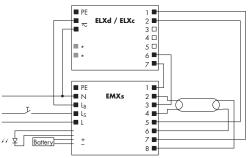
For VS emergency lighting modules


Notes for wiring:

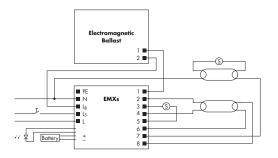
- The distance between mains lead and lead 8 should be as large as possible
- Leads 2/4/6/8 must be kept short

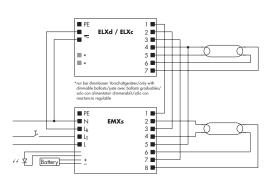

Circuit diagrams – 1-lamp operation


1-lamp operation without electronic or electromagnetic ballast (continuous circuits)

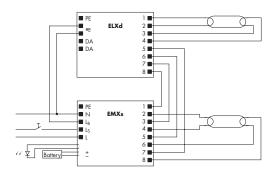

1-lamp operation - Warm start with electronic ballast ELXs

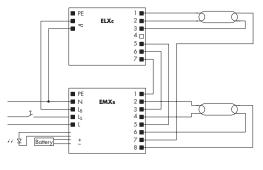
1-lamp operation - Instant start with electronic ballast ELXe

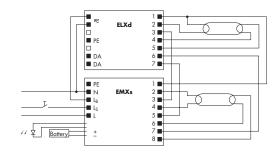

1-lamp operation with electromagnetic ballast

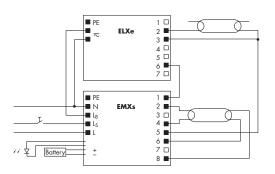

*nur bei dimmbaren Vorschaltgeräten/only with dimmable ballasts/juste avec ballasts graduables/solo con alimentatori dimmerabili/sólo con reactancia regulable

1-lamp operation – Dimming / Warm start with electronic ballast ${\rm ELXd}$ / ${\rm ELXc}$

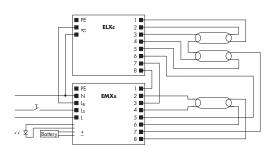

Circuit diagrams - 2-lamp operation


2-lamp operation with electromagnetic ballast

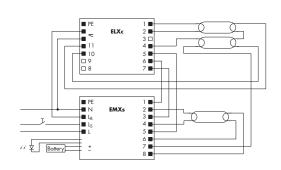

2-lamp operation – Dimming / Warm start with electronic ballast ELXd / ELXc


2-lamp operation - Dimming with electronic ballast ELXd

2-lamp operation - Warm start with electronic ballast ELXc



2-lamp operation - Dimming with electronic ballast ELXd



2-lamp operation - Instant start with electronic ballast ELXe

Circuit diagrams - 3-lamp operation

3-lamp operation - Warm start with electronic ballast ELXc

3-lamp operation - Warm start with electronic ballast ELXc

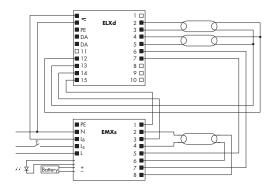
VOSSLOH

2

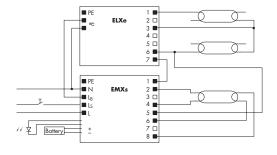
3

4

5

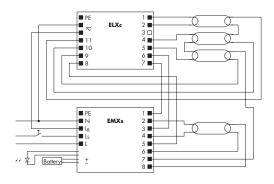

6

7

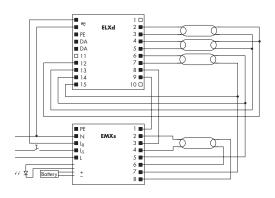

8

9

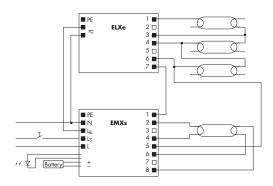
Circuit diagrams - 3-lamp operation



3-lamp operation - Dimming with electronic ballast ELXd



3-lamp operation - Instant start with electronic ballast ELXe


Circuit diagrams – 4-lamp operation

4-lamp operation - Warm start with electronic ballast ELXc

4-lamp operation - Dimming with electronic ballast ELXd

4-lamp operation – Instant start with electronic ballast ELXe

SYSTEMOPTIMISING COMPENSATION

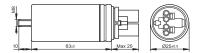
PARALLEL CAPACITORS

Capacitors are designed to compensate inductive reactive current of discharge lamps in 50/60 Hz networks when operated with electromagnetic ballasts. As required by utility companies, capacitors serve to compensate the reactive current generated by the respective ballast. A power factor of $\lambda \geq 0.9$ is achieved.

In addition, capacitors can also be used to compensate or generate phase displacements. Careful selection of the raw materials as well as special thermal treatment of the capacitor coil guarantee a long service-life and stable capacitance.

Parallel Capacitors

Parallel capacitors	512-515
Technical details for parallel capacitors	516-524
General technical details	533-540
Glossary	541 - 543


Parallel Connected Capacitors with Break-action Mechanism

Capacitors type B

Casing: aluminium
Filling material: based on vegetable oil
Fastening: male nipple
with nut and washer included
Discharge resistance
Overpressure protection
On request further capacities or connectors



A Push-in twin terminals 0.5 – 1 mm²

B Double spade connector 6.3 x 0.8 acc. to IEC 61210

Parallel Connected Capacitors with Break-action Mechanism

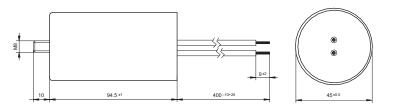
Capacitors type B

Ref. No.	Capacity	Temperature range	Drawing	Ø (D)	Length (L)	Male nipple/	Weight	Unit
	μF	°C		mm	mm	length (mm)	g	pcs.
250 V, 50/6	60 Hz							
536378	2.0	-40 to 100	А	25	63	M8x10	85	100
536379	4.0	-40 to 100	А	25	63	M8x10	85	100
536380	6.0	-40 to 100	А	25	63	M8×10	85	100
536381	8.0	-40 to 100	А	25	78	M8×10	90	100
536382	10.0	-40 to 100	А	30	78	M8×10	95	100
536383	12.0	-40 to 100	А	30	78	M8×10	95	100
536384	13.0	-40 to 100	А	30	78	M8x10	95	100
536385	16.0	-40 to 100	А	35	78	M8×10	100	81
536386	18.0	-40 to 100	А	35	78	M8×10	100	81
536387	20.0	-40 to 100	А	35	78	M8×10	100	81
536388	25.0	-40 to 100	А	40	78	M8x10	110	64
536389	30.0	-40 to 100	А	35	103	M8×10	115	81
536390	32.0	-40 to 100	А	35	103	M8×10	115	81
536391	35.0	-40 to 100	А	40	103	M8×10	130	64
536392	40.0	-40 to 100	А	40	103	M8x10	130	64
536393	45.0	-40 to 100	А	40	103	M8×10	130	64
536394	50.0	-40 to 100	А	45	103	M8x10	160	49
536395	55.0	-40 to 100	А	45	103	M8×10	160	49
536396	60.0	-40 to 100	А	45	103	M8x10	200	49
380-450 V	50/60 Hz							
536397	13.0	-40 to 85	А	35	103	M8×10	115	81
536398	18.0	-40 to 85	А	40	103	M8×10	130	64
536399	28.0	-40 to 85	А	45	103	M8×10	130	49
536400	32.0	-40 to 85	А	45	103	M8×10	130	49
536401	37.0	-40 to 85	А	50	103	M12x12	220	36
536402	50.0	-40 to 85	А	55	103	M12x12	240	36
536403	55.0	-40 to 85	В	50	128	M12x12	250	36
536404	60.0	-40 to 85	В	55	128	M12x12	250	36
536405	85.0	-40 to 85	В	60	138	M12x12	300	36

Parallel Connected Capacitors 250 V, 50/60 Hz

Capacitors type A

Casing: plastics, white or aluminium
Fastening: male nipple
with nut and washer included
Discharge resistance
Optional: thermal cut-out,
European wide patent
On request with alternative capacities,
connection terminals, mounting options,
casing materials or with a thermal fuse
as well as versions with IDC terminal for
the automatic luminaire wiring


Ref. No.	Capacity	Temperature range	Ø (D)	Length (L)	Male nipple/	Push-in	Weight	Unit
	μF	°C	mm	mm	length (mm)	twin terminals	g	pcs.
Plastic casir	ng					•		
500296	2.0	-40 to 85	25	57	M8×10	0.5 - 1 mm ²	22	530
500299	2.5	-40 to 85	25	57	M8×10	0.5 - 1 mm ²	22	530
500300	3.0	-40 to 85	25	57	M8×10	0.5 - 1 mm ²	22	530
500301	3.5	-40 to 85	25	57	M8×10	0.5 - 1 mm ²	22	530
500302	4.0	-40 to 85	25	70	M8×10	0.5 - 1 mm ²	29	450
500303	4.5	-40 to 85	25	70	M8×10	0.5 - 1 mm ²	29	450
500304	5.0	-40 to 85	25	70	M8×10	0.5 - 1 mm ²	29	450
500305	6.0	-40 to 85	25	70	M8×10	0.5-1 mm ²	29	450
506495	7.0	-40 to 85	30	70	M8×10	0.5 - 1 mm ²	35	320
502783	8.0	-40 to 85	30	70	M8×10	0.5 - 1 mm ²	35	320
504147	9.0	-40 to 85	30	70	M8×10	0.5 - 1 mm ²	37	72
508667	10.0	-40 to 85	30	70	M8×10	0.5 - 1 mm ²	39	320
506366	12.0	-40 to 85	30	94	M8×10	0.5 - 1 mm ²	43	260
508468	15.0	-40 to 85	30	94	M8×10	0.5 - 1 mm ²	43	260
508668	16.0	-40 to 85	30	94	M8×10	0.5 - 1 mm ²	48	260
500315	18.0	-40 to 85	35	94	M8×10	0.5 - 1.5 mm ²	55	190
500316	20.0	-40 to 85	35	94	M8×10	0.5 - 1.5 mm ²	62	190
500317	25.0	-40 to 85	40	94	M8×10	0.5 - 1.5 mm ²	66	80
500318	30.0	-40 to 85	40	94	M8×10	0.5 - 1.5 mm ²	72	100
Aluminium	casing							·
500319	32.0	-40 to 85	35	135	M8×10	0.5 - 1.5 mm ²	70	50
500320	35.0	-40 to 85	40	135	M8×10	0.5 - 1.5 mm ²	135	36
500321	40.0	-40 to 85	40	135	M8×10	0.5 - 1.5 mm ²	139	36
536406	45.0	-40 to 85	40	135	M8×10	0.5 - 1.5 mm ²	139	36
500322	50.0	-40 to 85	45	135	M8×10	0.5 - 1.5 mm ²	154	32
500323	55.0	-40 to 85	45	135	M8×10	0.5 - 1.5 mm ²	159	32

Parallel Connected Capacitors with Leads 250 V, 50/60 Hz

Capacitors type A

Casing: plastics, white
Fastening: male nipple
with nut and washer included
Discharge resistance
Fixing centres: 20 mm
Optional: thermal cut-out,
European wide patent
On request with alternative capacities,
connection terminals, mounting options,
casing materials or with a thermal fuse
as well as versions with IDC terminal
for the automatic luminaire wiring

Ref. No.	Capacity	Temperature range	Ø (D)	Length (L)	Male nipple/	Lead length	Weight	Unit
	μF	°C	mm	mm	length (mm)	mm	g	pcs.
Plastic casir	ng							
526169	4.0	-25 to 85	28	54	M8x10	250	32	350
526170	6.0	-40 to 85	25	70	M8x10	250	32	320
526171	8.0	-40 to 85	35	57	M8x10	250	35	220
529665	10.0	-40 to 85	30	70	M8×10	200	40	280
536742	12.0	-25 to 85	36	67	M8x10	150	47	120
529666	16.0	-25 to 85	36	92	M8x10	200	52	120
536741	20.0	-40 to 85	35	95	M8x10	150	63	160
508484	25.0	-25 to 85	40	70	M8x10	250	72	80
536743	30.0	-25 to 85	40	92	M8x10	150	82	80
528554	35.0	-25 to 85	45	94.5	M8×10	250	85	60
536813	40.0	-25 to 85	45	94.5	M8×10	400	85	60
528555	45.0	-25 to 85	50	94.5	M8x10	250	90	50

1

2

3

4

5

6

7

8

9

Technical Details

2
O

Capacitors for Fluorescent and Discharge Lamps

Idle current compensation	517
Parallel compensation	518
MPP capacitor technology	518-520
Assembly instructions – Capacitors	521-522
Capacitor tables	523-524
General technical details	533-540
Glossary	541-543

Compensation of idle current

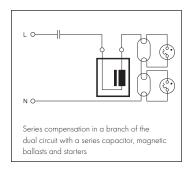
When using magnetic ballasts a phase shift occurs between the mains voltage and the current drawn. This phase shift is expressed by the power factor λ , which generally ranges between a value of 0.3 and 0.7 with inductive circuits.

As a result of this phase shift, idle current, which does not boost the efficiency of the lighting unit, is also taken up from the power supply network in addition to real power. Power utility companies therefore require an increase of the power factor to values of over 0.85 for systems exceeding a certain rating (usually upwards of 250 W per external conductor).

Compensation capacitors are used to counteract idle current (by increasing the power factor) and can be connected either in parallel or in series.

Thanks to a power factor of approx. 0.95, electronic ballasts do not need to be operated with compensation capacitors.

Compensation using series capacitors


Series compensation employs a so-called dual circuit (two fluorescent lamp circuits connected in parallel), whereby the capacitor, which is connected in a branch of the circuit, over compensates the inductive idle current to such an extent that it covers the idle current of both ballasts. This type of circuit is only used with fluorescent lamps. As series capacitors are dimensioned for nominal-voltage and ballast tolerances, the lamp in the capacitor branch of the dual circuit operates with a higher current and thus also with a higher rating. Apart from differences in lamp brightness, the power loss in the circuit branch with the capacitor will also be greater.

An advantage of the dual circuit is that it prevents the radiated light from flickering.

The higher current in the so-called capacitive lamp circuit causes an up to 14% increase in lamp rating and a reduction of the lamp service life by as much as 20%. This goes hand in hand with substantial technical, ecological and economic disadvantages.

Series capacitors have to meet very high technical requirements to suit various aspects like temperature, nominal voltage, tolerances of the capacitance values, etc.

As defined by EC directive 2000/55/EC (European Standard EN 50294 governing the measurement of total power consumption), a series capacitor is considered to be a part of the ballast. If the system rating of the capacitive circuit containing the lamps and ballasts is then determined in line with the above definition, rating increases of up to 14% will become apparent in comparison to operation without a series capacitor. Experience has shown that this increased power consumption often means devices fall in the directive's "banned" category. It is therefore strongly advised that due consideration be given to the elevated power consumption values common to using series capacitors for compensation purposes.

1

9

3

4

5

6

7

8

9

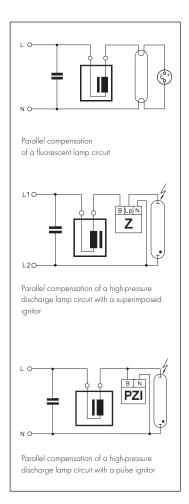
Parallel compensation

During parallel compensation, each lamp circuit is assigned to a capacitor connected in parallel to the mains. Only one capacitor providing sufficient capacitance is needed for luminaires with several lamps. Parallel compensation does not affect current flow through a discharge lamp. The requirements placed on parallel capacitors are clearly lower than those for series capacitors.

However, parallel compensation can be subject to limitations when using audio-frequency ripple control pulses if the system operates with a connected rating of over 5 kVA and ripple control frequencies of over 300 Hz are used. The respective power utility company should be consulted for advice in such cases.

Parallel compensation is used in fluorescent lamp and high-pressure discharge lamp circuits.

As parallel compensation offers substantial advantages, this has become the accepted method in the last few years.


Metallised polypropylene film capacitors

Metallised polypropylene film capacitors are designed to compensate the inductive idle current drawn by discharge lamps (fluorescent lamps, high-pressure mercury vapour lamps, high-pressure sodium vapour lamps and metal halide lamps with a ceramic discharge tube) in 50 Hz/60 Hz grids. All Vossloh-Schwabe compensation capacitors for luminaires feature a metallised polypropylene film dielectric. Compensation capacitors help to increase the power factor to values of over λ 0.85 as required by power utility companies.

Construction of metallised polypropylene film capacitors

VS MPP capacitors contain a low-loss metallised polypropylene film dielectric, which is produced by depositing a thin layer of zinc and aluminium or pure aluminium vapour onto one side of the polypropylene film. The contacts at either end of the capacitor coil are created by spraying on a layer of metal and thus guarantee a high current-carrying capacity as well as a low-inductive connection between the terminals and the coils.

All capacitors with a nominal voltage upwards of 280 V are filled with oil or resin after the coils have been inserted and then hermetically sealed. This protects the coils from environmental influences and reduces partial discharge, which contributes to a long service life and stable capacitance. The effects of partial discharge only play a minor role for capacitors with a nominal voltage of under 280 V so that these devices do not need to be filled.

Hermetically sealed, filled capacitors with an overpressure contact breaker should always be used in critical ambient conditions (high humidity, aggressive atmospheres, high temperatures), if the workload and power supply conditions are unknown as well as in situations that demand increased attention to safety.

VS MPP capacitors feature a self-healing dielectric. In the event of a dielectric breakdown in the coil (short circuit), the metal coating vaporises around the breakdown site owing to the high temperature of the transient arc that is produced. Owing to the excess pressure generated during such a breakdown, the metal vapour is pushed outwards away from the centre of the site within the space of just a few microseconds. This creates a coating-free corona around the breakdown site that completely isolates it and means the capacitor remains fully functional during a dielectric breakdown.

The self-healing properties of a capacitor can decrease with time and with constant overloading. This bears the risk of a non-healing breakdown with a permanent short circuit. Therefore self-healing must not be confused with failsafe.

Compensation capacitors are divided into two type families (A and B) in accordance with IEC 61048 A2.

- Type A capacitors defined:
 "Self-healing parallel capacitors; without an (overpressure) contact breaker in the event of failure".
 They are referred to as unsecured capacitors.
- Type B capacitors defined:
 "Self-healing capacitors for series connection in lighting circuits or self-healing parallel capacitors; with an (overpressure) contact breaker in the event of failure".

 These are referred to as hermetically sealed, secured capacitors.

In accordance with the standard, the discharge resistor of both capacitor families must be capable of reducing capacitor voltage to a value of under 50 V in the space of 60 seconds after disconnection from the mains.

Capacitors without a contact breaker, unsecured, Type A capacitors in accordance with IEC 61048 A2

IEC 61048 A2-compliant Type A capacitors are self-healing and require no short-circuit protection for normal operation.

Type A capacitors are not fitted with a specific failsafe mechanism as prescribed by the standards for Type B capacitors. Nevertheless, the requirements laid down in the standard for Type A capacitors, especially with regard to temperature and service life tests, are designed to ensure a sufficient degree of device safety and availability **provided the device was correctly installed and operated under calculable and known ambient operating conditions**.

Even so, in very rare cases these capacitors can still develop erratic behaviour due to overloading or at the end of the device's service life.

For that reason, Type A capacitors should only be integrated into luminaires for operation in ambient conditions that are uncritical with regard to flammable materials. Luminaires should feature protection against secondary damage inside and outside the luminaire in the event of a defect.

1

2

3

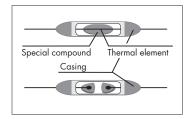
4

5

6

7

8

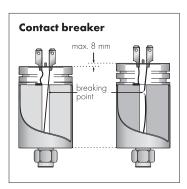

g

Temperature-protected capacitors are a further development of Type A capacitors and are fitted with a thermal fuse that is triggered by overheating as a result of electrical or thermal overloading. They are tested in accordance with IEC 61048 A2 and comply with Type A requirements. Excess temperatures cause the two wire ends of the element inside the fuse to melt into bead shapes that are fully isolated from each other by special insulation.

In 99% of all the rare cases of critical capacitor failure, this failure is preceded by a gradual increase in the loss factor, which leads to an increase in the winding temperature and thus triggers the thermal fuse.

Vossloh-Schwabe recommends that preference be given to Type A capacitors with a thermal fuse as a matter of course for reasons of safety.

Type A capacitors predominantly feature a plastic casing.


Capacitors with a contact breaker, secured Type B capacitors in accordance with IEC 61048 A2

Self-healing capacitors do not require short-circuit protection for normal operation as they automatically regenerate after a dielectric breakdown. However, as a result of frequent self-healing caused by overloading (voltage, current, temperature) or towards the end of the capacitor's service life, overpressure can build up inside the capacitor (due to the decomposition products of the vaporised polypropylene).

In order to prevent the capacitor casing from exploding in such cases, hermetically sealed capacitors in accordance with IEC 61048 A2 (Type B capacitors) are fitted with an overpressure contact breaker. If excess pressure builds up within these capacitors, e.g. due to undue thermal loading or excessive voltages or at the end of the capacitor's service life, a concertina section opens out that causes the casing to expand lengthways. As a result, the wire contacts rupture at a predetermined breaking point, which irreversibly interrupts the current (contact breaker).

This type of overpressure-protected capacitor with a contact breaker is also referred to as a flame- and explosion-proof capacitor with a break-action mechanism.

Type B capacitors with a contact breaker are available in an aluminium casing.

Assembly Instructions for Capacitors

For mounting and installing compensation capacitors

Mandatory regulations

EN 60598 Luminaires – part 1: General requirements and tests

EN 55015 Maximum values and testing methods for radio disturbance of electrical lighting

facilities and similar electrical equipment

EN 61000-3-2 Electromagnetic Compatibility (EMC) - part 3:

maximum values - main section part 2: maximum values for mains harmonics

(ballast input current up to and including 16 A per conductor)

EN 61048 Operating devices for lamps - capacitors for fluorescent lamp circuits and

other discharge lamp circuits; general and safety requirements

EN 61049 Operating devices for lamps - capacitors for fluorescent lamp circuits and

other discharge lamp circuits; performance requirements

Mechanical mounting

Fastening Base screw (permissible torque):

M8x10 - 5 Nm (aluminium casing)

• M8x10 - 2.2 Nm (plastic casing)

Mounting location

Any

Capacitors fitted with overpressure protection require clearance of at least 10 mm above the contacts so ensure the casing can expand unhindered if the contact breaker is triggered.

Heat transfer Capacitors should be mounted with the greatest possible clearance to heat sources or

lamps. During operation, the temperature measured at the t_c point must not exceed

the specified maximum value.

 t_{c} point t_{c} point is defined as an arbitrary point on the surface of the capacitor, which is not

specifically marked.

UV Radiation Capacitors should not be installed in an unprotected manner directly next to any sources

of light, heat radiation or convection (ballasts, lamps, heating elements, etc.) as both high temperatures and constant exposure to UV radiation can lead to premature ageing. In combination with high temperatures, UV radiation or other substances and influencing factors, chemicals such as ozone and chlorine can lead to accelerated ageing and material

embrittlement.

Thermal load All capacitor casings are made of flame-retardant materials. However, the potting material,

oils and the winding material are flammable and consideration must be taken of this fact

during installation. The thermal load of an MKP capacitor is approx. 40 MJ/kg.

2

3

4

5

6

7

8

9

Safety functions

Type A capacitors are not fitted with any special protective functions in case of defect.

Temperature-protected capacitors are a further development of Type A capacitors and feature a thermal fuse that is triggered by excess temperatures and disconnects the capacitor from the mains.

Type B capacitors are fitted with an overpressure contact breaker in case of defects at the end of the capacitor's service life.

Connection

Parallel capacitors for fluorescent lamps:

- Casing diameter 25-30 mm: push-in terminals for 0.5-1 mm² conductors and IDC terminals for H05V-U 0.5 conductors
- Casing diameter > 30 mm: push-in terminals for 0.5-1 mm² conductors

Parallel capacitors for high-pressure lamps:

- Casing diameter 25-30 mm: push-in terminals for 0.5-1 mm² conductors and IDC terminals for H05V-U 0.5 conductors
- Casing diameter > 30 mm: push-in terminals for 0.5-1.5 mm² conductors

Reliability and service life

Provided the max. specified voltage and current loads, temperature, humidity and mains harmonics values are observed.

- approx. 50,000 hours for overpressure-protected parallel capacitors
- approx. 30,000 hours for parallel capacitors without overpressure protection in a plastic or aluminium casing

A 3-10% decrease in capacitance must be expected in the course of the capacitor's service life.

Failure rate: 1% per 1,000 operating hours when maximum voltage, current and temperature values are not exceeded.

Electrical installation

Nominal voltage 250 V, 50/60 Hz; 280 V, 50/60 Hz; 450 V, 50/60 Hz (dependent on type)

Capacitance tolerance

 \pm 10% (\pm 5% dependent on type)

Temperature range

-25/-40 °C to +85/+100 °C (dependent on type, details see product page)

Optional thermal fuse

Relative humidity Class F for Type B capacitors: 75% annual mean, 95% peak value on 30 days

Class G for Type A capacitors: 65% annual mean, 85% peak value on 30 days

Condensation Impermissible

Capacitors for fluorescent lamp circuits

Lamp		Parallel compensation capa	citor (µF ±10% at 250 V)	Series compensation capacitor (µF ±4%)			
Output	Туре	220-240 V/50 Hz	220-230 V/60 Hz	220 V/50 Hz	230 V/50 Hz	220 V/60 Hz	
\wedge		μF	μF	μF	μF	μF	
1	Т	2**	2**	_	_	_	
)	Т	2**	2**	_	_	_	
}	Т	2**	2**	_	_	_	
0	Т	2	2	_	_	_	
3	Т	2	2	_	_	_	
4	Т	4.5	4.5	_	_	_	
5	Т	3.5 or 4*	3 or 4*	_	_	_	
6	T	2	2	_	_	_	
8	T	4.5 or 4*	4**	2.9/440 V	2.8/480 V	2.4/440 V	
20	Т	4.5 or 4*	4**	2.9/440 V	2.8/480 V	2.4/440 V	
3	T	3.5	3	_	_	_	
.5	T	3.5	3	_	2.3/450 V	_	
0	T	4.5	4	3/420 V	2.9/450 V	_	
6	T	4.5	4	3.6/420 V	3.4/450 V	3/420 V	
6-1m	T	6.5	_	_	_	_	
8	Т	4.5	4	_	_	_	
.0	Т	4.5	4	3.6/420 V	3.4/450 V	3/420 V	
2	Т	6.5	_	_	_	_	
8	Т	7	6	5.7/450 V	5.3/450 V	4.8/420 V	
5	T	7	6	5.7/450 V	5.3/450 V	4.8/420 V	
0	T	6		_	_	_	
'5	Т	6	_	_	_	_	
10	Т	9	8	_	7.2/420 V	_	
15	T	8	6.5	_	8.4/420 V	_	
00	Т	10	9	_	_	_	
15	Т	18	16	_	_	_	
40	Т	14	14	_	_	_	
60	T	14	14	_	_	_	
6	T-U	2	2	_	_	_	
8/20	T-U	4.5 or 4*	4**	2.9/440 V	2.8/480 V	2.4/440 V	
6/40	T-U	4.5	4	3.6/420 V	3.4/450 V	3/420 V	
8/65	T-U	7	6	_	_	_	
22	T-R	5	4.5	_	3.2/440 V	_	
2	T-R	5	4.5	_	3.4/450 V	_	
10	T-R	4.5	4	3.6/420 V	3.4/450 V	3/420 V	
7/9/11	TC-S	2**	2**	_	_	_	
0	TC-D/TC-T	2	2	_	_	_	
3	TC-D/TC-T	2	2	_	_	_	
8	TC-D/TC-T	2	2	_	_	_	
<u>.</u> !6	TC-D/TC-T	3.5	3	_	_	_	
0	TC-DD	2	2	_	_	_	
6	TC-DD	2	2	_	_	_	
1	TC-DD	3	3	_	_	_	
28	TC-DD	3.5	3	_	_	_	
18	TC-DD	4.5	4				
8	TC-L/TC-F	4.5 or 4*	4**	_	_		
4	TC-L/TC-F	4.5 61 4	4				
4	TC-L/TC-F	4.5	4	_	_	_	
34 36	TC-L/TC-F	4.5	4		_		

^{*)} Two lamps connected to a ballast in series **) Applies to one lamp connected to a ballast or two lamps connected in series

VOSSLOH

Q

Capacitors for

Lamp		Compensation capacitor (µF	+10%		
Output	Туре	220/230/240/252 V	220 V	380/400/420 V,	380 V/60 Hz
W	Type	50 Hz (μF)	60 Hz (µF)	50 Hz (μF)	60 Hz (μF)
	essure r	nercury vapour lamp circ		30 112 (β1)	00112 (61)
50	НМ	7	6		
80	HM	8	7		
125	НМ	10	10		
250	HM	18	15		
400	HM	25	25		
700	HM	40	35		
1000	НМ	60	50		
	essure s	odium vapour lamp circu			
35	HS	6	5		
50	HS	8	8		
70	HS	12	10		
100	HS	12	10		
150	HS	20	16		
250	HS	32	25		
400	HS	45	40		
600	HS	65	55	25	20
750	HS	70	60	25	25
1000	HS	100	85		
metal h	alide la	mp circuits			<u> </u>
35	HI	6	5		
70	HI	12	10		
100	HI	12	10		
150	HI	20	16		
250	HI	32	25		
400	HI	35/45	35/45		
1000	HI	85	75		
2000	HI	125	125		
2000	HI			37	37
2000	HI			60	60
2000	HI			60	60
2000	HI			100	100

Capacitors for low-pressure discharge lamp circuits

Lamp		Compensation capacitor (µF ±10%)
Output	Туре	230 V/50 Hz
W		μF
35	LS	20
55	LS	20
90	LS	26
135	LS	40
180	LS	40

LIGHTING TECHNOLOGY COMPONENTS FOR THE UL MARKET

At the beginning of 2010, the US American sales office, Vossloh-Schwabe Inc., was merged with Universal Lighting Technologies, Inc., a further Panasonic subsidiary.

This merger has enabled Universal Lighting Technologies – as the USA's second-largest manufacturer of ballasts – to expand its product range with electronic ballasts for discharge lamps, a very extensive line of lampholders for all common lamp types as well as an outstanding suite of LED modules.

The entire range of ULT and VS products for the NAFTA market can be found at www.unvlt.com. Your usual contact partners will naturally continue to be available.

The merger of these two Panasonic subsidiaries has given rise to major synergies with regard to innovation and market presence.

The extensive range of electronic ballasts for the UL market goes from standard products right up to dimmable ballasts for all common fluorescent lamps. Micro, Mini, Square and Standard electronic ballasts are also available for 20 W to 150 W high-pressure discharge lamps.

Available in numerous models that permit a wide variety of installation options, these low-loss products are characterised by a high degree of reliability and low internal losses.

VS lampholders for the UL market are available for all common lamp types. The following pages serve to give you some idea of the highly extensive product range.

Further information can be found at www.unvlt.com.

The Universal[®] and Triad[®] brands stand for continuously improved technologies and innovations that can reduce energy costs by up to 40%.

Universal® products are characterised by advanced design in the fields of linear electromagnetic ballasts for fluorescent lamps, discharge lamps and advertising technology.

Triad® provides a complete range of products to dim compact fluorescent lamps and linear electronic ballasts for fluorescent lamps.

Nashville, TN 372215 Phone: 615-316-5100 www.unvlt.com

Energy Management & Controllable Lighting

Linear Fluorescent Ballasts

Electronic & Magnetic HID Ballasts

Sign Ballasts

Compact Fluorescent Ballasts

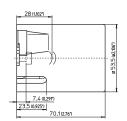
E39 Porcelain Lampholders

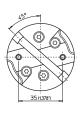
For discharge lamps with base E39 / Mogul base

Screw terminals: max. 16-12 AWG, solid conductor

E39 lampholders Casing: porcelain, white

Nominal rating: 2000 W/600 V/6 kV pulse rating


Cylindric shape


Screw shell: brass, nickel-plated Central contact: brass, nickel-plated Spring loaded central contact Screw terminals: 18–14 AWG Fixing distance: 35 mm (1.378")

Thread measured in inches No. 8-32 UNC (ISO)

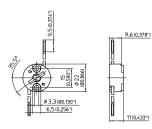
Weight: 190 g, unit: 50 pcs. Type: 12870/12876 **Ref. No.: 109014**

Ref. No.: 109518 with lamp safety catch

PGJ5 Lampholders

For single-ended discharge lamps

Additional lead lengths and types on request


PGJ5 lampholder

Casing: ceramic, cover plate: LCP
Nominal rating: 2 A/250 V/2.5 kV pulse rating
Leads: Cu nickel-plated, stranded conductors
18 AWG, PTFE-insulation, transparent,

length: 305 mm (12") Fixing holes for screws M3 (#4) Weight: 10.8 g, unit: 100 pcs.

Type: 34155

Ref. No.: 538629 lateral lead exit

GU6.5 Lampholders

For single-ended discharge lamps

Additional lead lengths and types on request

GU6.5 lampholders

Casing: ceramic, cover plate: PPS

Nominal rating: 2 A/250 V/5 kV pulse rating Leads: Cu nickel-plated, stranded conductors 18 AWG,

PTFE-insulation, length: 305 mm (12")

Weight: 20 g, unit: 100 pcs.

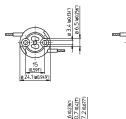
Type: 34515 fixing holes for screws M3 (#4)

Ref. No.: 534218

Type: 34516 threaded bushes for screws M3 (#4)

Ref. No.: 534219

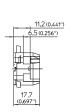
GU6.5 lampholders


Casing: ceramic, cover plate: PPS

Nominal rating: 2 A/250 V/5 kV pulse rating Leads: Cu nickel-plated, stranded conductors 18 AWG,

PTFE-insulation, length: 305 mm (12")

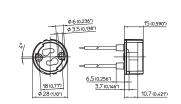
Weight: 20 g, unit: 100 pcs. Type: 34525 dia. 22 mm


new Ref. No.: 535783

Ø 5,2 (Ø0.204") Ø 3,2 (Ø0.126"

E105519

GX10 Lampholders


For single-ended discharge lamps

GX10 lampholder

Casing: steatite, cover plate: PPS Nominal rating: 2/500/5 kV Leads: Cu nickel-plated, stranded conductors 18AWG, PTFE insulation, length: 305 mm (12")

Weight: 25 g, unit: 100 pcs.

Type: 31550 Ref. No.: 543153

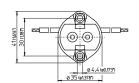
G12 Lampholders

For single-ended discharge lamps

Additional lead lengths and types on request

G12 lampholders

Casing: ceramic, cover plate: PPS, black Nominal rating: 660 W/600 V/5 kV pulse rating


Contacts: Ni

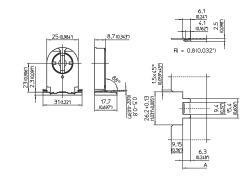

Leads: 18 AWG, SF-2

Fixing holes for screws M4 (#8) Weight: 56/144 g, unit: 25 pcs.

Type: 31936

Ref. No.: 108257 lead length: 460 mm (18") **Ref. No.: 526211** lead length: 1525 mm (60")

Slide-on Lampholders for Lamps T8, T12


Twist and lock lampholders for fluorescent lamps T8 and T12 / Medium Bi-Pin

Nominal rating: 660 W/600 V All products in this chapter carry a T rating of T140 acc. to IEC standards

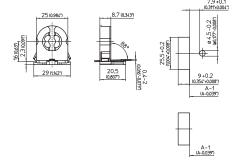
Slide-on lampholders for lamps T8 and T12 Lamp axis: 23 mm (0.906")
Push-in twin terminals: 18 AWG, solid conductor or stranded conductor, tinned
Slide slots for wall thickness
0.5-0.8 mm (0.020-0.031")
Weight: 7 g, unit: 1000 pcs.

Type: 29150/29155 **new Ref. No.: 545858**

new Ref. No.: 545852 internally shunted

G13 Push-through Lampholders for T8, T12 Lamps

Lampholders for fluorescent lamps T8 and T12 / Medium Bi-Pin


Nominal rating: 660 W/600 V Push-in twin terminals: 18 AWG, solid or stranded conductors, tinned Lateral fixing clips for wall thickness 0.4-2 mm (0.016"-0.079")

All products in this chapter carry a T rating of T140 acc. to IEC standards

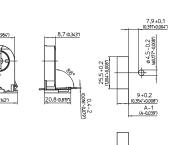
G13 push-through lampholders for lamps T8, T12

Pin support for reliable contact Lamp axis: 16 mm (0.630") Weight: 4.7/4.5 g, unit: 1000 pcs. Type: 29300 with stop

Ref. No.: 509134 Type: 29301 without stop Ref. No.: 509135

G13 push-through lampholders for lamps T8, T12

Pin support for reliable contact Lamp axis: 23 mm (0.906") Weight: 6.6 g, unit: 1000 pcs. Type: 29100/29125 with stop


new Ref. No.: 545845

new Ref. No.: 545840 internally shunted

Type: 29101/29126 without stop

new Ref. No.: 545849

new Ref. No.: 545842 internally shunted

G13 push-through lampholders for lamps T8, T12

Pin support for reliable contact Lamp axis: 31 mm (1.220") Weight: 7.8 g, unit: 1000 pcs. Type: 28700/28725 with stop

Ref. No.: 109342

Ref. No.: 109376 internally shunted Type: 28701/28726 without stop

Ref. No.: 109343

Ref. No.: 109377 internally shunted

G5 Lampholders

Lampholders for fluorescent lamps with base G5

G5 push-through lampholders
Lamp axis: 20 mm (0.787")
Casing: PBT GF, white, rotor: PBT GF, white
T140, nominal rating: 2/500
Push-in twin terminals: 0,5-1 mm² (18 AWG)
Lateral fixing clips for wall thickness 0.5-1.5 mm
(0.020"-0.059")

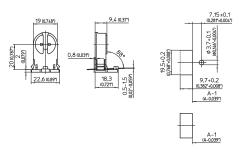
Weight: 4.1 g, unit: 1000 pcs. Type: 09432/09433

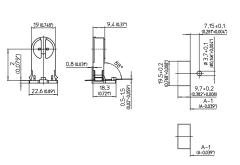
 new
 Ref. No.: 545933
 with stop

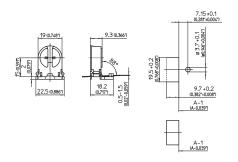
 new
 Ref. No.: 545935
 without stop

G5 push-through lampholders
Lamp axis: 25 mm (0.984")
Casing: PBT GF, white, rotor: PBT GF, white
T140, nominal rating: 2/500
Push-in twin terminals: 0.5-1 mm² (18 AWG)
Lateral fixing clips for wall thickness 0.5-1.5 mm
(0.020"-0.059")

Weight: 4.5 g, unit: 1000 pcs. Type: 09434/09435


new Ref. No.: 545937 with stop
new Ref. No.: 545939 without stop


G5 push-through lampholders
Lamp axis: 15 mm (0.591")
Casing: PBT GF, white, rotor: PBT GF, white
T140, nominal rating: 2/500
Push-in twin terminals: 0.5-1 mm² (18 AWG)
Lateral fixing clips for wall thickness 0.5-1.5 mm
(0.020"-0.059")


Weight: 3.5/3.4 g, unit: 1000 pcs.

Type: 09420/09421

Ref. No.: 505737 with stop **Ref. No.: 505739** without stop

Technical Details

General Technical Details

General technical details	533-540
roduct development and product certification	534-535
CE mark	535-536
Climate and environmental protection	537
rotection classes of luminaires and operating devices	538
Operating devices with double or reinforced insulation for installation in protection class II luminaires	538
rotection classes of luminaires and operating devices	539
election of components, materials and dimensions	539
mpulse voltage categories for lampholders	540
orque to be applied to screws	540
Blossary	541-543

Product development and product certification

The increasingly converging world and the global markets that are being created are both placing new design demands on the sector and its technologies. Against this background, standardisation – both on a regional and international scale – is becoming more and more important in positioning new technologies and innovations on the market. Standardisation ensures the necessary degree of safety, reliability, exchangeability and cost-effectiveness.

Vossloh-Schwabe products have been developed and produced on the basis of technical innovations, internationally and regionally applicable standards and valid environmental regulations for more than 90 years. In this respect, we already take account of integrated components and materials, production methods and technologies, comprehensive environmental aspects as well as a product's energy efficiency during the development phase. An important entrepreneurial goal in all these years has been and continues to be to create lighting components that satisfy the requirements of our customers with regard to safety, function, longevity and cost-effectiveness

In addition to observing valid, state-of-the-art standards, we also take consideration of the recommendations of industrial associations when developing new products.

In addition to undergoing internal production approval tests, mass-produced devices are also submitted to national and international testing institutes for certification. The applicable testing and assessment regulations of the testing institutes are subject to international variation. The marks of conformity shown here are therefore not valid for all the products featured in the catalogue. You will find an overview of the approval marks for the products presented in the catalogue from page 544 on. On request, we will gladly provide information about all of the existing approvals. You can also find test certificates in our online catalogue at

www.vossloh-schwabe.com

As the international IEC (International Electrotechnical Commission) standards for lighting technology are also adopted by the European Institute for Standardisation CENELEC (Comité Européen de Normalisation Electrotechnique), the European standards (EN) therefore contain the same requirements. In rare cases, national deviations are permitted. The certification (third-party testing) of VS catalogue products in accordance with EN standards is documented by the ENEC mark.

The ENEC mark (European Norms of Electrical Certification) was created in Europe as a uniform certification mark for electrotechnical products. The ENEC Agreement currently governs the following product groups:

- luminaires
- luminaire components
- energy-saving lamps
- IT equipment
- connection terminals, clips
- capacitors
- couplers
- switches for household appliances

- noise filters
- safety transformers
- tools
- consumer electronic
- batteries
- domestic appliance mobile tools
- IT products

There are plans to include further electrical equipment in the ENEC Agreement.

The certification of products is also expanded to include non-European manufacturers. However, certification testing for lighting equipment must be carried out by an ENEC testing institute in Europe.

At present, a total of 27 testing houses in 22 countries are signatories of the ENEC agreement (see table). Obtaining an ENEC mark for luminaire components like ballasts and ignitors also includes having the product assessed in accordance with the standards governing safety and function. Certification must be based on the EN standards listed in the Agreement. The mark documents that the product not only complies with the applicable standards, but also that ongoing production is monitored by inspectors from a testing institute and that the manufacturer operates an effective quality assurance system in accordance with the ISO 9000 standard suite (International Standards Organisation). ISO deals with the standardisation of non-electrotechnical products.

The ENEC mark is displayed with the identification number and often the logo of the testing institute, as follows:

Identification No.	Testing Institute	Identification No.	Testing Institute
01	AENOR - Spain	16	SGS Fimko – Finland
02	SGS - Belgium	17	NEMKO - Norway
03	IMQ – Italy	18	TRI MEEI - Hungary
04	CERTIF - Portugal	19	ITCL - United Kingdom
05	DEKRA - Netherlands	20	ASTA - United Kingdom
06	NSAI - Ireland	21	EZÚ – Czech Republic
07	SNCH - Luxembourg	22	SIQ - Slovenia
08	LCIE - France	23	TSE - Turkey
09	ELOT - Greece	24	TRLPTÜV – Germany
10	VDE - Germany	25	TÜV SÜD PS - Germany
11	ÖVE – Austria	26	not currently issued
12	BSI - United Kingdom	27	not currently issued
13	Electrosuisse - Switzerland	28	SEP - BBJ - Poland
14	Intertek SEMKO - Sweden	29	not currently issued
15	UL Int'l DEMKO - Denmark	30	PREDOM - OBR - Poland

Apart from a product's safety and performance certification, a further useful selection aid is to have a product's electromagnetic compatibility (EMC) tested by an independent test institute, particularly in the case of electronic ballasts. If the product passes the EMC test, an additional test mark is awarded, for instance the VDE EMC mark of the VDE test and certification institute in Offenbach. The EMC certifications for control gears are helpful for the EMC luminaire certification and could reduce time and cost for the luminaire certification.

CE mark

EC Directives form the basis for a common European domestic market without any trade restrictions. Any products that are destined for the European market have to meet the requirements of all directives that apply to the product in question. Compliance with the directives is documented by the CE mark on the product or in the technical documents.

This CE mark is therefore not a mark of compliance with standards (test certificate) of a testing institute, like the ENEC mark is, and can therefore not be issued by a testing institute. The CE mark must be printed on the product, the packaging or both and is not directed at the consumer, but at supervisory authorities.

2

3

4

5

6

7

8

9

The following table contains a list of key EC Directives governing lighting:

347/2010	Change of commission regulation No. 245/2009		
859/2009	Change of commission regulation No. 244/2009		
2009/125/EG	Setting of ecodesign requirements for energy-related products (ErP). This directive supersedes directive 2005/32/EC.		
	The new directive was extended and now includes all energy-consuming products. Regulations 244 and 245 remain unaffected by this change.		
245/2009/EG	Definition of eco-design requirements regarding fluorescent lamps without an integrated ballast, high-pressure discharge lamps as well as ballasts		
	and luminaires in their operation and the invalidation of Directive 2000/55/EC of the European Parliament and Council.		
244/2009/EG	Definition of eco-design requirements regarding household lamps with non-directional light.		
1907/2006	Specifications governing the registration, evaluation, authorisation and description of chemicals:		
	REACH (R egistration, E valuation, A uthorisation and Restriction of Ch emical Substances)		
2006/95/EG	Electrical equipment designed for use within certain voltage limits (Low Voltage Directive).		
2006/32/EG	Energy end-use efficiency and energy services - ES Directive (Energy Service); national laws must take effect by 17.05.2008.		
2006/25/EG	Directive on the minimum health and safety requirements regarding the exposure of workers arising from physical agents (artificial optical radiation)		
2005/32/EG	Eco-design requirements for energy-using products - EuP directive (Energy using Products).		
2005/20/EG	Directive regarding packaging		
2004/108/EG	Directive on the approximation of the laws of the Member States relating to electromagnetic compatibility; national laws had to take effect		
	by 20.01.2007. Applicable to new products since 20.07.2007.		
2004/40/EG	Directive on the minimum health and safety requirements regarding the exposure to the risks arising from physical agents (electromagnetic fields)		
2004/12/EG	Directive on packaging		
2003/66/EG	Directive on energy labelling of household electrical refrigerators, freezers and lamps		
2002/96/EG	Old electrical and electronic devices; effective since 13.08.2005; does not fall under the CE mark directive		
2002/91/EG	Total energy efficiency of buildings; effective since 04.01.2006; does not fall under the CE mark directive		
2001/95/EG	Directive on general product safety		
1998/11/EG	Energy rating of household lamps; effective since 14.06.1999		
1994/62/EG	Directive on packaging		
93/68/EWG	CE marking directive		
89/336/EWG	Directive on the approximation of the laws of the Member States relating to electromagnetic compatibility; effective since 30.06.1991;		
	still applicable to old products (i.e. manufactured prior to the date of the directive) up to 20.07.2009.		

Manufacturers are obliged to keep conformity declarations as well as test and production documentation ready for presentation.

The documents must be retained for a period of 10 years after the product was last marketed.

Vossloh-Schwabe operating devices all bear the CE mark; the respective conformity declaration and production documentation are available for inspection. As a consequence, all luminaires that are equipped with properly installed VS components and for which the assembly instructions were observed meet the legal requirements.

Climate and environmental protection

The European Union adopted a number of EU Directives that are designed to reduce the CO₂ output. Essentially, these objectives can be grouped into three categories:

- · requirements placed on new products,
- · requirements placed on buildings and
- revision of existing installations.

The requirements placed on new products are governed by the **ErP framework directive** (**E**nergy-related **P**roducts) together with the so-called implementation directive, which envisage the setting of special energy requirements for lamps (minimum lm/W requirements), operating devices (minimum efficiency ratings) and luminaires (minimum energy efficiency requirements) for all lighting technologies. The directive on energy efficiency requirements regarding ballasts for fluorescent lamps is integrated into the implementation directive.

The requirements for buildings (**EPBD: E**nergy **P**erformance of **B**uildings) are specify targets for the maximum permissible primary output of lighting. In so doing, a calculation method is employed that will stipulate the permissible maximum electrical output values of the lighting system using a reference procedure.

With regard to the revision of existing installations the EU member states are called upon to set up national action plans (**Energy Service Directive**) that show which measures can be used to achieve the targeted CO₂ reductions.

In addition to the climate protection requirements, a number of directives were also produced to cover waste reduction and recycling, specifically the **WEEE** (**W**aste of **E**lectrical and **E**lectronic **E**quipment) and **RoHS** (**R**estriction of the use of certain **H**azardous **S**ubstances) directives. These directives regulate the disposal and reduction of waste and the use of hazardous substances.

As a result of the REACH system (**R**egistration, **E**valuation, **A**uthorisation and Restriction of **Ch**emical Substances) only registered chemical substances can now be brought onto the market. The principle is: no data, no market.

As operating devices and lampholders are constituent parts of luminaires, these components are to be disposed of along with the luminaire; separate disposal is not provided for.

١

2

3

4

5

5

7

8

9

Protection classes of luminaires and operating devices

The electric shock protection that luminaires and control gears are fitted with provides dual protection, which prevents any danger in the event of a technical defect.

Luminaires and operating devices of **protection class I** provide protection against electrical shock solely using the base insulation and the safe connection of all exposed conductive parts to an earth conductor. Thus, should the base insulation fail, no exposed conductive parts can become live.

Luminaires and operating devices of **protection class II** provide protection against electrical shock using both the base insulation and an additional or reinforced insulation. Protection class II products do not feature a connection to a protective earth conductor. The mounting conditions do not ensure any additional degree of protection, either.

In special cases with Protection Class II luminaires, it can be permissible to connect a protective conductor or a function protection conductor, as follows:

- for EMC reasons in such cases, it can be necessary to connect a function protection
 conductor to remain within EMC limiting values. The component manufacturer's specifications
 regarding the individual operating devices must be observed during the construction of the
 luminaire. If an operating device is marked as containing a function protection conductor, the
 creepage and air clearance distances of the operating device connection must comply with
 the requirements of protection class II (reinforced or additional insulation);
- as an ignition aid for lamps connecting a function protection conductor can be
 necessary as a capacitive ignition aid for lamps. In such cases the creepage and air clearance
 distances around the ignition aid within the luminaire and the function protection conductor
 connection terminal have to comply with the requirements of protection class II (reinforced or
 additional insulation). The ignition behaviour of a lamp should be agreed with the manufacturer
 in these cases:
- when wiring the protective conductor from the luminaire to another device. This is an
 installation point of the protective conductor and creepage and air clearances must comply with
 the respective requirements laid down in the luminaire standard as well as any requirements
 regarding reinforced or additional insulation.

Operating devices with double or reinforced insulation for installation in protection class II luminaires

Protection class II specifications have to be met by the luminaire along with its installed operating device. Both protection class I and class II ballasts can be installed. The design of the luminaire must be adapted to suit. This means that if a protection class I ballast is installed in a protection class II luminaire, the design of the luminaire has to be correspondingly sophisticated to ensure the creepage and air clearance distances can be met. On the other hand, using a protection class II ballast, only available as an independent ballast nowadays, will in most cases result in a need for too much technical effort and thus in high costs. Against this background, the standards contain special requirements for ballasts destined for installation in protection class II luminaires.

These "double or reinforced insulation ballasts" and respective protection class II lampholders permit technically and cost-effective construction of protection class II luminaires.

Protection class III luminaires provide protection against electrical shock by using Safety Extra Low Voltage (SELV). Luminaires of protection class III are not permitted to generate higher voltages than the Safety Extra Low Voltage (SELV).

Connection terminal for the protective earth conductor Protection class I

Connection of the function protection conductor (will drop in future)

General symbol for an earth connection

Protection class II

Ballasts with double or reinforced insulation

Protection class III

Protection classes of luminaires and operating devices

IEC 60529 (EN 60529) defines protection classes for enclosures of casings. The IP Code (International Protection Code) describes the level of protection provided against accidental contact and penetration by foreign bodies as well as protection against water. The first number stands for protection against foreign bodies, the second stands for protection against water. These specifications are important with particular regard to built-in or mounted luminaires as the provisions governing protection against accidental contact provide the basis for the insulation system for components and conductors (also see luminaire standard EN 60598-1).

To comply with the IP requirements, the installation instructions supplied by the luminaire and/or operating device manufacturer(s) must be observed.

Number	1st Number		2nd Number	
	Protection against contact	Protection against foreign bodies	Protection against water	
0	No protection	No protection	No protection	
1	Protected against contact with the back of the hand	Protected against solid foreign bodies Ø ≥ 50 mm	Protected against vertically dripping water	
2	Protected against finger contact	Protected against solid foreign bodies Ø ≥ 12 mm	Protected against diagonally dripping water (angle of 15° from above)	
3	Protected against contact with tools	Protected against solid foreign bodies Ø ≥ 2.5 mm	Protected against diagonal water spray up to an angle of 60° from above	
4	Protected against contact with wire	Protected against solid foreign bodies Ø ≥ 1 mm	Protected against water splashes from any direction	
5	Protected against contact with wire	Protected against dust	Protected against jets of water	
6	Protected against contact with wire	Dust-tight	Protected against strong jets of water	
7	-	-	Protected against temporary immersion in water	
8	-	-	Protected against permanent submersion in water. Specific testing conditions must be agreed, especially with regard to high-pressure cleaning equipment.	
9	-	-	For high-pressure cleaning IPx9 in accordance with DIN 4005	

If any components like ballasts or conductors of built-in or mounted luminaires (e.g. wall-mounted luminaires) are accessible to accidental contact, they must comply with the requirements of the two safety levels stipulated for these components. Luminaire construction must be in line with these conditions, which can mean that, for instance, conductors have to feature additional or reinforced insulation.

For lampholders the compliance with the two safety levels is proved by conducting a special voltage test.

Selection of components, materials and dimensions

The documentation provided by Vossloh-Schwabe is carefully researched. Technical advice is given to the best of our knowledge. The details on the product or the type plate are binding in every case.

Any manipulation of VS products or product packaging is illegal and violates registered trademark rights. Manipulations can negatively influence or destroy technical properties and can possibly result in secondary damage. Vossloh-Schwabe does not accept any liability for manipulated products and cannot be held responsible for any secondary damage.

Manufacturers of luminaires and lighting systems remain responsible for the selection of suitable luminaire components, e.g. operating devices and lampholders, and component materials just as for their safe and correct installation in line with luminaire and system set-up regulations.

1

2

3

4

5

6

7

8

g

Particular attention should be paid to the following:

- temperature measurements and temperature limits
- compliance with creepage and air clearance distances and insulation thicknesses
- selection of components to suit their operating conditions and degree of strain (e.g. voltage, current, mechanical loading, UV radiation)
- protection against contact and safe protective earth conductor connections
- resistance to corrosion

The product drawings without tolerances are contained in this catalogue only feature nominal dimensions. For space and simplicity reasons, the full dimensions and particularly the associated tolerances cannot be shown. For detailed information resp. details of luminaire design, please request our in-depth dimensional assembly drawings.

All VS products comply with the relevant standards and are developed and produced using the latest technological expertise.

To ensure safe luminaire production we do not recommend reusing dismantled lampholders.

Impulse voltage categories for lampholders

Lampholder	Standard	Impulse voltage category
E14: 250 V / 2 A		2
E27: 250/500 V / 4 A	IEC 60238 / VDE 0616-1	2
E40		2
Starters: 250 V / 2 A	IEC 60400 / VDE 0616-3	2
Fluorescent lamps 250 V / 500 V / 2 A	IEC 60400 / VDE 0616-3	2
Halogen lamps and other lamps	IEC 60838-1 / VDE 0616-5	2
Bayonet fitting	IEC 61184 / VDE 0616-2	2

Torques for screws

With regard to lampholders secured with screws, we recommend using a torque of around 80% of the value stipulated in DIN EN 60598-1

Nominal diameter of the screw's outside thread	Torque (Nm) for screws with a head in acc.	
mm	with DIN EN 60598-1	
to 2.8	0.40	
< 2.8 to 3.0	0.50	
< 3.0 to 3.2	0.60	
< 3.2 to 3.5	0.80	
< 3.6 to 4.1	1.20	
< 4.1 to 4.7	1.80	
< 4.7 to 5.3	2.00	
< 5.3 to 6.0	2.50	

Technical Details - Glossary

A type, B type capacitors	The requirements of the safety standard for capacitors differentiates between capacitor types; A type capacitors stand for plastic can capacitors; B type capacitors stand for aluminium can capacitors.			
AG DALI	International working group under the umbrella of ZVEI (the German Electrical and Electronic Manufacturers' Association) in support of DALI (Digital Addressable Lighting Interface).			
Analogue interface 1–10 V	Bipolar interface of dimmable operating devices with a built-in constant current source.			
Average service life	Specified service life of electronic operating devices with a failure rate per unit of time.			
Ballast	Device that is connected in between the voltage supply and one or more discharge lamps and serves the purpose of igniting the lamps and limiting lamp current during operation.			
Ballast-Lumen Factor (luminous flux factor of a ballast)	The ratio of luminous flux emitted by a reference lamp when operated with a particular production ballast to the luminous flux emitted by the same lamp when operated with its reference ballast.			
Capacitive circuit (series compensation)	Circuit of an inductive ballast with a capacitor connected in series.			
CE Mark	European regulation governing all products that are introduced to the market. Products must comply with the respective EC directives.			
CELMA	Association of European component and luminaire manufacturers (Committee of E.E.C. Luminaires Components Manufacturers Associations).			
CENELEC	European committee for electronic standardisation (Comité Européen de Normalisation Electrotechnique).			
CISPR	International special commission for radio interference (Comité International Spécial des Perturbations Radioélectriques).			
Colour rendering index (CRI) R _a	Index to determine the degree of deviation from a viewed body colour (with 8 standardised test colours) under a given type of lighting. $R_a = 100$ denotes a light source that causes no distortion of any colour. Lower R_a values denote light sources with less positive colour rendition properties.			
Compensated circuit (parallel compensation)	Circuit of an inductive ballast with a capacitor between phase and neutral conductor.			
Compensation capacitors	The power factor can be increased to a value of 0.9-0.98 by using compensation capacitors.			
Conformity declaration	Documentation for an operating device or a luminaire regarding compliance with European directives; this documentation is for submission to national supervisory authorities (e.g. regulation authority for telecommunications and post (Reg. TP) or trade supervisory authorities).			
Convertors	Electronic convertor (electronic conversion of mains voltage in extra-low voltage) to generate operating voltage for low-voltage halogen lamps.			
Creepage and air	Regulation minimum distances between voltage-carrying components of different polarity or between voltage-carrying components and			
clearance distances	the accessible casing surfaces (air clearance: shortest distance through air; creepage distance: shortest distance across a surface).			
Cross discharge	Discharge in the lamp electrode region during preheating.			
DALI	Digital interface for controlling dimmable electronic operating devices (Digital Addressable Lighting Interface).			
Δτ	Increase in the winding temperature during the operation of a ballast (the ballast is mounted on 75 mm high wooden blocks and its temperature is measured at an ambient temperature of 25 °C).			
Δt _{an}	Temperature increase during short-circuit operation (e.g. defective starter, defective lamp).			
DIAL	German institute for applied lighting technology (Deutsches Institut für Angewandte Lichttechnik), Lüdenscheid, Germany.			
DKE	German electrotechnical commission of the DIN and VDE.			
EC directives	Regulations (laws) of the European Community that have to be transposed into national laws within a prescribed period of time.			
Efficiency	Ratio of power output in relation to power input.			
ELC	European Lamp Companies Federation			
EMC	Electromagnetic compatibility			
EMF	Electromagnetic fields			
ENEC agreement	Agreement between the European testing institutes for issuing the European test mark.			
ENEC mark	Marking for a device that complies with the European standards and that was tested by a testing institute that is a part of the ENEC agreement (European Norms of Electrical Certification).			
Energy classification EEI	CELMA system to determine energy classes for ballasts for fluorescent lamps (Energy Efficency Index).			
Error current	Current that is caused by a fault in the insulation of a device or via creepage or air clearance distances.			
Error current protection switch	Evaluates the magnitude of the error current and switches the circuit off if a predefined maximum value is reached.			
Feed-through of mains voltage	The possibility of connecting two lamps to a single terminal so that an electrical connection can be made to another device.			
FELV	Functional extra-low voltage without adequate protection from accidental contact with higher voltages in other parts of the same circuit.			
FEP capacitors	Flame- and explosion-proof capacitors with a contact breaker.			
FGL	Promotion Society for Good Lighting (Fördergemeinschaft Gutes Licht - ZVEI).			
Function protection conductor	It may be necessary to connect a "function protection conductor" to ensure compliance with the EMC requirements or as a starting aid for lamps; VS operating devices are suitably marked.			
IDC terminal (alf terminal)	IDC-type connection terminal (Insulation Displacement Connection) for automatic luminaire fabrication (ALF terminal).			
IEC	International Electrotechnical Commission			
ILCOS lamp designation system				
Illuminance E _V	Illuminance (Ev) is the total luminous flux (Φ) incident on a horizontal, vertical or angled illuminated surface (per unit area). The unit is lux [$x=lm/m^2$], with luminous flux in [lm] and area in [lm]. Illuminance Ev forms the basis for all lighting calculations and designs.			
Impedance	Impedance is a conductor's apparent resistance to an alternating current.			
IMQ	Italian institute for quality marking; at the same time, the mark of conformity with standards (Istituto Italiano del Marchio di Qualitá).			

VOSSLOH

Independent lamp operation	Possibility of operating a single lamp with a multi-lamp operating device after the other lamps have failed.		
Independent operating device	Operating device that does not have to be installed in a casing; the safety regulations are fulfilled by the operating device itself.		
Inductance	Inductance establishes the connection between the current and the magnetic flux caused by it in a conductor arrangement after taking account of all design and material fluctuations.		
Inductive circuit	Operation of a fluorescent lamp with a ballast without a capacitor.		
Interference	Interference signals emitted by operating devices via the mains voltage or the air.		
Interference immunity	Property of an operating device to remain fully functional despite interference emitted by other operating devices.		
IP numbers	Code system for marking the protection level of an operating device or a luminaire against moisture or foreign bodies entering (the first figure stands for foreign bodies and the second for moisture).		
IPP technology	Generating the ignition voltage required for high-pressure lamps using the special intelligent pulse pause technology.		
LBS lamp designation System	Marking system for lamps, established for Europe.		
Leak current	Current of an operating device or a luminaire that is discharged via the potential compensation conductor (earth conductor).		
Light colour	Perceived colour of the light radiated by a lamp.		
LED-light engine	Functional unit consisting of an LED module and control gear. The LED light module and the control gear can be used separately in two different casings or combined as a single unit.		
LED (light emtting diode)	Solid state device embodying a p-n junction, emtting optical radiation when excited by an electric current.		
LED module	Unit supplied as a light source. In addition to one or more LED's it may contain other components, e.g. optical, electrical, mechanical and/or electronic.		
Light intensity distribution curve	Represents the spatial distribution of the light intensity of light sources.		
LiTG	German Association for Lighting Technology (Deutsche Lichttechnische Gesellschaft)		
Luminance L	Luminance L is the luminous intensity density of an area that emits or reflects light with a certain emission angle. The unit of luminance L is $[cd/m^2]$ and is the photo-technical measure that corresponds to the subjective perception of the level of brightness of a light source or an object, while luminous flux Φ , luminous intensity L and illuminance E are not visible, i.e. not sensed by the human eye. Light only becomes visible when it hits an object that it is either reflected by or penetrates in a diffused manner. Objects of different levels of brightness therefore only seem to be darker or brighter at same illuminance because they reflect the light differently.		
Luminous efficiency / efficiency	Ratio of luminous flux to power input (lm/W).		
Luminous flux Φ (photon radiation)	Luminous flux Φ is the radiated/emitted light power in lumen [lm] of a light source, a unit of measurement for the number of light photons emitted in all directions. Luminous flux is the photometrical light output perceived by the human eye.		
Luminous intensity I	Luminous intensity I in [cd] is decisive for characterising of a source of light and is defined as a quotient of the emitted luminous flux Φ and the radiated area of the solid angle Ω . Luminous intensity I is thus the focused luminous flux Φ within the radiated solid angle Ω . Today's LEDs can reach a luminous intensity of more than I=10 cd. The luminous intensity value depends on the viewing angle, i.e. the luminous intensity of an LED chip in a 30° reflector will be higher than that of an identical LED chip in a 60° reflector. This is because a 60° reflector results in the same luminous flux Φ having to illuminate a larger area.		
Mains harmonics	Mains current distortions by higher-frequency currents.		
Master/slave circuit	Operating several lamps in different luminaires with one ballast.		
μF	Unit of capacitance (microfarad)		
MPP capacitors	Metallised polypropylene film dielectric capacitors.		
Parallel-compensated circuits	Circuit of an inductive ballast with a capacitor between phase and neutral conductor (connected in parallel to the lamp circuit).		
Part load range	Variable load range up to the maximum rated load.		
PELV	Protective extra-low voltage with adequate protection from accidental contact with higher voltages in other parts of the same circuit.		
Phase-cutting leading- edge control	In accordance with the defined angle, voltage regions are suppressed of the positive and negative sinusoidal oscillations of the mains voltage in an upwards direction starting with the voltage zero crossing.		
Pinch temperature	This is measured at a defined point of the lamp base; the permissible maximum values are internationally determined.		
Polyester resin impregnation	High-grade vacuum impregnation with polyester resin.		
Power factor	Ratio of true power to apparent power (total power). Lambda (λ) expresses the power factor for non-sinusoidal currents and voltages. In contrast, $\cos \varphi$ (phi) expresses the power factor for sinusoidal currents or voltages.		
Pulse Ignition	Generation of the ignition voltage for high-pressure lamps with the help of ballasts (ballast insulation must match the ignition voltage).		
PUSH	Key-operated bipolar interface of VS electronic ballasts for controlling the brightness of connected lamps.		
Reference ballast	Special ballast that is either inductive for lamps operated with mains voltage or ohmic for lamps operated at high frequencies. Reference ballast are designed to deliver comparable values for testing ballasts, selecting reference lamps and testing mass-produced lamps under standardised conditions.		
Reference lamp	When used in combination with a suitable reference ballast, reference lamps provide key electrical data that are close to the target values laid down in the lamp standards.		
Safety transformer	Isolation transformer for supplying circuits with safety extra-low voltages.		
SELV	Safety extra-low voltage.		
Short-circuit-proof	Short-circuit-proof operating devices do not pose a safety risk if a short-circuit occurs at the output of the operating device; a difference is made between operating devices offering limited and unlimited protection against short-circuit; in the case of operating devices with limited short-circuit protection, an additional mechanism has to be installed.		

Technical Details - Glossary

Solid angle Ω	Solid angle Ω is the area within a sphere that is pervaded by the light emitted by a light source. The steradian (sr) is the unit of measure for solid angle, whereby 1 sr = 65.5°. This describes a cone with its peak in the light source and a beam spread angle of 65.5°. A whole solid angle is expressed as 4π sr = 12.56 sr.			
Standards	VS products comply with the regulations of the following European standards: • Electronic ballasts for fluorescent lamps: EN 61347-1, EN 61347-2-3, EN 60929, EN 55015, EN 61547,			
	 Electronic ballasts for high-pressure discharge lamps: EN 61347-1, EN 61347-2-12, EN 55015, EN 61547, EN 61000-3-2, IEC 62493 			
	 Electronic convertors: EN 61347-1, EN 61347-2-2, EN 61047, EN 55015, EN 61547, EN 61000-3-2, IEC 62493 Electromagnetic ballasts: EN 61347-1, EN 61347-2-8, EN 61347-2-9, EN 60921, EN 60923, EN 50294, EN 55015, EN 61547, EN 61000-3-2, IEC 62493 			
	 Electromagnetic transformers: EN 61558-1, EN 61558-2-6, EN 55015, EN 61547, EN 61000-3-2, IEC 62493 Ignitors: EN 61347-1, EN 61347-2, EN 60927, EN 55015, EN 61547, EN 61000-3-2 			
	 Capacitors: EN 61048, EN 61049 Lampholders: EN 60238, EN 60400, EN 60838-1, EN 61184, EN 60399 			
	Digital control inputs of operating devices: IEC 62386			
	• LED: IEC 62031, IEC 61347-1, IEC 61347-2-13, IEC 62384, IEC 61231, IEC TR 61341, IEC 60838-2-2, IEC 62471(-1), EC 62471-2			
	• EMC/EMF: EN 55015, EN 61547, EN 61000-3-2, IEC 62493			
Stroboscopic effect	Optical illusion whereby objects appear either to be moving or stationary in contrast to their actual state when illuminated by periodically alternating light.			
Superimposed ignition	Generation of the ignition voltage required for high-pressure lamps by the ignitor independent of the ballast (superimposed over the mains voltage).			
System power consumption	Total power input of lamp and operating device (in watt).			
「rating	Rated value of the lampholder's maximum operating temperature (e.g. T130).			
ďa	Ambient temperature			
Candem circuit	Series connection of two fluorescent lamps using a single ballast.			
c	Maximum operating temperature of the casing at the marked measuring point.			
Temperature details	The temperature details on our VS ballasts are always maximum values; these are based on the maximum voltage values given on the type plate.			
Thermal classes	Classification of transformers according to the degree of heat resistance offered by the insulation materials.			
Thermal cut-out	Protection from overheating due to abnormal lamp conditions (rectifier effect, short-circuit and overload), with automatic restart after cooling.			
Transient mains overvoltages	Voltage peaks that briefly occur and are superimposed over the mains voltage.			
Tungsten-halogen cycle	In the outer, cooler part of the lamp, the halogen combines with the tungsten vapour released by the filament to form a tungsten-halogen molecule which then decomposes and deposits the tungsten on the filament.			
w	Maximum permissible winding temperature.			
JL, UL approval	Underwriters' Laboratories Inc., USA; US conformity mark for safety.			
VDE mark	Safety mark on the basis of the German safety standard for electrical equipment; tested by the VDE-PZI (Verband Deutscher Elektrotechniker – Prüf- und Zertifizierungsinstitut).			
Winding temperature	Temperature of the copper winding in a magnetic ballast; the change in winding temperature is measured using the change of the resistance of the copper winding.			
Zhaga	Global industrial consortium that has taken on the task of standardising the interfaces needed for LED light engines.			
ZVEI	Central association of the electrotechnical and electronics industry in Germany (Zentralverband Elektrotechnik- und Elektronikindustrie e.V.).			

i

			l
Ref. No.	Type		Approval
100064	02120	340	1,3,33
100082	02130		1,0,00
100086	02543	182	
100096	02574	181	1
100098	02575		1
100125	03210	450	
100194	06700	450	_
100217	07400	451 451	_
100270	08701	451	_
100305	09105	308	
100310	09205	308	
100417	17400	450	_
100437	20200	349	1
100442	20400	328	
100444	20401	328	
100448	20501	328	
100484	22600		1,3,33
100486	22601 22602		1,3,33
100487	27151	319	
100536	27200	319	
100540	27201	319	
100551	27356	327	
100557	27450		1,3,33
100559	27460	320	
100572	27722	327	
100579	27820		1,3,33
100581	27821 27822	31 <i>7</i> 327	,
100585	28100		1,3,33
100588	28200		1,3,33
100591	28500	318	1,3,33
100593	28501	318	1,3,33
100616	30023	415	
100662	30300	406	
100710	30523	415	
100723	30550 30602	415 180	
100741	30620	180	
100877	32100	404	
100912	32300	412	1
100913	32301	178	
100921	32311	178	1
100922	32321	179	
100925 100928	32326 32330	179 180	
100928	32336	180	
100931	32341	179	
100934	32361	179	
100937	32381	179	1
100939	32400	399, 403, 405	
101162	32600	404	
101207	32620	404	
101248	32680 32690	404	
101258	32700	399	
101274	32720	399	
101275	32730	399	
101290	35002		1,3,33
101294	35003		1,3,33
101298	35004		1,3,33
101306	35006		1,3,33
101310 101314	35007		1,3,33
101314	35008 35010	294	1,3,33
101324	35010		1,3,33
101344	35051		1,3,33
101346	35052	295	

Ref. No.	Turno	Paga	Approval
101358	Type 35100	<u> </u>	Approval 15,3
101364	35201		1,3,33
101367	35202		1,3,33
101410	35812		1,3
101448	35862	285	1,3
101485	36050	298	1,3,33
101489	36051	298	1,3,33
101491	36052	299	1,3,33
101493	36053	299	1,3
101497	36061	302	_
101521	36300	297	1,3
101528	40100	336	
101532		336	
101627	43000		1,3,33
101629	43010		1,3
101631	43100		1,3
101636	43300		1,3,33
101643	46100	326	
101647	46101	326	
101651	46102	328	
101655	46103	328	
101681	47102	324	
101706	47200	324	
101708	47202 47205	324	
101712	47206		1,3
101710	47502	324	
101745	47504	325	
	47600	324	
	47605	325	
	47606	325	•
101781	47700	325	
101784	47900		1,3,33
101785	47920		1,33
101787	48500	326	-
101789	48501	326	
	48502	328	
101793	48503	328	1,3
101812	49401	327	1
101910	52001	430	1
102407	58001	336	
102409	58016	336	
102577	62010	44, 167	1
102582	62015	44, 167	1
102599	62050	44, 167	1
102615			1
	62105	167	
102624	62310	168, 441	
102635 102637	62601	166 166	
102937	78100	407	
102925	78101	407	
102938	80003	429	
102939	80003	429	
	80006	429	
102947	80006	429	
102956	80014	445	
103020	80342	443	
103021	80342	443	
103026	80343	443	
103027	80343	443	
103031	80345	443	
103032	80345	443	_
103042	80353	443	
103043	80353	443	_
103087	80433	452	_
103359	81019	429	_
103360	81019	429	
103365	81022	429	-
103366	81022	429	_

1	
1a	ENEC applied
3	c UL us
5	CSV
7	(1)
13	KEMA
13a))KEMA
14	Û ^V E
14a	VDE applied
15	VDE
1 <i>7</i>	
19	PG
25	B
28	VOE EMV
31	
32	Siis V ()
33	CQC
34	c FU ®us
35	RECOGNIZED COMPONENT US

- 4	_		i
Ref. No.	Type		Approval
103414	81093 81093	426 426	_
103424	81095		1,33
103430	81109	426	_
103431	81109	426	_
103442	81120	426	_
103443	81120	426	_
103467	83000	437	_
	83000	437	_
103483	83002 83002	437	_
103504	83002	445	1
103515	83008	445	
103520	83011		1,33
103569	831 <i>7</i> 3	437	_
103570	831 <i>7</i> 3	437	_
103582	83218	442	_
103583	83218	442	_
103587	83218	445	_
103590	83219	442	_
103591 103594	83219	442 445	_
103595	83221	442	1
103597	83223	442	
103643	83285	437	1,33
103709	84122	335	_
103710	84122	335	_
103711	84123	335	_
103712	84123	335	_
103743	84154 84154	335	_
103744	84159	335	_
103750	84159	335	_
103818	86037	182	_
104928	94304	443, 445	_
105144	96010	443, 445	_
105179	96033	444	_
105185	96034	444	_
105448	97031	300	
105482	97064 97065	343	
105484	97065	343	_
105775	35060	300, 301	_
105776	35060	300, 301	_
105777	35760	301	_
105820	97515	300	_
105824	97516	300	
105843	97532	329	
105845 105847	97533 97534	329 329	
	35061	301	
105981	97638	302	
106094	98085	334	_
106095	98086	343	
106248	32800		1,34
106249	32820		1,34
106256 106262	94060 35842	<u>406</u> 285	
106416	35060	300, 301	
106417	35760	300, 301	
106455	09210	308	
106457	32480	404	
106513	78201		1,34
106583	78201		1,34
106585	62110	167	
106766	94067	451	_
106767 106768	94068	<u>451</u>	_
	94009	451	_
106817	98006	448	_
		4-10	

Ref. No.	Туре		Approval
06818	02170		1,3
06829	94450	452	_
06893	35814	287	
06912	35912 09501	285 455	-
06949	09502	455	
07065	31662		1
07066	31672	177	1
07096	83015		1
07154	05202	450	_
07177	96242	435	_
07178	96206	435	_
07192	32360	414	1
07193	32340	414	1
07194	32320	413	1
07195	32310	413	1
07213	32390	413	1
07214	32391	413	1
07215	32395	413	1
07331 07445	83015 43410	446 343	1
07536	09000		1,3
07617	35844		1,3
07618	35864	287	1,3
07677	21100	183	34
07694	33100	407	_
07716	81096	425	1,33
07723	43510	342	1
07780	12801	169, 456	
07861	35914		1,3
07944	81020		1
07957	84171	331	1
07958 07959	841 <i>7</i> 2 841 <i>7</i> 3	332	1,3
07960	84174	331	
08208	12800		1,5
08257	31936	530	
08266	98003	314, 329, 331	_
08267	98004	314, 332	_
08304	97159	453	_
08373	12812		1
08374	12810	170, 456	1
08375	12811	170, 456	1
08416	62622	167	1
08437	28920		1,3
08438	28921	321	
08449		401	
08454 08575	43500 35944	342 287	
08576	35964	287	
08608	84175	332	
08614	84175	332	
08666	84172	332	-
08669	84174	332	
08671	43020	341	
08674	30350	406	1
08678	94071	403	
08718	62150		1
08719	62151	166	
08730	48230		1 22
08747	64740		1,33
08748	64800	448	
08758 08773	22800	322	1,33
08775	22801		1
08777	22850		1
08778	22851	322	1
		329	_
08780	97044		
08780 08816	22604	322	1,3

			ı
Ref. No.	Type		Approval
108845	97117 17803	330 450	
108878	36060	302	
108898	35012		1,3,33
108927	35500	296	1,3
108928	35510	296	-
108932	35530	297	
108933	35540	297	
108934	35550 64401	297	
108937	02500	181	1,33
108940	85007	416	
108947	98002	314, 333	
108948	84180	333	1
108953	64770	432	1,33
108956	97194	453	
108965	64501		1,33
108979	31000		1,34
108983	64307		1,33
108984	22900 84181	322	
109907	31010		1,34
109014	12870	528	
109039	83007	438	
109041	81130	427	_
109044	96172	439	_
109045	97511	435	
109052	83007	438	
109054	81130	427	
109060	96172 97511	439	
109074	83293	438	
109077	85070	433	
109081	83274	439	_
109084	96159	427	_
109086	97147	330	
109087	83293	438	
109092	85070	433	
109093	96159	439 427	
109098	83035	438	
109099	83035	438	
109102	81002	426	_
109103	81002	426	_
109110	85075	422	_
109112	85075	422	
109119 109120	97666 97666	423 423	
109122	97635	423	
109123	97635	423	
109126	97697	423	
109145	81024	426	
109149	96211	427	
109150	96211	427	
109152 109153	81132 81132	427 427	
109158	83297	447	
109159	83282	435	
109162	03210	450	
109166	05202	450	
109184	97698	434	
109187	96148	438	
109188	96148	438	
109190 109191	96154 96154	439	
109191	96147	438	
109196	96147	438	
109198	83260	446	
109199	83260	446	
109200	96229	446	_

Ref. No.	Tuno	Page	Approval
109201	Type 96229	446	
109235	35610	292	
109238	35611	292	
109240	35612	292	1,3
109243	83300	448	_
109247	09708	454	
109248	09701	454	
109249	09703	454	
109253	09701	454	
109280	96033	444	
109281 109282	96034 83258	444	
	83258	444	
109285	08610	451	
109291	08701	451	
109317	96160	455	
109318	96160	455	
109330	27700	316	1,3,33
109331	27701		1,3,33
109332	27800	316	1,3
109335	27801	316	
109338	28500		1,3,33
109339	28501		1,3,33
109340	28600		1,3,33
109341	28601		1,3,33
109342	28700 28701	531	1,3
109376	28725		1,3
109377		531	
109383	64001		1,33
109384			1,33
109386	64101		1,33
109387	64101	420	1,33
109411	97244	411	_
109429	64501	431	1,33
109462	83282	435	
109487	48300	326	
109497	32380	414	
109512 109518	96124 12876	<u>439</u> 528	
109532	84000	315	
109547	33300	398, 402, 405	
109548	97255	398	-
109550	97257	398, 409	
109553	94095	403	_
109554	94096	405	_
109555	97260	435	_
109556	97260	435	
109559	96124	439	
109560	97698	434	
109568 109575	62111 97065	167 343	
109592	09705	455	
	09704	455	
	94435	452	
	94436	452	
109674	33400	398	1,34
109676	97636	422	_
109677	97636	422	_
109679	97665	434	
109680	97665	434	
109685	94088	312	
	09170	312	
109725	97750	453	
109728 109784	97752	453	1,3,33
109784	43200	340	
109790	43210		1,3,33
109794	97664	434	
109795	97664	434	
-			

1	EN
la	ENEC applied
3	c (UL) us
5	CSV CSV
7	
13	KEMA
13a))KEMA
14	DYE
14a	VDE applied
15	VDE
17	(S)
19	PG
25	B
28	EMV
31	RAP 6
32	SHES V &
33	CQC
34	c 71 8°US
35	RECOGNIZED COMPONENT US

- 4	_		l. ,
Ref. No.	Type		Approval
109805	81024 64770	426 432	
140413	Z 70 S	144	
140425	Z 250 S	145	
140427	Z 400 S	146	
140430	Z 1000 S	149	
140432	Z 2000 S	152	
140471		150	
140481 140489		144	
	Z 1000 S/400 V	150	
140497	,	152	
140499	Z 3500 S/400 V	152	_
140537	CE 50	162	_
	Z 400 M	147	
140597	Z 400 M K	147	
	Z 1000 TOP	149	
140608 140609	Z 1200/2,5 Z 1200/9	151	_
140613	PZS 1000 K	154	
140617	PZI 1000/1 K	154	
140621	PU 12 K	157	
140622	PU 120 K	157	14
140623	PU 121 K	1 <i>57</i>	
	AS 1000 K	160	
	Z 400 M S	147	
	AS 1000 K A10 Z 70 K D20	161 144	
141580	Z 250 K D20	144	
141582		147	
141583		146	
141584	Z 1000 S D20	149	14
142098	ZPU 70 K D20	158	14
	ZPU 250 K D20	158	
	PR 12 K D	157	
142170	PR 12 K LC	1 <i>57</i>	
142320 142330	Z 70 K Z 70 K D20	144	
142340	Z 250 K	145	
142350	Z 250 K D20	145	
142360	Z 400 M K	147	14
	Z 400 M K VS-Power	147	
	Z 400 M K D20	147	
	PZ 1000/400 V A5	153	
142784	PZ 1000 K D20 Z 400 M K VS-Power	153 147	
146990	Z 750 S	148	
147707	Z 400 M VS-Power	147	
147790	HZ 600 K	155	_
147791	HZ 1000 K	156	
147793	HZ 2000 K/400 V	156	
149992	SU 1-10 V K PR 1-10 V K LC	159 159	
149993 159968	0607	330	
160374	SL 30.315	280	
160597	NaHJ 250.160		1,19,31
160604	NaHJ 250.163	120	
160613	NaHJ 70/50.157	119	
161158	NaHJ 100/70.519	120	
161367	NaHJ 35.485	119	
161371 161379	NaHJ 35.638 NaH 50.486	119	
161392	NaHJ 70.653	119	
161399	NaH 50.654	119	
161460	UNaH 70/40%.691	138	_
161469	NaHJ 100/70.703	120	
161471	NaHJ 100/70.709	120, 138	
161475	UNaH 150/40%.717	138	
161662 161682	NaHJ 70.158 NaH 50II.539	119 135	
101002	1 NG1 1 JOH.JJ 7	133	

Ref. No.	Туре		Approval
	NaHJ 250.915		1,31,32
	NaH 100II.918	135	
	NaH 35II.538	135	
	NaHJ 100.941	120	
	STr 50/12.301		14,19
	STr 20/12.306		14,19
	STr 100/12G.311 STr 50/12G.301	393 393	
	STr 60/12G.303	393	
	STr 20/12.306		14,19
	STr 105/12.406	392	
	EST 60/12.304	388	
	EST 75/12G.302	387	
	L 15.107	278	
	L7/9/11.110	266	1
162966	L 13.111	266, 276	1
162976	L 16.113	266, 276	_
163007	L7/9/11.110	268	1
163016	L 13.111	268	1
163024	L 18.114	268	1
	L 18I.132	266	
	L 18I.132	268	
	L7/9/11.134	268	
	L7/9/11.134	266	
	L 18.140 L 7/9/11.141	266, 277	1,19,31
	L 4/6/8.142	276	
	LN 13.143	265, 276	
	LN 16.145	265, 276	
	LN 181.147		1,19,31
	L7/9/11.141	268	
	LN 13.143		1,19
163162	L 13.164	266, 277	_
163170	LN 181.147	268	1,19
163180	LN 18.146	268	1,19
163189	L 13.164	268	_
	LN 13.143		1,19
	L 13.111	268	
	L 36.188	266, 277	
163234		277	
	L 16.202 L 20.122	266, 277 271, 279	
	L7/9/11.207	261	
	L7/9.209	271	
	L 4/6/8.304		1,19,25
	L7/9/11.307		1,19,25,31
163702	L 15.308		34,35
163711	LN 13.313		1,19,25,31
	LN 16.316	260, 274	
	LN 181.319		1,19,25,31
	LN 15.329		1,25
164013	L 25.346	274	
	L 30.347		19,25,31
	L 4/6/8.404	273	
	L7/9/11.411	261	
	LN 13.413 LN 181.418	261, 273 263	
164358	LN 16.417	261, 275	
164438	L 36/40.443	263, 275	
164555	LN 36.505	263, 275	
164560	LN 58.506	263, 275	
164566	LN 18.507	263, 275	
	LN 18.510	262, 274	
164590	LN 36.511	262, 274	
	LN 30.530	262	
164779	L 18I.602	264	_
1/4000	L 58.625	264, 275	_
164828			
164870	L 58.657 Q 50.501	264, 275 131	

2

3

4

0

9

			ı
Ref. No.	Type		Approval
167132 167136	Q 80.510 Q 125/80.511	131	
167140	Q 125.512	131	
167144	Q 250.513	131	1,19,31
167185	Q 50.535		-
167213	Q 50.550		1,32
	Q 400.561 Q 125.568		1,19,31
	Q 80.584	131	
167302	Q 80.587	131	
	Q 80.588		1,19,31,32
167306	Q 80/50.592	131	
167311	Q 80/50.596 Q 125/80.611	131	
	Q 400.612		1,19,31,32
	Q 400.613	131	
167367	Q 250.528	131	1,19,31,32
167374	Q 400.669	131	
168108	SL 24.335	272	
169125 169389	STr 105/12.406 LN 58.568	391 262, 274	
169414	L 4/6/8.109	202, 274	
169496	SL 13.331	272	
169546	SL 40.333	280	_
169591		120	
	LN 30.801	274	
	LN 13.805	260	
169658 169721	L 58.718 NaHJ 150.995	262, 274	1,32
169722	NaHJ 70.158		1,32
169727	SL 18I.334	272	
169747	STr 105/12.311		15,19,31
	STr 50/12.401	392	
	LN 36.570 STr 50/12.401	262, 274	
169830 169892	UNaH 250/40%.983	391 138	
169947	Q 125.549		1,19
170002	STr 105/12.311	391	15,19,31
170009	L 36.126	270, 278	
170091	STr 50/12.301		14,19
170117 172773	L 14.139 Phase-cutting trailing-edge di	279 mmer 390	
172774	Phase-cutting leading-edge of		
172775	Cover plate	81, 256, 390	_
172776	Light sensor	256	
172777	Multi sensor	256	
172778 174961	Manual controller NaHJ 70.300	81, 256	1,31
178177	NaHJ 250.340	120	
178627	L 13.164	268	
	NaHJ 250.727		1,19,32
178790	NaHJ 400.006		1,31,32
179231	LN 181.130	269	
179258 179409	L 13.129 L7/9/11.131	270, 278 269	
179414	L 4/6/8.133	278	
179424	NaHJ 400.737		1,19,31,32
179444	STr 50/12.337	392	
179454	NaH 600.005		1,19
179466 179604	LN 13.134 STr 60/12.338	269, 277, 278 391	
179608	STr 60/12.338	392	
179740	NaHJ 400.006		1,31,19
179742	NaH 600.010	126	
179743	NaHJ 250.003	126	
179792	EST 60/12.388		1,14,28
179793 183000	EST 120/12.389 EHXc 100.353		1,14,28
183001	EHXc 100.353		1,14,28
183026	EHXe 35.356		14,28

Ref. No.	Туре		Approval
183027	EHXe 70.357		14,28
183028	EHXc 50.358		1,14,28
	EHXc 50.358 EHXc 50.358		1,14,28 1,14,28
	EHXc 50.359		1,14,28
183033	EHXc 35.325		1,14,28
	EHXc 35.325		1,14,28
183035	EHXc 35.325	103	1,14,28
183036	EHXc 70.326	103	1,14,28
183037	EHXc 70.326		1,14,28
	EHXc 70.326		1,14,28
	ELXc 424.223		1,14,28
	ELXc 226.878		1,14,28
	EHXc 150G.334 EHXc 150G.334		1,14,28
183048	EHXd 50.360		14,28
183049			14,28
183050	EHXd 100.362		14,28
183051	EHXd 150.363		14,28
183052	EHXd 250.364	110	14,28
	EHXd 50.365 M		14,28
183054	EHXd 70.366 M		14,28
	EHXd 100.367 M		14,28
183056	EHXd 150.368 M		14,28
183057 183060	EHXd 250.369 M EHXd 50.360		14,28
183061	EHXd 70.361		14,28
183062	EHXd 100.362		14,28
	EHXd 150.363		14,28
183064	EHXd 250.364	111	14,28
183065	EHXd 50.365 M		14,28
183066	EHXd 70.366 M		14,28
183067	EHXd 100.367 M		14,28
183068	EHXd 150.368 M		14,28
183069	EHXd 250.369 M EST 70/12.601		14,28
186005	EST 105/12.602		1,14,28
186032	EST 70/12.618		1,14,28
	EST 105/12.619		1,14,28
186050	Potentiometer	390	_
186068	EST 200/12.649	384	1,13,28
	EST 70/12.380		1,14,28
	EST 70/12.380		1,14,28
	EST 105/12.381		1,14,28
186079 186081	EST 105/12.381 EST 35/12.650		1,14,28 1,14,28
	EST 150/12.622		1,14,28
186103	EDXe 170/24 V	88, 89	
186104	EDXe 170/24 V	88, 89	
186105	EDXe 170/24 V IP67	88, 89	
186112	EDXe 170/12 V	90, 91	
186113	EDXe 170/12 V	90, 91	
186114	EDXe 170/12 V IP67	90, 91	
186115 186116	ESTd 70/12.660 ESTd 150/12.661		1,14,28 1,14,28
186117	EST 70/12.643		1,14,28
186118	EST 105/12.644		1,14,28
186119	EST 150/12.645		1,14,28
186121	ESTd 105/12.662	386	1,14,28
186129	EDXe 120	88	14
186131	EDXe 1130/24 V	88, 89	
186132	EDXe 1130/24 V	88, 89	
186133	EDXe 1130/24 V IP67	88, 89	
186136	WU-ST-001-Digi-manuell-CA	66	1,14
186138 186140	WU-ST-004-Digi-DALI-CA WU-VB-004-Slave-PCB CA	68	
186141	WU-VB-003-DistriPCB CA	69	
186142	WU-ST-002-DigiLED-Slave CA	67	_
186143	WU-ST-006-DigiLED-Push	81	
186144	WU-ST-006-DigiLED-Push CA	67	_

1	EN
la	ENEC applied
3	c UL us
5	CSV.
7	
13	KEMA
13a)KEMA
14	ŮE □VE
14a	VDE applied
15	VDE
1 <i>7</i>	(\$)
19	P
25	B
28	UDE EMV
31	
32	SHIB V
33	CQC
34	c 91 ®us
35	RECOGNIZED

Reference Numbers

Ref. No.	Туре	Page	Approval
186153	WU-ST-003-Digi-DMX-CA	66	
186154	WU-ST-005-Digi-IR-CA	66	
186155	WU-ST-010-DigiLED-Mono CA	67	_
186157	ECXe 350mA/11W		1,14,28
186158	ECXe 500mA/16W		1,14,28
	ECXe 700mA/17W		1,14,28
	ECXe 1050mA/20W		1,14,28
186172	WU-ST-011-Passive-Slave CA		
186173	EST 60/12.635 ECXe 350mA/42W	382	1,14
186175	ECXd 700mA/34W		1,14,28
186180	ECXe 350mA/8W		1,14,28
	WU-ST-012-DigiLED-RF CA	67	
186189	Light Controller L	476	
	Light Controller LW	476	
186191	MultiSensor SM	479	
186192	MultiSensor FM	479	_
186193	MultiSensor IL	479	
186194	Extender	478	_
186195	ECXd 700mA/34W	48	1,14,28
186196	ECXd 1050mA/60W	48	1,14,28
186197	ECXd 1050mA/60W		1,14,28
	ECXe 1050mA/60W		1,14,28
186199			1,14,28
186200	ECXe 700mA/40W		1,14,28
186201	ECXe 700mA/40W		1,14,28
186202	ECX = 700mA/400mA		1,14,28
186203	ECXe 700mA/400mA EDXe 112		1,14,28
	ECXd 700mA/40W		1,13a 1,14,28
	ECXd 700mA/40W		1,14,28
	ECXd 1400mA/65W		1,14,28
186209	ECXd 1400mA/65W		1,14,28
186210	Light Controller S	477	
186211	Magnetic-base antenna	480	
186212	Screw-base antenna	480	
186213	Connection cable	480	_
186216	EDXe 150/12 V		13,13a
186217	EDXe 150/12 V	90, 91	13,13a
186218	EDXe 150/24 V	88, 89	13,13a
186219	EDXe 150/24 V		13,13a
186223	PEW-OM 80x80 3000K	9	_
186226	ECXe 350mA/75W		1,14,28
186227	ECXd 350mA/75W		1,14,28
186229	ECXe 350mA/15W	494	1,13
186231	iDC-GPRS		
186232	iLUX iMCU	495 497	
186233	iLC	492	
186234	iPC	493	
186235	iPC-Lux	493	
186236	iPC-RC	493	
186237	iDC-IP	494	_
186238	iDC-FO-MM	494	_
186239	iDC-FO-SM	494	_
186242	iCT	496	
186243	iLIC	496	
186246	iCTI	493	
186247	PEW-OM 80x80 4000K	9	
186248	PEW-OM 80x80 5000K	9	
186251	iTAB Cord orin	493	
188080 188093	Cord grip	107	
188093	ELXc 135.856 ELXc 235.857		1,14,28
188095	ELXc 149.858		1,14,28
188130	ELXc 149.636 ELXe 258.222		1,14,20
188132	ELXc 257.836	234, 235	
188136	ELXe 218.526		1,14,20
188137			1,14
188140	ELXc 140.862	229, 249	-

	Туре	Page	Approval
188142	ELXc 154.864		1,14,28
	ELXc 180.866	229, 249	
	EHXc 235.316		1,14,28
188224	EHXc 270.317		1,14,28
	ELXc 120.838		1,14,28
188273	ELXc 120.838		1,14,28
	ELXd 170.808		1,14,28
	ELXc 136.200		1,14,28
	ELXc 158.201		1,14,28
	ELXc 236.202 ELXc 258.203		1,14,28
	ELXc 170.205		1,14,28
	ELXc 270.206		1,14,28
	ELXd 124.600	231, 254	
	ELXd 224.601	231, 254	
	ELXd 139.602	231, 254	
	ELXd 154.603	231, 254	
	ELXd 254.604	231, 254	
	ELXd 180.605	231, 254	
188335	ELXd 249.606	254	1,14,28
188336	ELXd 124.607	231, 253	1,14,28
188337	ELXd 224.608	231, 253	1,14,28
188338	ELXd 139.609	231, 253	1,14,28
188339	ELXd 239.610	231, 253	1,14,28
	ELXd 154.611	231, 253	
	ELXd 254.612	231, 253	
	ELXd 180.613	231, 253	
	ELXd 249.614		1,14,28
	ELXd 118.615	231, 254	
	ELXd 218.616	231, 254	
	ELXd 136.617	231, 254	
	ELXd 236.618	231, 254	
	ELXd 158.619 ELXd 258.620		1,14,28
	ELXd 239.621	231, 254	
	ELXc 257.836	236, 237	
	ELXd 226.801		14,28
	ELXc 414.868		1,14,28
	ELXc 113.392		1,14,28
188455	EHXc 235.316		1,14,28
188456	EHXc 270.317	106	1,14,28
188490	ELXd 226.801	242	14,28
188495	ELXd 170.808	242	1,14,28
	ELXd 218.803		1,14,28
	ELXd 242.807		1,14,28
188564	ELXd 118.802		1,14,28
	ELXd 142.806		1,14,28
	ELXc 128.869	234, 235	
	ELXc 128.869	236, 237	
	ELXc 336.214		1,14,28
	ELXd 318.622 ELXd 324.623	231, 253	1,14,28
	ELXd 324.623	231, 253	
	ELXd 418.625		1,14,28
	ELXd 324.626	231, 254	
188601	ELXd 318.627		1,14,28
	ELXd 424.628	231, 254	
	ELXd 418.629		1,14,28
	ELXd 280.630		1,14,28
	ELXd 280.631		1,14,28
188616	ELXc 240.863	229, 249	
188617	ELXc 249.859	249	1,14,28
188618	ELXc 254.865	229, 249	
	ELXc 280.538	229, 249	
	ELXc 242.837	234, 235	
	ELXe 418.215	255	
	ELXs 116.900	228, 245	
	ELXs 116.903	228, 245	
	ELXs 121.901	228, 245	
	ELXs 121.904	228, 245	114 28

ENEC 1a applied

Ref. No.	Туре	Page	Approval
188665	ELXs 124.902	228, 245	
	ELXs 124.905	228, 245	
188667	ELXs 126.906		14,28
188668	ELXs 126.907		14,28
188680	ELXc 155.378		1,14,28
188681	ELXc 155.378		1,14,28
	ELXc 170.833		1,14,28
	ELXc 170.833	236, 237	1,14,28
	ELXc 242.837 ELXd 118.802		1,14,28
	ELXd 142.806		1,14,28
188696	ELXd 218.803		1,14,28
	ELXd 242.807		1,14,28
188698	ELXc 213.870		1,14,28
	ELXc 218.871		1,14,28
188700	ELXc 142.872	234, 235	
188704	ELXc 136.207	250	14
188705	ELXc 236.208	250	14
188706	ELXc 158.209	250	14
188707	ELXc 258.210	250	
188708	ELXc 136.207	250	
188709	ELXc 236.208	250	
188710	ELXc 158.209	250	
188711	ELXc 258.210	250	
	ELXc 213.870 ELXc 218.871		1,14,28
	ELXc 218.8/1 ELXc 142.8/2	236, 237	
188717	ELXd 135.823		1,14,28
188744	ELXc 418.204		1,14,28
188760	ELXc 217.873		1,14,28
	ELXc 217.873		1,14,28
188792	EMXs 180.000	501	
188793	EMXs 180.001	501	13
188794	EMXs 180.002	501	13
188795	EMXs 180.003	501	13
188823	EMXs 180.000	501	_
188824	EMXs 180.001		_
188825	EMXs 180.002	501	
188826	EMXs 180.003	501	
188827	Battery holder	501	
188828 188829	Battery holder Battery holder	501 501	
	ELXd 117.715		1,14,28
188865	ELXd 117.715		1,14,28
188866	ELXd 217.717		1,14,28
188867	ELXd 217.717		1,14,28
188868	ELXc 136.216	251	1,14,28
188869	ELXc 236.217		1,14,28
188870	ELXc 158.218	251	1,14,28
188871	ELXc 258.219		1,14,28
188873	ELXd 118.718	231, 253	
188874	ELXd 218.719	231, 253	
188875	ELXd 136.720	231, 253	
188876 188877	ELXd 236.721	231, 253	
188877	ELXd 158.722 ELXd 258.723	231, 253	
188886	ELXa 238.723 ELXc 213.874		1,14,28
188887	ELXc 218.875		1,14,28
188888	ELXc 142.876	238, 239	
188889	ELXc 242.877	238, 239	
188912	ELXc 136.216		1,14,28
188913	ELXc 236.217		1,14,28
188914	ELXc 158.218	251	1,14,28
188915	ELXc 258.219		1,14,28
188919	EHXc 35.339		1,14,28
188920	EHXc 70.340		1,14,28
188921	ELXc 135.220		14,28
188922	ELXc 235.221		14,28
188923 188924	ELXd 142.709 ELXd 142.709		1,14,28
100724	LLNU 142./ U7		1,1→,∠∪

Ref. No.		Page Approval
188945	ELXc 139.632	248 1,14,28
188946	ELXc 154.633	248 1,14,28
188947	ELXc 180.634	248 1,14,28
188948	ELXc 239.635 ELXc 254.636	248 1,14,28
188950	ELXc 280.637	248 1,14,28 248 1,14,28
	ELXd 118.705	243 1,14,28
	ELXd 118.705	243 1,14,28
	ELXd 218.707	243 1,14,28
188955	ELXd 218.707	244 1,14,28
188974	ELXd 242.711	243 1,14,28
188975	ELXd 242.711	244 1,14,28
	EHXc 20.329 B	102 1,14,28
188992	EHXc 20.329 I	102 1,14,28
188993	EHXc 35G.327 B	102 1,14,28
188994	EHXc 35G.327 I	102 1,14,28
400548	32020	403 1
400671	94066	451 –
400699	80474	452 –
400732	97755	453 –
400772	80476	452 –
400779	80475	452 –
400817	85076	422 –
400818	85076	422 –
	85077	434 –
400820	85077	434 –
400913	12600	169 1
400914	12601 12610	169 1
400915	12611	169 1
400917	12614	169 1
	12612	169 1
	94444	452 –
	94438	452 –
401970	97754	453 –
500105	36010	299 1
500106	36011	299 1
500296	Capacitor	514 1
500299	Capacitor	514 1
500300	Capacitor	514 1
500301		514 1
500302	Capacitor	514 1
500303	Capacitor	514 1
500304	Capacitor	514 1
500305	Capacitor	514 1
500315	Capacitor	514 l 514 l
500317	Capacitor Capacitor	514 1
500317	Capacitor	514 1
500319	Capacitor	514 1
500320	Capacitor	514 1
500321	Capacitor	514 1
500322	Capacitor	514 1
500323	Capacitor	514 –
500401	NaHJ 250.011	126 –
500402	NaHJ 400.737	126 1
500403	NaHJ 400.012	126 1
500574	35613	292 1,3
500757	84001	312, 315 –
500810	64401	431 1,33
500843	STr 50/12.207	391 –
500969	NaHJ 250.727	126 1,19
500976	NaHJ 250.727	126 1,19
501351	08400	444 –
501352	08400	444 –
501356	64601	431 1,33
501358	00145	431 1,33
501533	09145 09146	309 1 309 1
501534		
501534 501942	97268	410 -

1	EN
1a	ENEC applied
3	c UL us
5	CSV
7	(1)
13	KEMA
13a))KEMA
14	Û ^V E
14a	VDE applied
15	VDE
1 <i>7</i>	
19	P
25	B
28	VODE EMV
31	
32	Siis Va
33	CQC
34	c AU ®us
35	RECOGNIZED

D ()	T		la i
Ref. No.			Approval
502004 502064	33500		1,34
		411	
502111			1,34
502112	31030		1,34
502394 502416	33600 97282	<u>171</u> 411	
502503		410	
502515	83301	448	
502515		285	
502556		285	
	STr 50/12.422	391	
	Capacitor	514	
502799		122	
	Q 125.598	131	
	NaHJ 35.485		1,32
503010	64781		1,33
	NaHJ 70/50.695	139	
503457		423	
503458		423	
503579		421	
50377		314, 334	
503923	64201		1,33
503924			1,33
504078		314, 332	
	NaHJ 250.340	120	
	NaHJ 100/70.703	122, 139	
	NaHJ 150/100.973	122, 139	
	Capacitor	514	
504202		321	
504296	31690	412	
504297		412	
504302			1,33
504303			1,33
504416		177	
	Q 250.417	134	
	Q 400.001		1,32
504615		433	
504640	83226	442	
504641		442	_
504643	83227	442	
504644	83227	442	
504669	31696	1 <i>77</i>	1
504749	96021	449	_
504769	83283	435	_
504933	97272	304	_
504938	97277	303	_
504939	97278	303	_
504964	WU-VB-VT-1-4	83	
505002	Q 400.001	134	1
505003	97280	304	_
505014	64770	166	
505029	31980	177	1
505030	31981	177	1
505054	NaHJ 250.915		1,31,32
505118	97281	304	
505170	WU-LT-300x300	85	
505183	WU-LT-600x600	85	
505185	WU-LT-900x600	85	
505192	WU-LT-900x900	85	
505217	WU-VB-KP-1-1	83	
505218	WU-VB-SP-1-3	83	_
505219	WU-VB-BU-6	82	_
505222	WU-VB-KB-6x28-grau	82	
505251	93088	417	
505389	64770		1,33
505607	LN 16.135	269, 278	
505608	L 13.136	270, 278	
505609	L7/9/11.137	270	
505610	L7/9/11.138	270	
505628	LN 10.145	278	

Ref. No.	Туре		Approval
505629	LN 16.146	270, 278	
505630	LN 181.147	270	
505712 505720	L 4/6/8.132 64719	277, 278 166	
	64719	166	
505732	09404	309, 313	
505733	09405		1,3,33
505734	09406		1,3,33
505735	09415	310	1,3,33
505736	09416	310	1,3,33
	09420	310, 532	
	09421	310, 532	
505745			1,3,33
505746 505747	09427 09440	311	1,3,33
505750	09450		1,3,33
505751	09460		1,3,33
505768	L 20.148	270, 278	
505781	WU-ST-DigiLED-1 - 10 V	81	
505782	J 400.027	126	1
505951	83310	410	_
506007	28310		1,33
	09607	455	
506024	09607	455	
506026	96155 96155	455	
506027 506066	WU-VB-KM-1-1	455 83	
506120	NaHJ 100.670		1,19
	NaHJ 35.485		1,32
	94079	451	
506247			1,33
506249	64360		1,33
506255	64775	432	1,33
506257	64775	432	1,33
506263	64785	432	1,33
506265	64785		1,33
	64785		1,33
506366	Capacitor	514	
506398 506405	33700	28, 272	1,34
506492	SL 36.342 Connection cable	79	
506495	Capacitor	514	1
506807	93089	417	
506835	Crimping tool	82	_
506854	Flatband cable	82	_
506943	83001	447	1,33
507049	81018	429	
507050	81018	429	
507051	WU-VB-BU-6	82	
507052	81017	429	
507053	81017	429	
507075 507105	83283 34000	435	
507133	48205	325	
507134	48206	325	
507177	83005	447	
507178	83005	447	
507181	STr 50/12.342	391	_
507213	L 58/65.149	270, 278	
507222	WU-ST-DigiLED-Slave	81	
507256	Q 250.703	131	
507341	NaHJ 70/50.157	121	
507342	NaHJ 100/70.703		1
507343	NaHJ 150/100.973 33710	121	1,34
507470 507490	97257	398, 409	
507498	NaH 50.486	122	
507562	97677	313	
507592	97528	180, 414	

Ref. No.	Туре		Approval
507609	WU-VB-KB-6x28-grau	82 82	
507610 507627	WU-VB-KB-6x28-grau UNaH 150/100.722	139	
507656	41900	176	
507671	NaHJ 100.126		1.19
507697	NaHJ 70/50.695	122	/
507721	NaHJ 250G.533	127	
507775	LineClip	82	_
507797	97267	454	_
507798	97267	454	
507802	83146	443	
507803	83147	443	
	Connection cable	79 79	
507967	Extension cable	291	
507992 507993	45930 45940	291	
507994	45960	291	
507995	45980	291	
508067	97037	424	
508130	NaHJ 400G.191	127	1
508159	45990	291	14
508186	LN 58.116	262, 274	1
508245	Q 400.613	131	-
508306	33710		1,34
508314	09465	312	-
508352	96004	427	
	96004	427	
508423	28330	321	1
508468 508484	Capacitor	514 515	
	Capacitor 97355	417	
508563	97356	417	
	09407	310	
508621	WU-ST-DigiLED-Wireless IR	80	_
508667	Capacitor	514	1
508668	Capacitor	514	1
508723	NaHJ 250.340	122	
	NaHJ 400.012	126	
508744	NaHJ 250.011	126	
508746 508922	Q 250.417 LN 181.940	134 262	
509100	NaHJ 150.355		1,19,31
509110	93034	409	
509117	34301	178	
509118	93035	409	_
509134	29300	31 <i>7, 5</i> 31	1,3,33
509135	29301	31 <i>7</i> , <i>5</i> 31	
509152	47105		1,3,33
509154	47106		1,3,33
509156	47304		1,3,33
509162 509164	47505 47506		1,3,33
509169	NaHJ 70.653	121	1,3,33
509170	NaHJ 35.638	121	_
509171	NaHJ 150.679	121	
509213	42000	176	
509214	42100	177	
509263	64307		1,33
509295	97355	417	
509296	97356	417	
509340	97427	424	
509356	31400		1,34
509357 509373	33800 L 36.120	264, 275	1,34
509377	WU-ST-DigiLED-manuell	204, 273	
509378	WU-ST-DigitED-MX-2	80	
509502	LN 26.813		1,31
509519	93059	301	
509520	93058	301	
509521	93057	301	_

Ref. No.			Approval
509522	93056	301	
509534 509535	40710 40730	348 348	
509613	400.027	126	
520733	97705	422	
520734	97705	422	
520735	85074	422	_
520736	85074	422	_
	97708	423	
	97708	423	
520865 520880	30470		1,34
	94455	408 408	
520935	NaH 100II.918	135	
	L 13.210	261, 273	
520998	NaH 50II.539	135	_
521010	80280	408	_
521123	84105	334	
525583	97760	409	
525791 525809	STr 50/12.109 LN 30.148	391 276	
525873	WU-M-225 W-48 cool white	78	
525893	80016	348	
526018	33650		1,34
526019	27780	318	1
526020	27781	318	
526021	28580	318	
526022	28581	318	
526151 526169	WU-M-225 W-48 warm white Capacitor	<i>7</i> 8 515	
526170	Capacitor	515	
	Capacitor	515	
	NaHJ 150.679	120	
526211	31936	530	3
526517	NaHJ 35.485	119	
526591	LN 18.220	268	
526592	LN 18.220	265, 276	
526593 526594	LN 36.221 LN 15.144	265, 276 276	
526595	LN 30.128	278	
526596	LN 18.127	269, 278	
526597	LN 36.172	269, 278	
526616	NaHJ 150.679	122	_
526709	40505	347	1
526710	40506	347	7
526711 526712	40520	347 347	
526713	40530	347	
526714	40531	347	
526715	Q 1000.311	134	_
526742	WU-M-291-W-5400K	23	
526743	WU-M-292-W-5400K	23	
526744 526745	WU-M-293-W-5400K WU-M-294-W-5400K	23	
526746	WU-M-295-W-5400K	23	
526755	59000	293	
526886	97497	433	_
527191	LN 36.130	262, 274	1
527196	LN 36.201	263, 275	
527502	71001		1,3,33
527503 527504	71002 71003		1,3,33
527504	71011		1,3,33
527507	71012		1,3,33
527508	71013		1,3,33
527509	71014		1,3,33
527510	71015	285	
527511	71016	285	
527512 527529	71019 71101		1,3,33
32,327	7.1.01	200	11,0,00

1	
1a	ENEC applied
3	c UL Us
5	CSV.
7	
13	KEMA
13a)KEMA
14	ŮE DVE
14a	VDE applied
15	VDE
1 <i>7</i>	(S)
19	PG
25	B
28	VIDE EMV
31	
32	¥¢ V¢
33	CQC
34	c FU ® Us
35	RECOGNIZED

Ref. No.	Туре		Approval
527530	71102		1,3,33
527531	71103		1,3,33
527533 527534	71111 71112		1,3,33
527535	71113		1,3,33
527536	71114		1,3,33
527537	71115	286	
	71116	286	
527539	71119		1,3,33
527556	71201	288	1,3,33
527557	71202	288	1,3,33
527558	71203	288	1,3,33
527560			1,3,33
527561	71212		1,3,33
527562			1,3,33
527563			1,3,33
527564		288	
	71216	288	
527566	71219		1,3,33
527585 527586	71301 71302		1,3,33
527587	71303		1,3,33
527589	71311		1,3,33
527590	71312		1,3,33
527591			1,3,33
	71314		1,3,33
	71315	286	
527595	71316	286	
527596	71319	286	1,3,33
527649	WU-M-305-RGB	77	_
527650	WU-M-305-SO	77	_
527651	WU-M-305-SG	77	
	WU-M-305-SB	77	
	WU-M-305-SY	77	
	WU-M-305-W-5400K	77	_
527656	WU-M-306-RGB	77	_
527657	WU-M-306-SO	77	_
527658 527659	WU-M-306-SG WU-M-306-SB	77 77	_
527660	WU-M-306-SY	77	
527661	WU-M-306-W-5400K	77	
527735	71501		1,3,33
	71502		1,3,33
527737			1,3,33
527739	71511	284	1,3,33
527740	71512	284	1,3,33
527741	71513	284	1,3,33
527742	71514		1,3,33
527743	71515	284	
527744	71516	284	
527745			1,3,33
527762	71601		1,3,33
527763 527764	71602 71603		1,3,33
527766	71611		1,3,33
527768	71612		1,3,33
527769	71613		1,3,33
527770	71614		1,3,33
527771	71615	289	
527772	71616	289	
527773	71619		1,3,33
527790	<i>717</i> 01	288	1,3,33
527791	71702		1,3,33
527792	71703		1,3,33
527794	71711		1,3,33
527795	71712		1,3,33
527796	71713		1,3,33
527797	71714		1,3,33
527798 527799	71715 71716	288 288	

Ref. No.	Туре		Approval
527800	71719		1,3,33
528029	71801		1,3,33
528030	71802		1,3,33
528031	71803		1,3,33
	71811		1,3,33
	71812		1,3,33
528035			1,3,33
528036	71814		1,3,33
528037	71815		1,3
	71816	287	
528039			1,3,33
528089	72001		1,3,33
528090			1,3,33
	72003		1,3,33
	72011		1,3,33
528094	72012		1,3,33
528095	72013		1,3,33
528096	72014		1,3,33
528097	72015	290	
528098	72016	290	
528099	72019		1,3,33
528116	72101		1,3,33
528117			1,3,33
528118	72103		1,3,33
528120			1,3,33
528121	72112		1,3,33
528122	72113		1,3,33
528123	72114		1,3,33
528124	72115	290	
	72116	290	
528126			1,3,33
	Q 400.616		1,19
528252	12900	170	
528253	12910		15
528254			15
528472	WU-M-306-W-3200K	77	_
	WU-M-306-W-4200K	77	
	WU-M-306-W-6500K	77	
	WU-M-305-W-3200K	77	_
528479	WU-M-305-W-4200K	77	_
528480 528521	WU-M-305-W-6500K	77	_
528521	Q 700.035	134	
528536	NaHJ 1000.089	128	
528548	NaHJ 1000.089	128	
528554	Capacitor	515	1
528555	Capacitor	515	
	L 18.121	264, 275	
	LN 15.116	278	
	LN 30.117	278	
528761	Q 1000.096	134	
528786 520700	WU-M-266-SB	73	
528788	WU-M-266-SG	73	
	WU-M-266-SO	73	
528792	WU-M-266-SY	73	
	WU-M-313-SOSOSO	77	
528844	WU-M-310-WWW-5400K	77	
528845	WU-M-310-WWW-3200K	77	_
528846	WU-M-310-WWW-4200K	77	_
528847	WU-M-310-WWW-6500K	<u>77</u>	_
528848	WU-M-310-SGSGSG	77	_
528849	WU-M-310-SBSBSB	77	
528850	WU-M-314-SOSOSO	77	
528851	WU-M-311-WWW-5400K	77	
528852	WU-M-311-WWW-3200K	77	
528853	WU-M-311-WWW-4200K	77	
528854	WU-M-311-WWW-6500K	77	-
528855	WU-M-311-SGSGSG	77	-
528856	WU-M-311-SBSBSB	77	
528886	Q 1000.145	134	1
528907	WU-M-313-SYSYSY	77	

ENEC 1a applied

	T	D.	l
Ref. No. 528908	Type WU-M-314-SYSYSY	Page 77	Approval
528958	12901	170	1.5
	LN 36.149	262, 274	
529066	LN 18.173	270, 278	
529071	LN 36.174	270, 278	1
	NaHJ 250.163	120	
	NaHJ 250.204		1,19
529155	Adhesive pad 34x34	86	
529156 529157	Adhesive pad 306x11 Adhesive pad 49x49	86 86	
529158	<u> </u>	86	
529268	LN 15.119	276	
	LN 30.120	276	
529272	LN 18.121	266, 276	1
529273	LN 36.124	266, 276	
	97498	433	
529512	WU-M-266-WW	73	
	WU-M-266-W2	73	
529560 529596	NaH 600.140 40712	126 348	
	64740		1,33
	WU-ST-DigiLED-DALI-3CH		1,14
	LN 30.117	278	
529665	Capacitor	515	1
529666	Capacitor	515	1
529685	LN 58TD.120	278	
529689	LN 58TD.175	278	
529832	84101	313	
529836 529841	84103 34311	314 178	
529845		178	
530007			1,19,25,31
	L 36/40.443	263, 275	
530024	30400	400	1
530025	30450	400	
530026	30460	400	
530027	30465	400	
530079	43520 NaHJ 100.271	343 120	
	L 36.158	264, 275	
530458	72201		1,3,33
530459	72202		1,3,33
530460	72203	289	1,3,33
530462	72211		1,3,33
530463	72212		1,3,33
530464	72213		1,3,33
530465 530466	72214 72215	289 289	
530467	72216	289	
530468	72219		1,3,33
530535	84104	314	
530829	40711	348	
530831	40731	348	
530878	11000		1,3,33
530879 530941	11010 LN 18.131	262, 274	1,3,33
531007] 2000.44	129	
531009	JD 2000.33	129	
531010	J 2000.35	129	
531011	JD 2000.36	129	
531013	J 1200.37	129	
531014	J 2500.38	129	
531017	J 1000G.41	130	
531018 531021	NaH 1000G.46 J 2000G.42	130	
531021	2000G.42	130	
531090	STr 400/12.01	395	
531091	STr 200/12.05	395	_
531092	STr 300/12.11	395	
531093	STr 200/24.20	395	_

Ref. No.	Туре	Page	Approval
531094	STr 300/24.01	395	_ _
531097	STr 400/12.02	395	_
531098	STr 200/12.01	395	_
531099	STr 300/12.12	395	
531101	STr 200/12.02	394	
531102 531109	STr 300/12.13 STr 300/12.50	394 394	
531182	VNaH 600.02	116	
	VJ 2000.05	116	
531448	JD 2000I.48	129	_
531465	JD 2000.58	129	
531467	JD 2000I.60	129	
	VNaHJ 1000.61 VJD 2000.63	116	
	VNaHJ 400PZT.743	115	
531476	VNaHJ 250PZT.745	115	_
531480	VNaHJ 1000.61	116	_
531481	VJD 2000.63	116	
	L 18.121	264, 275	
532155 532377	LN 2x18.135 09420	262, 274 308	
532378	09421	308	
	09422	309	
532380	09423	309	
532390	97545	434	
532391 532399	80023 64 <i>77</i> 0	434, 436 436	
532430	13010	182	
532431		182	
532521	97685	172	_
	12800	169, 456	1
532603	12801	169, 456	1
532604 532605	12810 12811	170, 456 170, 456	1
532606	12812	170, 456	
532610	33906	408	1
532638	WU-M-291-W-3200K	23	_
532639	WU-M-291-W-4200K	23	
	WU-M-291-W-6500K	23	_
532641 532642	WU-M-292-W-3200K WU-M-292-W-4200K	23	_
532643	WU-M-292-W-6500K	23	_
532644	L 4/6/8.218	273	_
532645	WU-M-293-W-3200K	23	_
532646	WU-M-293-W-4200K	23	_
	WU-M-293-W-6500K WU-M-294-W-3200K	23	_
532649	WU-M-294-W-4200K	23	
532650	WU-M-294-W-6500K	23	
533043	LN 18.162	263, 275	
533067	LN 30.806	275	
533312 533313	41500 41510	344	
533314	41520	344	
	41540	344	
533316	41550	344	1
533317	41560	344	
533318	Connection cable	23	_
533366 533391	Connection cable VNaHJ 35PZTG.050	114	
533391	VNaHJ 70PZTG.051	114	
533393	VNaHJ 100PZTG.078	114	
533394	VNaHJ 150PZTG.052	114	
533395	NaHJZ 70/50.520	14, 124	
533396	NaHJZ 100/70.519	14, 124	
533398 533399	NaHJZ 150/100.466 QZ 80/50.551	14, 124	
533400	QZ 125/80.553	132	_
533428	12600	169	1
533429	12601	169	1

1	
la	ENEC applied
3	c UL us
5	CSV
7	
13	KEMA
13a))KEMA
14	ŮE DYE
14a	VDE applied
15	VDE
1 <i>7</i>	
19	PG
25	B
28	VDE EMV
31	
32	
33	CQC
34	c 711 ®us
	estation.

35 c RECOGNIZED COMPONENT

Ref. No.	Туре		Approval
533430	12610	169	1
533431 533432	12611	169	
533484	NaH 600.005		1.19
533565	NaHJ 150.620		1
533568	NaHJ 70.128	119	
533572	NaHJ 70.128	121	1
533602	NaHJ 150.159		1,19
533663	37001	175	1
533705	Q 250.606	131	_
533815	Adhesive pad 320x35	86	
533820	64308		1,33
533860 533861	40650 40651	345 345	
	40655	346	
533866	40656	346	
	UNaH 100/40%.452	138	
533948	UNaH 150/40%.453	138	_
533949	UNaH 250/40%.454	138	_
533950	12500	170	
533951	12501	170	
533952 533953	12510	170 170	1
533953	12511 34510	170	1
534016	34110	173	1
534017		174	1
	WU-LT-600x300	85	
534073	84108	314	
534080	34105	174	1
534081	34106	174	
	97658	425, 436	
534088	97701	425, 436	
	97692	425	
534090 534095	97700 Connection cable	436 23	
534097	97632	454	
534107	VNaHJ 35PZTG.053	114	1
534109	VNaHJ 70PZTG.054	114	
534111	VNaHJ 70PZTG.067	114	_
534115	VNaHJ 150PZTG.055	114	1
534117	VNaHJ 150PZTG.068	114	
534122	VNaHJ 35PZTG.041	114	
534128	UNaH 70/40%.501	138 529	
534218 534219	34515 34516	529	
534220	34511	173	
534252	LN 58.722	263, 275	1
534395	WU-M-295-W-3200K	23	_
534396	WU-M-295-W-4200K	23	_
534397	WU-M-295-W-6500K	23	
534401	Flatband cable	82	
534402	Flatband cable	82	
534403 534428	Flatband cable WU-M-266-WW2	82 73	
534487	NaHJ 1000.089	128	
534490	LN 24/26.804	262	
534496	WU-M-266-RGB2	73	
534540	NaHJ 150.620	120	
534621	L 18.934	262, 274	
534624	L18.933	264, 275	
534627	L 18.936	263, 275	
534644	9900	309	1
534689 534832	98013 62063	451	1
534833	62063	441	1
534835	62700	442	1
534948	41530	344	-
534954	41570	344	1
534979	34120	174	1
534992	Moisture-resistant connector	75	_

Ref. No.	Type		Approval
535032	31705	411	1
535034 535131	31 <i>7</i> 55 02113	340	1
535142	NaHJ 400.743	125	
	30800		1
535191	NaHJ 70.128	121	1
	NaHJ 150.620	121	1
535247	97742	441, 449	_
535263	30800	401	1
535267	95300	401	
	UNaH 150/40%.142	138	
	UNaH 100/40%.522 UNaH 70/40%.525	138	
	91522	138 424	
535474	97734	344	
535610	33890		1,34
535631	33671	171	
535657	VNaHJ 70PZTG.566	112	1
535673	64900	449	_
535674	64940	449	
535684			1
535685	62061	441	1
	80010 VNaHJ 150PZTG.567	441, 449 112	1
535750	42200	176	
535750 535751	42210	176	
535755	42222	176	
535778	LN 2x18.135	263, 275	1
535783	34525	529	34
	WU-VB-002-HP-Feed-in-500mm	69	
	WU-M-359-WW	73	
535949	WU-M-359-SB	73	
535950 535951	WU-M-359-SG WU-M-359-SO	73 73	
535977	L 36.132	262, 274	
535988	30485	401	1
	WU-M-266-W3	73	_
536052	WU-M-266-RGB2-CA	64	_
536140	NaHJ 1000.089	128	1
536142	NaHJ 400.743	125	1
536143	NaHJ 400.743	125	
536144	NaHJ 400.744	125	
536145 536146	NaHJ 400.743 NaHJ 400.743	125 125	1
536147	NaHJ 250.741	125	1
	NaHJ 250.741		1
	NaHJ 250.741	125	
	NaHJ 250.742	125	
536151	NaHJ 250.741	125	1
536152	NaHJ 250.741	125	
536164		412	
536199	VNaHJ 35PZTG.568	112	
	VNaHJ 100PZTG.571	112	
	VNaHJ 35PZTG.568 VNaHJ 70PZTG.566	112	
	VNaHJ 100PZTG.571	112	
536204	VNaHJ 150PZTG.567	112	
536205	VNaHJ 35PZTG.574	112	
536207	VNaHJ 70PZTG.575	112	_
536209	VNaHJ 150PZTG.576	112	
536210	VNaHJ 35PZTG.568	113	
536211	VNaHJ 70PZTG.566	113	
	VNaHJ 150PZTG.567	113	
536214	VNaHJ 35PZTG.568	113	
	VNaHJ 70PZTG.566 VNaHJ 150PZTG.567	113	
	<u> </u>		
536216 536217	VNaHL 3.5P7TG .574	113	_
536217 536218	VNaHJ 35PZTG.574 VNaHJ 70PZTG.575	113	

ENEC 1a applied

Ref. No.	Туре		Approval
536248 536258	Adhesive pad Ø28 Q 400.801	86 133	
536259	Q 400.801	133	
536260	Q 250.800	133	1
536261	Q 250.800	133	1
536378	Capacitor	513	1
536379	Capacitor	513	
536380	Capacitor		1
536381 536382	Capacitor Capacitor	513 513	
536383	Capacitor	513	1
536384	Capacitor	513	1
536385	Capacitor		1
536386	Capacitor	513	
536387	Capacitor	513	
536388 536389	Capacitor Capacitor	513 513	
536390	Capacitor		1
536391	Capacitor	513	1
536392	Capacitor	513	1
536393	Capacitor		1
536394	Capacitor	513 513	1
536395 536396	Capacitor Capacitor	513	1
536397	Capacitor	513	
536398	Capacitor		1
536399	Capacitor	513	1
536400	Capacitor	513	1
536401	Capacitor	513	1
536402 536403	Capacitor	513 513	1
536404	Capacitor Capacitor	513	
536405	Capacitor	513	
536406	Capacitor	514	_
536428	34150	174	
536429	34151	174	1
536445 536446	97735 97735	441, 449	_
536451	62062	441, 449	1
536452	62062	441	1
536469	31500	175	1
536582	NaHJ 70.128	122	1
536593	NaHJ 150.620		1
536741 536742	Capacitor Capacitor	515 515	1
536743	Capacitor	515	
536813	Capacitor	515	
536842	WU-ST-008-DigiLED-RF	81	_
536843	WU-ST-009-Walltransmitter	67, 81	
536977	Adhesive pad Ø43	86	
537038 537056	LN 58.189 LN 58.190	262, 274 263, 275	
537079	81100	430	
537080	81100	430	
537087	83141	429	
537088	83141	429	
537103 537132	Q 1000.097 24100	134 319	
537135	24110	319	
537138	24120	319	
537144	24150	319	
537147	24160	319	
537150	24170	319	
537153 537155	24350 24360	320 320	
537157	23350	320	
537160	23360	320	
537165	49100	324	1,3
537166	49105	324	
537167	49106	324	1,3

	_		l
Ref. No.			Approval
537173 537174	<u>49500</u> <u>49505</u>	324 324	
537175	49506	324	
537181	59100	324	
537182	59105	325	1,3
537183	59106	325	1,3
537205	59500	324	1,3
537206	59505	325	
537207		325	
537403 537484	STr 50/12.109 41600	392 348	
	94448	453	
	Q 400.801	133	
537726	NaHJ 250.741	125	
537744	L 15.007	275	_
537750	L 30.006	275	_
	NaHJ 150.620	122	
	NaHJ 150.679	120	
	Q 400.715	133	
537873 538034	Q 400.732 Q 400.801	133	
538072	L 361.342	274	
	09700	454	
538111	WU-M-359-W	73	_
	NaHJ 70.128	123	
	NaHJ 400.743	125	
	NaHJ 35.485	123	
538262	NaHJ 150.620	123	
538361	NaHJ 150.620 NaHJ 70/50.520	123	1
	NaHJ 70.128	119	
	NaHJ 70.653	123	
538540	Q 1000.096	134	1
538543	NaHJ 150.620		1
	UNaH 400/40%.892	141	_
538603	LN 75.170	275	
538620 538629	NaHJ 400.744 34155	125 528	
	PKNaHJ 70.128	117	
	PKNaHJ 100.941	117	
538677	PKNaHJ 150.620	117	
538678	PKNaHJ 250.741	118	_
	PKNaHJ 400.743	118	_
	PKNaHJ 70.653	117	_
538681	PKNaHJ 100.271 PKNaHJ 150.679	117 117	_
538682	PKNaHJ 250.742	118	
538684	PKNaHJ 400.744	118	
538685	PKNaHJ 70.128	117	
538686	PKNaHJ 100.941	117	
538687	PKNaHJ 150.620	117	
538688	PKNaHJ 250.741	118	
538689 538690	PKNaHJ 400.743 PRKUNaH 70/40%.525	118	
538691	PRKUNaH 100/40%.522	136	
538692	PRKUNaH 150/40%.142	136	
538693	PRKUNaH 250/40%.936	137	_
538694	PRKUNaH 400/40%.906	137	
538695	PRKUNaH 70/40%.525	136	
538696	PRKUNaH 100/40%.522	136	
538697 538698	PRKUNaH 150/40%.142 PRKUNaH 250/40%.936	136 137	
538699	PRKUNaH 400/40%.906	137	
538700	PRKUNaH 70/40%.525	136	
538701	PRKUNaH 100/40%.522	136	
538702	PRKUNaH 150/40%.142	136	
538703	PRKUNaH 250/40%.983	137	
538704	PRKUNaH 400/40%.937	137	
538705 538706	PRKUNaH 70/40%.525 PRKUNaH 100/40%.522	136 136	
330700	TRROTAGET 100/40/6.322	130	

Page	Approval	
324	1,3	
324		FM.
324		
324 325		-
325		FNIFC
324		ENEC
325		1a applied
325		
392	_	3 cOL Us
348		3 0 0 0 0 0 0
453		
133		((Y))
125 275	1	5 CSV
275		
122		
120		7
133	_	/ —
133	_	
		13 KEWA
274		13 [120]
454 73		
123		13g
		13a DEMC
123		
123		
123	1	14 (D'E)
121	1	
119		VDE
123		14a applied
134		14d applied
141		
		15 VDE
125		15 (ADE)
528	34	MITERS CO.
117	_	(7)
117		17
117		
118		6
117		19
117		
117	_	(E)
118	_	25
118		
117		
117		28 EMV
117		ZO EMV
118		
136		
136	_	31
136	_	
137		SABS
137		32
136		
136 136		600
137		33 CQC
137		
136	_	
136		34 c 71 ®us
136		34 6 4 10 08
137		
137		35 c RECOGNIZED COMPONENT
136		35 c us
136	i_	

Ref. No.	Туре		Approval
538707	PRKUNaH 150/40%.142	136	_
538708	PRKUNaH 250/40%.983	137	
538709	PRKUNaH 400/40%.937	137	_
538710	UNaH 400/40%.906	141	1
538711	UNaH 250/40%.936	141	
538715	UNaH 400/40%.937	141	
538801	L 18.249 264	275	14
538807	NaHJ 35.485	123	1
538810	NaHJ 70.128	123	
	NaHJ 70.128	123	1
	NaHJ 70.653	123	
538830	NaHJ 70.128	122	
538831	NaHJ 150.620	122	
538834	NaHJ 150.620	123	
	NaHJ 150.625	123	
	UNaH 150/100.722	139	
	NaHJ 100.581	123	
539128	23370	320	
539209	NaHJ 400.743	125	
539212	NaHJ 1000.089	128	
539223	NaHJ 70.128	123	
539270	NaHJ 150.355		1,19,31
539274	NaHJ 250.741	125	
539283	UNaH 250/40%.746	141	
	NaHJ 150.620	123	
	NaHJ 150.620	123	
	NaHJ 150.679	123	
539328	PRKUNaH 70/40%.525	136	
539329	PRKUNaH 70/40%.525	136	
539330	PRKUNaH 100/40%.522	136	
539331	PRKUNaH 100/40%.522	136	
539332	PRKUNaH 150/40%.142	136	
	PRKUNaH 150/40%.142	136	
539334	PRKUNaH 250/40%.936	137	
539335	PRKUNaH 400/40%.906	137	
539336	PRKUNaH 250/40%.936	137	
539337	PRKUNaH 400/40%.906	137	
539384 539434	UNaH 600/40%.060	141	
539434	NaHJ 70.128 WU-VB-002-HP-100mm	69	
539476	WU-VB-002-HP-20mm	69	
539492	NaHJ 100.941	121	
539497	34520	173	
539515		139	
539517	UNaH 250/40%.747	141	
539609	NaHZ 50/35.797	124	1
539614	L 4/6/8.493	278	
539624	Adhesive pad Ø107	86	
539625	Adhesive pad Ø63	86	
539626	Adhesive pad 297x23	86	
539981		278	
542267	WU-VB-006-HP-Feed-in-500mm mono	69	
542349	NaHJ 250.340	122	
542503	41663	348	
542557	NaHJ 150.679	123	
542731	WU-M-359-SY	73	_
542809	WU-M-392-XPE-WW	37	
542810	WU-M-393-XPE-WW	37	
542811	WU-M-394-XPE-WW	38	
542812	WU-M-395-WW-H3	41	14
542813	WU-M-396-WW-H3	41	14
542814	WU-M-397-WW-H3	41	14
542983	28740	317	la
542984	28741	317	la
543048	85011	416	_
543049	85012	416	
543053	85013	416	_
543054	85014	416	_
543058	85015	416	_
543059	85016	416	

Ref. No.	Туре		Approval
543153	31550	529	7 -
543187	WU-VB-008-HP-extension-400r		
543267 543295	31530 PKNaHJ 100.345	175 117	
	PKNaHJ 150.301	117	
543303	62370	168, 441	
	62070	44, 168	
543349	NaHJ 100.941	122	
543378	PKNaH 50PZT.992	117	_
	PRKUNaH 70/40%.525	136	_
	PRKUNaH 150/40%.142	136	
	PRKUNaH 250/40%.936	137	
	PRKUNaH 100/40%.522 PRKUNaH 400/40%.906	136 137	
	PKNaHJ 35.008	117	
543414	62415	44, 168	
543419		428	
543420	51021	428	
543421	51022	428	1
543422	PowerOptics XP 11°	43	_
	PowerOptics XP 13° diff	43	
	PowerOptics XP 30°	43	
	PowerOptics XP 40°	43	
543530 543531	32210 39 WU-M-392-XPE-W	99, 402, 405 37	
	WU-M-393-XPE-W		14
	WU-M-394-XPE-W		14
	WU-M-394-XPC-W	37	
543539	WU-M-393-XPC-W	37	14
	WU-M-392-XPC-W	37	
	WU-M-392-XPG-W	37	
	WU-M-393-XPG-W		14
543615	97765	412	
543640 543641	09701	454 454	
543643	42242	176	
	WU-M-359-WW-H1	73	
543733	VNaH 50PZTG.058	114	
543737	NaHJ 35.209	121	1
543738	NaH 50.206	121	1
543739	NaHJ 100.213	121	1
543740	NaHJ 150.216		1
543741	NaHJ 70.226		1
	PRKUNaH 70/40%.525 PRKUNaH 100/40%.522	136 136	_
	PRKUNaH 150/40%.142	136	_
	PRKUNaH 250/40%.936	137	_
543746	PRKUNaH 400/40%.906	137	
	UNaH 250/40%.936	141	
543748	UNaH 400/40%.906	141	1
543770		346	
543771	40561	346	
543772	40562	346	
543773 543777	40563 40566	346 346	
543778	40567	346	
543781	40570	346	
543782	40571	346	
543783	40572	346	
543784	40573	346	1
543787	40576	346	
543788	40577	346	
543793	40660	345	
543794 543795	40661	345	
543795 543796	40662 40663	345 345	
543800	40666	345	
543801	40667	345	
543802	40670	345	

D.C.N.	т.	D	l
Ref. No. 543805	Type 40672	345	Approval
543806	40673	345	
543809	40676	345	
543810	40677	345	1
543871	WU-M-392-XPC-W	37	14
543872	WU-M-392-XPC-WW	37	
543873	WU-M-392-XPC-WW	37	
543874	WU-M-392-XPC-WW	37	
543875	WU-M-393-XPC-W	37	
543876 543877	WU-M-393-XPC-WW WU-M-393-XPC-WW	37 37	
543878	WU-M-393-XPC-WW	37	
	WU-M-394-XPC-W		14
	WU-M-394-XPC-WW	37	
543881	WU-M-394-XPC-WW	37	14
543882	WU-M-394-XPC-WW	37	14
543883	WU-M-392-XPE-W	37	
543884	WU-M-392-XPE-W	37	
543885	WU-M-392-XPE-W	37	
543886	WU-M-392-XPE-WW	37 37	
543887 543888	WU-M-392-XPE-WW WU-M-393-XPE-W	37	
	WU-M-393-XPE-W		14
543890	WU-M-393-XPE-W		14
543891	WU-M-393-XPE-WW	37	
543892	WU-M-393-XPE-WW	37	14
543893	WU-M-394-XPE-W	38	14
543894	WU-M-394-XPE-W	38	
543895	WU-M-394-XPE-W	38	
	WU-M-394-XPE-WW	38	
543897	WU-M-394-XPE-WW WU-M-392-XPG-W	38 37	
543899	WU-M-393-XPG-W	37	
543900	WU-M-394-XPG-W	38	
543901	WU-M-394-XPG-W	38	
543902	WU-M-395-WW-H3	41	_
543903	WU-M-395-WW-H3	41	_
543904	WU-M-395-WW-H3	41	_
543905	WU-M-396-WW-H3	41	_
543906 543907	WU-M-396-WW-H3 WU-M-396-WW-H3	41	_
543908	WU-M-397-WW-H3	41	_
543909	WU-M-397-WW-H3	41	_
543910	WU-M-397-WW-H3	41	_
543986	NaHJ 400.743	125	1
544000	41600	348	
544011	41672	348	
544031	PowerOptics HC 14°	43	
544032	PowerOptics HC 18° diff	43	
544033 544034	PowerOptics HC 32° PowerOptics HC 42°	43	
544035	PowerOptics HC 63°	43	
544036	PowerOpticsStrada A XP	43	
544038	PowerOpticsStrada B XP	43	_
544210	NaHJ 250.741	125	1
544605	62009	440	
544621	64800	448	
544673 544674	WU-M-392-XPC-W		14
544675	WU-M-392-XPC-W WU-M-393-XPC-W		14
544676	WU-M-393-XPC-W		14
544677	WU-M-394-XPC-W	37	
544678	WU-M-394-XPC-W		14
544679	WU-M-392-XPE-WW	37	
544680	WU-M-393-XPE-WW		14
544681	WU-M-394-XPE-WW	38	
544682	WU-M-392-XPG-WW		14
544683 544684	WU-M-392-XPG-WW	37	14
544685	WU-M-393-XPG-WW WU-M-393-XPG-WW		14
J-700J	7 7 U-1VI-U 7 U-VI U-V V V V	3/	

Ref. No.	Туре	Page	Approval
544686	WU-M-394-XPG-WW	38	
544687	WU-M-394-XPG-WW	38	
544728 544729	UNaH 70/40%.525 UNaH 150/40%.142	139	
544730	UNaH 100/40%.522	139	
544760	PRKUNaH 50/40%.021	136	_
544787	NaHJ 1000.089	128	1
544804	Kühlkörper	45	_
544805	Kühlkörper	45	_
544895	34700	172	
544896	34720	172	la
545007 545008	WU-M-395-WW-H1 WU-M-395-WW-H1	41	_
545009	WU-M-395-WW-H1	41	_
545010	WU-M-395-WW-H1	41	_
545011	WU-M-396-WW-H1	41	_
545012	WU-M-396-WW-H1	41	_
545013	WU-M-396-WW-H1	41	_
545015	WU-M-396-WW-H1	41	_
545016 545017	WU-M-397-WW-H1	41	_
545018	WU-M-397-WW-H1	41	_
545019	WU-M-397-WW-H1	41	-
545185	WU-M-403-XP-2700K W1	25	14
545187	WU-M-403-XP-3000K W1	25	
545189	WU-M-403-XP-4000K W1	25	14
545261 545262	22860	323	
545356	22861 WU-VB-009-300	323 25	1a _
545383	WU-M-266-W2-Outdoor 171mm	75	_
545384	WU-M-266-W2-Outdoor 855mm	75	_
545385	WU-M-266-W2-Outdoor 1710mm	75	_
545386	WU-M-266-W3-Outdoor 171mm	75	_
545387 545388	WU-M-266-W3-Outdoor 855mm WU-M-266-W3-Outdoor 1710mm	75 75	_
545389	WU-M-266-WW2-Outdoor 171mm	75	_
545390	WU-M-266-WW2-Outdoor 855mm	75	_
545391	WU-M-266-WW2-Outdoor 1710mm	75	_
545392	WU-M-266-SB-Outdoor 171mm	75	_
545405	LN 26.238	263	1
545406 545407	WU-M-266-SB-Outdoor 855mm WU-M-266-SB-Outdoor 1710mm	75 75	_
545408	WU-M-266-SG-Outdoor 171mm	75	_
545409	WU-M-266-SG-Outdoor 855mm	75	_
545410	WU-M-266-SG-Outdoor 1710mm	75	_
545411	WU-M-266-SO-Outdoor 171 mm	75	
545412	WU-M-266-SO-Outdoor 855mm	75	
545413 545414	WU-M-266-SO-Outdoor 1710mm WU-M-266-SY-Outdoor 171mm	75 75	
545415	WU-M-266-SY-Outdoor 855mm	75	
545416	WU-M-266-SY-Outdoor 1710mm	75	
545417	WU-M-266-RGB2-Outdoor 171mm	75	_
545418	WU-M-266-RGB2-Outdoor 855mm	75	_
545419	WU-M-266-RGB2-Outdoor 1710mm	75	
545420 545421	WU-M-266-RGB2-CA-Outdoor171mm WU-M-266-RGB2-CA-Outdoor855mm		
545422	WU-M-266-RGB2-CA-Outdoor1710m		
545680	WU-M-403-XP-4000K W2	25	
545689	Thermal tape Ø 48 mm Graphite	87	_
545840	29125	531	1,3
545842	29126	531	1,3
545845 545849	29100 29101	531	1,3
545852	29155	530	
545858	29150	530	
545894	09446	311	la
545896	09447	311	la
545933		532	
545935 545937), 532), 532	
5-75757	5,404	,, JJZ	1.0

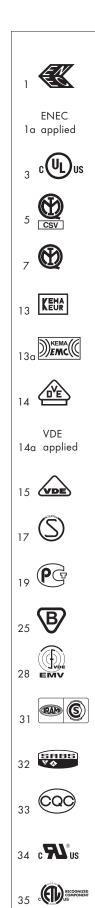
,		
	1	EN
	1a	ENEC applied
	3	c UL US
	5	CSV
	7	
	13	KEMA
	13a))KEMA
	14	ŮE DYE
	14a	VDE applied
	15	VDE
	1 <i>7</i>	(S)
	19	P
	25	B
	28	EMV
	31	
	32	SHEE V &
	33	CQC
	34	c RU ®us
		and the fire of

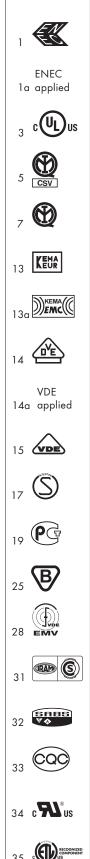
35 c RECOGNIZED COMPONENT

			1
Ref. No.	Туре		Approval
545939	09435	310, 532	
546006	97745	424	_
546075 546076	CPS 35W 3000K CPS 35W 4200K		_
546077	CPS 70W 3000K	7	_
546078	CPS 70W 4200K	7	_
546088	WU-M-422-XPE-CW-30°	35	
	WU-M-422-XPE-NW-30°	35	
	WU-M-422-XPE-WW-30°	35	
546161	34730	172	la
546254	98008	314, 333	_
546271	WU-M-403-NV-3000K W1	25	14
546272	WU-M-404-NV-3000K W1	25	14
546273	WU-M-405-NV-3000K W1	25	14
	WU-M-403-NV-2700K W1		14
546284	WU-M-403-NV-4000K W1	25	
	WU-M-404-NV-2700K W1		14
546286	WU-M-404-NV-4000K W1	25	
546287	WU-M-405-NV-2700K W1		14
546288 546370	WU-M-405-NV-4000K W1 Reflector	25 45	
546454	64370	420	
546456	64370	420	
546585	PRKUNaH 250/40%.758	137	
546609	36020	298	
546612	36021	298	
546641	27700	316	1,3
546642	27701	316	1,3
546647	27800	316	1,3
546648	27801	316	1,3
546655	58100	315	la
546656	58110	315	
	WU-M-421-XPC-NW	33	
	WU-M-421-XPC-CW	33	
	WU-M-421-XPC-WW	33	
546680 546684	WU-M-421-XPE-CW WU-M-421-XPE-WW	33	
546685	WU-M-421-XPE-NW	33	
546686	WU-M-421-XPG-CW	33	
546687	WU-M-421-XPG-NW	33	
546688	WU-M-421-XPG-WW	33	_
546727	WU-M-422-XPE-NW	35	_
546729	WU-M-422-XPE-CW	35	_
546733	WU-M-422-XPE-WW	35	_
546735	WU-M-422-XPE-CW-10°	35	_
546736	WU-M-422-XPE-NW-10°	35	
546741	WU-M-422-XPE-WW-10°	35	
546748	WU-M-422-XPE-CW-20°	35	
546749 546750	WU-M-422-XPE-WW-20° WU-M-422-XPE-NW-20°	35 35	
	WU-M-422-XPE-CW-40°	35	
546756	WU-M-422-XPE-NW-40°	35	
546757	WU-M-422-XPE-WW-40°	35	
546797	PKNaHJ 35.008	117	
546817	NaHJ 70.158	122	
547145	LN 21.293	263	_
547228	WU-M-425-CW	28	14a
547229	WU-M-425-NW	28	14a
547230	WU-M-425-WW		14a
547231	WU-M-425-CW		14a
547232	WU-M-425-NW		14a
547233	WU-M-425-WW		14a
547285	PKNaHJ 35.008	117 117	
547287 547510	PKNaHJ 70.653 PowerOptics 3XP 40°	44	
547511	PowerOptics 4XP 40°	44	
547511	PowerOptics 3XP 30°	44	
547588	PowerOptics 4XP 30°	44	
547589	PowerOptics 3XP 20°	44	
547590	PowerOptics 4XP 20°	44	

Ref. No.	Туре		Approval
47591	PowerOptics 3XP 10°	44	_
547592 547716	PowerOptics 4XP 10°	44	
47717	PowerOptics3 PowerOptics3	42	
47718	PowerOptics3	42	
47719	PowerOptics3	42	
47726	LR4W XPE 3000K min P4	39	_
47788	LR4VV XPE 3000K min P4	39	
	LR4W XPE 3000K min P4	39	
47790 47795	LR4W XPE 3000K min P4 LR4W XPE 6300K min Q4	39 39	
	LR4VV XPE 6300K min Q4	39	
	LR4W XPE 6300K min Q4	39	
	LR4W XPE 6300K min Q4	39	
47807	34650	172	1a
47808	34651	172	
47837	LR4W XPE 4000K min Q2	39	
47838	LCH-004 XPE 4500K min Q4	56 119	
47860 47940	NaHJ 70.228 LR4W XPE 4000K min Q2	39	
	WU-M-424-40K	33	
48031	WU-M-424-30K	33	
48032	WU-M-424-27K	33	_
48081	WU-VB-010	21	_
48082	WU-VB-011	21	
48083 48135	WU-VB-012 DML62EL30/L	21	_
48136	DML62EW/L	21	_
	Conductive adhesive tapes	21, 86	_
48252	Thermal tape 54x54 mm	87	_
48259	NaHJ 400.743	125	1
48260	NaHJ 150.159		1,19
48363	LCH-008 XPE 3000K min Q3	57	_
48364 48366	LCH-008 XPE 3000K min Q3 LCH-008 XPE 3000K min Q3	57 57	
48368	LCH-008 XPE 3000K min Q3	57	
	LCH-008 XPE 4500K min Q4	57	
48370	LCH-008 XPE 4500K min Q4	57	_
48372	LCH-008 XPE 4500K min Q4	57	_
48374	LCH-008 XPE 4500K min Q4	57	_
48375	LCH-008 XPE 6300K min R2	57	_
48376 48378	LCH-008 XPE 6300K min R2 LCH-008 XPE 6300K min R2	57 57	_
48380	LCH-008 XPE 6300K min R2	57	
48381	WU-M-431-2700K		14a
48382	WU-M-431-3000K	26	14a
48383	WU-M431-4000K		14a
48384	WU-M-432-2700K		14a
48385 48386	WU-M-432-3000K		14a
48386	WU-M-432-4000K LCH-009 XPE 3000K min Q3	57	14a
48419	LCH-009 XPE 3000K min Q3	57	
48424	LCH-009 XPE 3000K min Q3	57	
48428	LCH-009 XPE 3000K min Q3	57	
48429	LCH-009 XPE 4500K min Q4	57	
48430	LCH-009 XPE 4500K min Q4	57	
48432	LCH-009 XPE 4500K min Q4	57 57	
48434 48435	LCH-009 XPE 4500K min Q4 LCH-009 XPE 6300K min R2	57 57	_
48436	LCH-009 XPE 6300K min R2	57	
48438	LCH-009 XPE 6300K min R2	57	
48440	LCH-009 XPE 6300K min R2	57	
48504	WU-M-438CW	29	
48505	WU-M-438-NW	29	
48506	WU-M-438WW	29	
48518 48519	WU-M-440-RGB WU-M-440-NW	63	
48520	WU-M-440-WW	63	
	WU-M-441-RGB	63	
48521	V V U-1V1-44 1-KGD		

ENEC 1a applied




Ref. No. 548523	_		Ι
340323	Type WU-M-441-WW	Page 63	Approval
548524	WU-M-442-RGB	63	
548525	WU-M-442-NW	63	
548526	WU-M-442-WW	63	
548566	WU-M-438-CW	29	_
548567	WU-M-438-NW	29	
548568	WU-M-438-WW	29	
548721 548728	JD 2000II.67 WU-M-438-6KLM	129	
548729	WU-M-438-6KLM	31	
548730	WU-M-438-6KLM	31	_
548731	WU-M-438-10KLM	31	_
548732	WU-M-438-10KLM	31	_
548733	WU-M-438-10KLM	31	_
548739	Heat sink	45	
548769	LCH-006 XPE 3000K min Q3	59	
548770 548772	LCH-006 XPE 3000K min Q3 LCH-006 XPE 3000K min Q3	59 59	
548774	LCH-006 XPE 3000K min Q3	59	
548775	LCH-006 XPE 6300K min R2	59	
548776	LCH-006 XPE 6300K min R2	59	
548778	LCH-006 XPE 6300K min R2	59	_
548780	LCH-006 XPE 6300K min R2	59	
548781	Reflector	45	
548782 548783	LCH-006 XPE 3000K min Q3 LCH-006 XPE 3000K min Q3	59 59	
548785	LCH-006 XPE 3000K min Q3	59	
548787	LCH-006 XPE 3000K min Q3	59	
548788	LCH-006 XPE 6300K min R2	59	
548789	LCH-006 XPE 6300K min R2	59	_
548791	LCH-006 XPE 6300K min R2	59	
548793	LCH-006 XPE 6300K min R2	59	
548794 548795	LCH-007 XPE 3000K min Q3 LCH-007 XPE 3000K min Q3	59 59	
548797	LCH-007 XPE 3000K min Q3	59	
548799	LCH-007 XPE 3000K min Q3	59	
548800	LCH-007 XPE 6300K min R2	59	
548801	LCH-007 XPE 6300K min R2	59	_
548803	LCH-007 XPE 6300K min R2	59	_
548805	LCH-007 XPE 6300K min R2	59	
548806	LCH-007 XPE 3000K min Q3 LCH-007 XPE 3000K min Q3	59	
548807 548809	LCH-007 XPE 3000K min Q3	59 59	
548811	LCH-007 XPE 3000K min Q3	59	
548812	LCH-007 XPE 6300K min R2	59	_
548813	LCH-007 XPE 6300K min R2	59	_
548815	LCH-007 XPE 6300K min R2	59	_
548817	LCH-007 XPE 6300K min R2	59	
548826	WU-M-437-2700K	27	
548827 548828	WU-M-437-3000K WU-M-437-4000K	27 27	
548863	LR4W XPE 4000K min Q2	39	
548864	LR4W XPE 4000K min Q2	39	
548868	PowerOptics3	42	
548869	PowerOptics3	42	_
	PowerOptics3	42	
548870	PowerOptics3	42	_
548871	•		
548871 548872	LR3W XPE 3000K min P4	35	_
548871 548872 548873	LR3W XPE 3000K min P4 LR3W XPE 3000K min P4	35 35	_
548871 548872 548873 548874	LR3W XPE 3000K min P4 LR3W XPE 3000K min P4 LR3W XPE 3000K min P4	35 35 35	_ _ _
548871 548872 548873	LR3W XPE 3000K min P4 LR3W XPE 3000K min P4	35 35 35 35	_ _ _ _
548871 548872 548873 548874 548875	LR3W XPE 3000K min P4	35 35 35 35 35 35	- - - - -
548871 548872 548873 548874 548875 548876 548877 548878	LR3W XPE 3000K min P4 LR3W XPE 4000K min Q2	35 35 35 35 35 35 35	- - - - -
548871 548872 548873 548874 548875 548876 548877 548878 548879	LR3W XPE 3000K min P4 LR3W XPE 4000K min Q2	35 35 35 35 35 35 35 35	
548871 548872 548873 548874 548875 548876 548877 548878 548879 548880	LR3W XPE 3000K min P4 LR3W XPE 4000K min Q2 LR3W XPE 6300K min Q4	35 35 35 35 35 35 35 35 35	
548871 548872 548873 548874 548875 548876 548877 548878 548879 548880 548881	LR3W XPE 3000K min P4 LR3W XPE 4000K min Q2 LR3W XPE 6300K min Q4 LR3W XPE 6300K min Q4	35 35 35 35 35 35 35 35 35 35	- - - - - - -
548871 548872 548873 548874 548875 548876 548877 548878 548879 548880	LR3W XPE 3000K min P4 LR3W XPE 4000K min Q2 LR3W XPE 6300K min Q4	35 35 35 35 35 35 35 35 35	- - - - - - - - -

Ref. No.	Туре	Page	Approval
548887	LCH-004 XPE 3000K min Q3	56	_
548888	LCH-004 XPE 3000K min Q3	56	_
548889	LCH-004 XPE 3000K min Q3	56	
548891	LCH-004 XPE 4500K min Q4	56	
548892	LCH-004 XPE 4500K min Q4	56	
548893	LCH-004 XPE 4500K min Q4	56	
548894	LCH-004 XPE 6300K min R2	56	
548895	LCH-004 XPE 6300K min R2	56	
548896	LCH-004 XPE 6300K min R2	56	
548897	LCH-004 XPE 6300K min R2	56	
548898	LCH-002 XPE 3000K min Q3	56	
548899	LCH-002 XPE 3000K min Q3	56	
	LCH-002 XPE 3000K min Q3	56	
548901	LCH-002 XPE 3000K min Q3	56	
548902	LCH-002 XPE 4500K min Q4	56	
548903	LCH-002 XPE 4500K min Q4	56	
548904	LCH-002 XPE 4500K min Q4	56	
548905	LCH-002 XPE 4500K min Q4	56	
548906	LCH-002 XPE 6300K min R2	56	
548907	LCH-002 XPE 6300K min R2	56	
548908	LCH-002 XPE 6300K min R2	56	
548909	LCH-002 XPE 6300K min R2	56	
548912	LCH-002 XML 3000K min T6	56	
548913	LCH-002 XML 3000K min T6	56	
548914	LCH-002 XML 3000K min T6	56	
548915	LCH-002 XML 3000K min T6	56	
548916	LCH-002 XML 4000K min U2	56	
548917	LCH-002 XML 4000K min U2	56	
	LCH-002 XML 4000K min U2	56	
548919	LCH-002 XML 4000K min U2	56	
	LCH-004 XML 3000K min T6	56	
548921	LCH-004 XML 3000K min T6	56	
548922	LCH-004 XML 3000K min T6	56	
548923	LCH-004 XML 3000K min T6	56	
548924	LCH-004 XML 4000K min U2	56	
548925	LCH-004 XML 4000K min U2	56	
548926	LCH-004 XML 4000K min U2	56	
548927	LCH-004 XML 4000K min U2	56	_
548929	LCH-008 XML 3000K min T6	57	_
548930	LCH-008 XML 3000K min T6	57	_
548931	LCH-008 XML 3000K min T6	57	_
548932	LCH-008 XML 4000K min U2	57	_
548933	LCH-008 XML 4000K min U2	57	_
548934	LCH-008 XML 4000K min U2	57	_
548935	LCH-008 XML 4000K min U2	57	_
548936	LCH-009 XML 3000K min T6	57	_
	LCH-009 XML 3000K min T6	57	_
548938	LCH-009 XML 3000K min T6	57	
548939	LCH-009 XML 3000K min T6	57	_
548940	LCH-009 XML 4000K min U2	57	_
548941	LCH-009 XML 4000K min U2	57	
548942	LCH-009 XML 4000K min U2	57	
548943	LCH-009 XML 4000K min U2	57	
548944	LCH-006 XPE 4500K min Q4	59	
548945	LCH-006 XPE 4500K min Q4	59	
548946	LCH-006 XPE 4500K min Q4	59	
548947	LCH-006 XPE 4500K min Q4	59	
548948	LCH-006 XPE 4500K min Q4	59	
548949	LCH-006 XPE 4500K min Q4	59	
548950	LCH-006 XPE 4500K min Q4	59	
548951	LCH-006 XPE 4500K min Q4	59	
548952	LCH-007 XPE 4500K min Q4	59	
548953	LCH-007 XPE 4500K min Q4	59	
548954	LCH-007 XPE 4500K min Q4	59	
548955	LCH-007 XPE 4500K min Q4	59	-
548956	LCH-007 XPE 4500K min Q4	59	_
548957	LCH-007 XPE 4500K min Q4	59	-
548958	LCH-007 XPE 4500K min Q4	59	_
548959	LCH-007 XPE 4500K min Q4	59	_
	LCH010 XPE 3000K min Q3	60	

Reference Numbers

Ref. No.	Туре	Page	Approval
548961	LCH010 XPE 4500K min Q4	60	_
548962	LCH011 XPE 3000K min Q3	60	_
548963	LCH011 XPE 4500K min Q4	60	_
548964	LCH010 XPE 3000K min Q3	60	_
548965	LCH010 XPE 4500K min Q4	60	_
548966	LCH011 XPE 3000K min Q3	60	_
548967	LCH011 XPE 4500K min Q4	60	_
548970	LCH010 XML 3000K min T6	60	_
548971	LCH010 XML 4000K min U2	60	_
548972	LCH011 XML 3000K min T6	60	_
548973	LCH011 XML 4000K min U2	60	_
548974	LCH010 XML 3000K min T6	60	_
548975	LCH010 XML 4000K min U2	60	_
548976	LCH011 XML 3000K min T6	60	
548977	LCH011 XML 4000K min U2	60	_
549056	WU-M-425-CW-LOWCRI	28	14a
549057	WU-M-425-CW-LOWCRI	28	14a
549145	WU-M-438-CW-LOWCRI	29	_
549146	WU-M-438-CW-LOWCRI	29	_
549258	DML62EL30/L 89300	21	_
549259	DML62EW/L 896300	21	_
549260	DML62EL30/L 89301	21	
549261	DML62EW/L 89301	21	_
549262	DML62EL30/L 89302	21	
549263	DML62EW/L 89302	21	_
549828	LCH-008 XML 3000K min T6	57	

35 c RECOGNIZED COMPONENT

Subsidiaries	Address	Phone / Fax / Email
Vossloh-Schwabe Deutschland GmbH	P.O. Box 28 69	Phone: +49/(0)2351/10 10
Germany, Benelux, Great Britain, Ireland,	D-58478 Lüdenscheid, Germany	Fax: +49/(0)2351/10 12 17
Austria, Świtzerland, Scandinavia, Turkey		info.vsv@vsv.vossloh-schwabe.com
Australia	Branch Office Sydney	Phone: +61/(0)2/88 43 07 00
Vossloh-Schwabe Deutschland GmbH	3A Lenton Place	Fax: +61/(0)2/88 43 07 77
	North Rocks, N.S.W. 2151, Australia	sales-aus@vsaus.vossloh-schwabe.com
China	Wiselogic International Center	Phone: +86/21/62 18 55 99
Vossloh-Schwabe Electrical Appliances	Room 1602, #66 North Shannxi Road	Fax: +86/21/62 67 07 81
Trading (Shanghai) Co., Ltd.	Shanghai, P.C. 200041/China	sean.yang@vscn.vossloh-schwabe.com
East Europe	Sales Office East Europe	Phone: +420/235 30 03 58
Vossloh-Schwabe Deutschland GmbH	Na Radosti 184	Fax: +420/235 31 22 61
Vossion ochwade Dedischland Ollibri	155 21 Prague 5 - Zlicín, Czech Republic	magdalena.ragauerova@vsv.vossloh-schwabe.com
France	ZINord	Phone: +33/(0)389/20 12 12
Vossloh-Schwabe France S.a.r.l.	20, rue A. Kiener	Fax: +33/(0)389/24 18 65
VOSSIOIFSCHWabe Halice S.a.i.i.	68016 Colmar, France	vsf.ventes@vsf.vossloh-schwabe.com
U V	Flat A & B, 26/F., West Gate Tower	Phone: +852/28779688
Hong Kong		· · · · · · · · · · · · · · · · · · ·
Vossloh-Schwabe Hong Kong Ltd.	7 Wing Hong Street, Cheung Sha Wan	Fax: +852/28779933
	Kowloon, Hong Kong	linda.li@vshk.vossloh-schwabe.com
Hungary	Sales Office Hungary	Mobil: +36/30/298 43 00
Vossloh-Schwabe Deutschland GmbH	Árpád utca 27	Fax: +36/1/270 12 62
	H-1161 Budapest, Hungary	szabolcs.birtalan@vsv.vossloh-schwabe.com
Italy, Greece	Via Strada S. Martino 15	Phone: +39/0547/9 81 11
Vossloh-Schwabe Italia S.p.A.	47027 Sarsina/Forlí, Italy	Fax: +39/0547/9 82 60
		vs-i@vsi.vossloh-schwabe.com
Korea	#602 Olympia Center Building	Phone: +82/2/62 04 87 81/4
Vossloh-Schwabe Korea	828-10, Yeoksam-Dong, Gangnam-Gu	Fax: +82/2/62 04 87 85
	Seoul 135-935, Korea	borim.kim@vs.vossloh-schwabe.com
New Zealand	Branch Office Auckland	Phone: +64/(0)9/265 11 10
Vossloh-Schwabe Deutschland GmbH	Unit 2 / 54 Lady Ruby Drive	Fax: +64/(0)9/265 11 20
	East Tamaki, Auckland, New Zealand	sales-nz@vsnz.vossloh-schwabe.com
Poland, Baltic States	Sales Office Poland	Phone: +48/(0)12/3 57 23 23
Vossloh-Schwabe Deutschland GmbH	ul. Zaporoska 6/5	Fax: +48/(0)12/2 62 03 26
	PL 30-389 Kraków, Poland	lukasz.niemczycki@vsv.vossloh-schwabe.com
Serbia, Bosnia-Herzegovina, Bulgaria, Kosovo,	Sales Office Belgrad/Serbia	Phone: +381/63/286 330
Croatia, Macedonia, Montenegro, Slovenia	Danila Lekica 1	Fax: +381/63/286 330
Vossloh-Schwabe Deutschland GmbH	1 1000 Belgrade, Serbia	goran.stankovic@vsv.vossloh-schwabe.com
Singapore	Vertex, 33 Ubi Avenue 3	Phone: +65/62 75 75 33
Vossloh-Schwabe Pte. Ltd.	Lobby A #06-72	Fax: +65/62 75 76 33
VOSSIOTI-SCHWabe Fie. Lia.	Singapore 408868	vssing@singnet.com.sg
South Africa	Branch Office Johannesburg	Phone: +27/11/31 44 340
Vossloh-Schwabe Deutschland GmbH		
vossion-schwabe Deutschlana GmbH	154, Lechwe Avenue, Corporate Park	Fax: +27/11/31 45 287
	Midrand 1685, South Africa	barry.hall@vsaf.vossloh-schwabe.com
Spain, South America, Portugal	Venezuela 105, 5° - A	Phone: +34/93/481 70 70
Vossloh-Schwabe Ibérica, S.L.	08019 Barcelona, Spain	Fax: +34/93/481 70 71
		vs-e@vse.vossloh-schwabe.com
Taiwan	Taiwan Branch	Phone: +886/(0)2/25 68 36 22
Vossloh-Schwabe Pte. Ltd.	9. FL-2, No. 80	Fax: +886/(0)2/25 68 36 20
	Sung Chiang Road, Taipei, Taiwan	betty.ho@vstw.vossloh-schwabe.com
Thailand	3rd Floor (Unit 1) BUI Building 1	Phone: +66/(0)2/63 473 11
Vossloh-Schwabe Trading Ltd.	175-177 Soi Anumarnratchathon 1	Fax: +66/(0)2/63 473 13
	Surawong Road, Kwaeng Suriyawongse Khet Bangrak, Bangkok 10500, Thailand	sales.vstt@vstt.vossloh-schwabe.com
Tunisia	Rue de l'énergie, BP. 299	Phone: +216/1/38 49 00
Vossloh-Schwabe Tunisie S.A.	Zone Industrielle de Ben Arous 2013	Fax: +216/71/38 49 90
. 335.3.1 Salimado Tallidio O.A.	Tunis, Tunisia	vs.tunisie@gnet.tn
USA, Canada, Mexico	26 Century Blvd.	Phone: +1/615/31 65 100
Universal™ Lighting Technologies	Nashville, TN 37214-3683, USA	Fax: +1/615/31 65 205
oniversal Eighning rechnologies	14-3003, USA	
		oem_sales@unvlt.com

Distributors	Address	Phone / Fax / Email
Belgium	Golden Hope Straat 35b	Phone: +32/2/344 34 34
Huppertz NV-SA	1620 Drogenbos, Belgium	Fax: +32/2/344 34 30
		info@huppertz.be
Bulgaria	Vasil Levski Street, No 20	Phone: +359/(0)618/64 909
HIT Ltd.	5139 Parvomaitsi, Bulgaria	Fax: +359/(0)618/64 929
		m.zelenkov@hitlighting.com
Denmark	Syv Holmevej 3	Phone: +45/4618/66 44
Scanlouvers A/S	4130 Viby Si., Denmark	Fax: +45/4618/67 12
,	7 17	sales@scanlouvers.dk
Egypt	55, Al Gomhoria St.	Phone: +202/2/58 800 22
Egyptian German Electrical Supplies Comp.	Azbakia, Cairo, Egypt	Fax: +202/2/59 141 88
Germany	An der Wachsfabrik 3a	Phone: +49/(0)2236/966 310
Arnold Houben GmbH	50996 Cologne, Germany	Fax: +49/(0)2236/966 319
Distributor für den Elektro-Großhandel	30770 Cologie, Collidity	info@houben.eu
Iran	141 Amol Road	Phone: +98/111/328 39 11
Sepehr Afrooz Saba Trading, Inc.	Babol, Iran	Fax: +98/111/328 39 24
sepeni 711002 saba riading, inc.	Babol, Ilali	info@sasti.net
Jordan	Salah Ad-deen Str. 164, 182	Phone: +962/6/46 46 666
Hassan Minwer Est.	P.O. Box 182651	Fax: +962/6/46 43 746
labal Al-Hussein	11118 Amman, Jordan	minwerlight@index.com.jo
Netherlands	Argonweg 15	Phone: +31/36/53 650 55
Michels	1362 AA Almere Stad-West	Fax: +31/36/52 925 85
Micrieis Fechnische Handelsonderneming B.V.	Netherlands	l.michels@michels-handel.nl
<u> </u>	Sagmyra 2 A	Phone: +47/38/003636
Norway	4624 KristiansandBal, Norway	Fax: +47/23/501283
yskomponenter AS	4024 Kristiansanabai, Norway	
Davidson I	Empreendimento Urbiportral, Armazém 3	firmapost@lyskomponenter.no Phone: +351/21/91 511 75
Portugal	Zona Industrial da Abrunheira	
Vabeldi-Comercio de Iluminação, Lda.		Fax: +351/21/91 520 63
	2710-089 Sintra, Portugal	vabeldi@vabeldi.pt
Romania	Budila str., 12, ap. 4B4, Sector 2	Mobile: +40/744278096
Patrascoiu Consulting SRL	024095 Bucharest, Romania	Phone/Fax: +40/21/6107437
	07.0	silviu.patrascoiu@patrascoiu-consulting.ro
Russia	87, Dmitrovskoje Shosse	Phone: +7/(0)495/77 50 100
Ferna-Lainer	127238 Moscow, Russia	Fax: +7/(0)495/50 298 76
		svet@zaolainer.ru
Saudi Arabia	P.O. Box 42005	Phone: +966/1/29 17 855
Ultra Light	11541 Riyadh, Saudi Arabia	Fax: +966/1/29 13 597
		ultralight@ultra-light.net
Sweden	Hamragårdsvägen 37	Phone: +46/(0)31/70 600 70
Candelux AB	43951 Åsa, Sweden	Fax: +46/(0)31/70 600 72
		info@candelux.se
Switzerland, Liechtenstein	Weidstrasse 16	Phone: +41/71/42 42 525
Max Hauri AG	9220 Bischofszell, Switzerland	Fax: +41/71/42 42 590
		info@maxhauri.ch
United Arab Emirates	P.O. Box 17590	Phone: +971/4/88 12 599
VS-Gulf FZCO	Jebel Ali Free Zone, Dubai, U.A.E.	Fax: +971/4/88 12 170
		sales@vsgulf.com

Whenever an electric light goes on around the world, Vossloh-Schwabe is likely to have made a key contribution to ensuring that everything works at the flick of a switch.

Headquartered in Germany, Vossloh-Schwabe has been a member of the global Panasonic group since 2002 and counts as a technology leader within the lighting sector. Top-quality, high-performance products form the basis of the company's success.

Whether cost-effective standard components or tailor-made product developments are needed, Vossloh-Schwabe can satisfy even the most diverse market and customer requirements. Vossloh-Schwabe's extensive product portfolio covers all lighting components: electronic and magnetic ballasts, lampholders, state-of-the-art control systems (LiCS), LED systems with matching control gear units as well as OLEDs.

A member of the Panasonic group Panasonic

Hohe Steinert 8 \cdot 58509 Lüdenscheid \cdot Germany Phone +49/23 51/10 10 \cdot Fax +49/23 51/10 12 17

